000075854 001__ 75854
000075854 005__ 20210208180200.0
000075854 0247_ $$2doi$$a10.1051/e3sconf/20184005012
000075854 0248_ $$2sideral$$a108658
000075854 037__ $$aART-2018-108658
000075854 041__ $$aeng
000075854 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000075854 245__ $$aCoupled method for the numerical simulation of 1D shallow water and Exner transport equations in channels with variable cross-section
000075854 260__ $$c2018
000075854 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075854 5203_ $$aThis work is focused on the a numerical finite volume scheme for the resulting coupled shallow water-Exner system in 1D applications with arbitrary geometry. The mathematical expression modeling the the hydrodynamic and morphodynamic components of the physical phenomenon are treated to deal with cross-section shape variations and empirical solid discharge estimations. The resulting coupled system of equations can be rewritten as a nonconservative hyperbolic system with three moving waves and one stationary wave to account for the source terms discretization. But, even for the simplest solid transport models as the Grass law, to find a linearized Jacobian matrix of the system can be a challenge if one considers arbitrary shape channels. Moreover, the bottom channel slope variations depends on the erosion-deposition mechanism considered to update the channel cross-section profile. In this paper a numerical finite volume scheme is proposed, based on an augmented Roe solver (first order accurate in time and space) and dealing with solid transport flux variations caused by the channel geometry changes. Channel crosssection variations lead to the appearance of a new solid flux source term which should be discretized properly. Comparison of the numerical results for several analytical and experimental cases demonstrate the effectiveness, exact wellbalanceness and accuracy of the scheme.
000075854 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075854 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075854 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000075854 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000075854 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000075854 773__ $$g40 (2018), 05012 [8 pp]$$pE3S web conf.$$tE3S web of conferences$$x2555-0403
000075854 8564_ $$s359866$$uhttps://zaguan.unizar.es/record/75854/files/texto_completo.pdf$$yVersión publicada
000075854 8564_ $$s71321$$uhttps://zaguan.unizar.es/record/75854/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075854 909CO $$ooai:zaguan.unizar.es:75854$$particulos$$pdriver
000075854 951__ $$a2021-02-08-17:42:32
000075854 980__ $$aARTICLE