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Abstract. This work is focused on the a numerical finite volume scheme for
the resulting coupled shallow water-Exner system in 1D applications with arbi-
trary geometry. The mathematical expression modeling the the hydrodynamic
and morphodynamic components of the physical phenomenon are treated to
deal with cross-section shape variations and empirical solid discharge estima-
tions. The resulting coupled system of equations can be rewritten as a non-
conservative hyperbolic system with three moving waves and one stationary
wave to account for the source terms discretization. But, even for the simplest
solid transport models as the Grass law, to find a linearized Jacobian matrix of
the system can be a challenge if one considers arbitrary shape channels. More-
over, the bottom channel slope variations depends on the erosion-deposition
mechanism considered to update the channel cross-section profile. In this paper
a numerical finite volume scheme is proposed, based on an augmented Roe
solver (first order accurate in time and space) and dealing with solid trans-
port flux variations caused by the channel geometry changes. Channel cross-
section variations lead to the appearance of a new solid flux source term which
should be discretized properly. Comparison of the numerical results for sev-
eral analytical and experimental cases demonstrate the effectiveness, exact well-
balanceness and accuracy of the scheme.

1 Introduction

Sediment transport in rivers is usually classified into two different phenomena: bed load
movement and suspended material transport. The bed load process is usually modeled by
means of set of equations that include hydrodynamic and morphodynamic components. The
hydrodynamic part can be described by the shallow water equations, commonly used to study
water movement in rivers, coastal and channels. On the other hand, the morphodynamical
component is commonly represented by a solid mass continuity equation, depending on the
solid transport flux [1].

Two-dimensional models can be used to simulate flow and sediment transport using a
refined representation of topography and local hydraulic effects. However, their application
to natural river cases is still restricted due to the computational time required and the amount
of field data needed for the model calibration. Therefore, reported two-dimensional models
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were only applied to reach-scale domain cases with short event time duration [2, 3]. On the
other hand, one-dimensional modes require less field data, offering a higher computational
efficiency.

Despite numerical modeling of free-surface flows with bed load transport involves tran-
sient flow and movable boundaries, the conventional 1D methods found in literature usually
decouple the hydrodynamic part and the solid transport equation [4-6]. Coupled model re-
ported were exclusively developed for constant cross-sectional cases [7, 8]. Therefore, a nu-
merical coupled model able to simulate complex geometries and demonstrate its performance
in 1D realistic applications is still required.

2 Mathematical model
Free-surface flow movement in one-dimensional practical applications can be modeled by

the 1D shallow water or Saint-Venant equations (1) and (2) for the mass and momentum
conservation, respectively.
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where A(x, 1) is the wetted cross-sectional area, Q(x, ) is the flow discharge, S  is the friction
slope, I; represents the hydrostatic pressure forces and /I, accounts for the pressure forces on
the channel walls. S is the bed slope, which can be expressed as:

dzp 0z, 0z dAy
So = dx  O0x 0Ap dx )
being z,(x, Ap) the lowest cross-sectional level of the channel bed above a datum and A,(x, f)
the conserved solid area. In the momentum equation (2), the conservative flux should be
separated into the component due to geometrical variations exclusively and the momentum
flux caused by the hydrodynamic features [9], avoiding the computations of the integral I
and /.
On the other hand, bed-load mass conservation is usually modeled by means of the Exner
continuity equation [10]:
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where Q,(x, A, Q) is the total solid discharge at the cross-section. The total bed load discharge
is defined considering a constant bed load transport rate per unit width g;(A, Q) applied to the
whole cross-section [11]:
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Hence the Exner equation (4) must be rewritten distinguishing the solid flux component
due to the flow variations from the solid flux component caused by the cross-section changes,
which is included as a sediment mass source term.

04,

dq,dA | 99, dQ
ot

0A dx 00 dx

dB

) =—£qs— (6)

B
+é dx



E3S Web of Conferences 40, 05012 (2018)

River Flow 2018

The Jacobian matrix for the coupled system composes by (1), (2) and (6) is singular,
since it does not depend on the conserved solid area A,. This should create difficulties to
implement a numerical scheme for this formulation. To overcome this problem and taking
into account (3), we can express the system of conservation laws including a non-conservative
flux T, = gA 2—251417 at of the momentum equation and a modified source terms vector:
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being lj(x, H = (A, Q,Ab)T the vector of conserved variables, J(x, 17) the Jacobian matrix
for the conservative fluxes, H(x, U ) the matrix of non-conservative fluxes and S—)'(x, U ) the
modified source terms vector.

The unique component of the matrix H(x, U ) has dimensions [L?/7T?] and hence it could
be considered as a square celerity (:127, related to the bed changes caused by the hydrodynamic
flow variations. This celerity depends on the erosion-deposition mechanism along the channel
cross-section.

An estimation of the solid transport rate per unit width g,(A, Q) using the Grass law [12]
allow us to obtain a explicit expression for the partial derivatives of the sediment discharge in

J(x, O):
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where A, [T2/L] is a constant called Grass coefficient.

Following [13], partial derivatives 0z,/0x and 0h/dx should be avoided in the source
terms formulation in order to correctly approach the discrete increments of z; and 4. There-
fore, taking into account that dz,/0A, = cf} /(gA) and Oh/OA = 1/B, the modified source
terms vector could be expressed in terms of total derivatives.

Finally, by simply combining M(x, U) = J(x,U) — H(x, U) one can obtain the complete
matrix for the coupled system, which should be used to design the numerical method.
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o MO =S, 0) 9)

Ji =¢&B

3 Numerical scheme

The system of equations (7) is solved according to a finite volume method, in which the
domain is divided in computational cells ; of constant size Ax = Xj;1/2 — Xj_1/2. Assuming
a piecewise representation of the conserved variables and fluxes, the first order Godunov
method provides a way to update the averaged values of the solution U I to the next time step
¢"*!. The numerical scheme could be rewritten as:

- - A[ = - = -
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being SEli1 2 = I:jlfl+1 - E{' the difference of the physical fluxes at the neighbouring cells.
The definition of the numerical scheme in the Godunov method must be completed by the
definition of an approximate solver for the local Riemann problem governed by the fluxes

E)” ' and E”

3.1 Approximate augmented Roe’s solver for the Grass model

For the Roe’s approximate Riemann solver, at each edge i + 1/2 separating cell i and i + 1,
we should define a linearized local Riemann problem which is described by the following
hyperbolic system of equations:

aﬁ = dU .—; —) —
¥ + M(U;, l+1);;— S'(Ui, Uir) 1)

Therefore, this allows us to express the flux differences and the source terms at the cell

edgei+1/2 as thelr projection onto the right eigenvector base ¢, é,, for the approximate Jacobian
matrix M(Ul, U,+1) of the hyperbolic system (11):
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where 1, are the eigenvalues of M, @, the wave strength and Em the source strength.
Therefore, it is necessary the construction of two proper linearized matrix J(U;, U;;1) and
=3 . .

H(U;, Uj1), with the following Roe’s averaged components:
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Assuming that the Grass coeflicient A, remains constant through the cell interface, the
eigenvalues of the hyperbolic system (11) are the roots of the characteristic polynomial of
matrix M(ﬁi, (7,-+1), defined as:

Py() =M -l = -2|@- 27 -2|+&d (A=) =0 (14)

According to [14], this kind of hyperbolic systems has always two eigenvalues of the
same sign than the flow velocity and the other one with opposite direction. Numerically, the
roots of P ,;,(Z) could also be calculated by the Cardano-Vieta formula.

Finally, the augmented Roe’s upwind scheme considering A, = cte through the intercell
could be written as:

<0 - 2[5 B0 B OB, 09

m

Numerical stability region is controlled by a CFL condition, limiting the time step Af such
that there is no interaction between waves from neighboring Riemann problems.

3.2 Approximate augmented Roe’s solver for empirical models

In realistic application, A, is evaluated as a function of the bottom shear stress |r3|. In [15],
Juez et al. reported a method to adjust the g, value calculated by the Grass law to other
empirical models, leading to different Grass coefficients A (h, u) at cells i and i + 1.
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Evaluating the solid discharge at each side of the cell edge considering an averaged Grass
coeflicient A_glm ;2 = (Agi + Agir1)/2, the total flux differences at the intercell i + 1/2 can be
decomposed as follows:

8Qslir1/2 = 6Qslix1/2 + 6(Qs — O9)liv1/2 (16)

where Oy = Qs(A liv1/2, U,). Therefore, 60, li+1 12 is evaluated by the method reported in sec-
tion 3.1. However, to ensure bed load conservation, the solid flux difference §(Q; — Q)li+1/2
should be included by means of a new cellwise contribution SF *|i+1/2 that does not require
any splitting [16].
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From now on, the numerical scheme (17) will be referred as Conservative Coupled Model
(CCM) to clearly distinguish it from (15), called NCCM (Non-Conservative Coupled Model).

4 Numerical tests
4.1 Equilibrium slopes for steady flow regimes

The aim of these test cases is to assess the performance of the proposed method to converge
to the exact solution in steady flow regimes. The geometry is a rectangular channel which
varies its width linearly from M = 1 m at x = 20 m to M = 0.5 m (contraction case) and
M = 3.0 m (expansion case) at x = 80 m. The inlet discharge is constant (Q;y = 1 m3/s)
and the initial conditions correspond to uniform flow with S¢ = 0.002, n = 0.02sm™ '3 ina
M = 1 m prismatic channel. The solution was evolved until reaching the steady state for a
constant Grass coefficient.

Qs (m?/s) - qs (M?/s)
Qs (m¥/s) - g5 (m?/s)
p

q, [Contraction] - » - qs [Expansion] - ¥ -
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o 20 40 60 80 100 0 20 40 60 80 100
x (m) x (m)

Figure 1: Numerical results and exact solution for steady states with cross-section variation: (left) contraction case
and (right) expansion case.
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Results for the contraction case (Fig. 1-left) show a bed erosion downstream caused by an
increment in the solid transport rate per unit width g;. On the other hand, the width contrac-
tion leads to a progressively lower solid discharge, hence the bed level increases downstream
(Fig. 1-right). However, the total solid discharge in the channel remains constant for both
cases, indicating that the steady state is reached. Numerical results for the bed level agree
perfectly with the exact solution derived from imposing equilibrium conditions (S¢ = S f).

4.2 Dam-break with analytical solution

Three test problem with exact solution presented in [16] are reported in this section. The tests
are one-dimensional Riemann problem for movable bed equation, in which the friction shear
stress term has been neglected in the momentum equation. All simulation were made with
CFL =1, Ax = 0.01 m and sediment layer porosity p = 0.4. Results predicted by the CCM
model are presented for a final simulation time 7 = 2 s.

Test | hy (m) hg (m) ur (m/s)  ug (mfs)  zp (m) zg (m) Ay (dim)
DAS1 2.0 2.0 0.25495 2.3251 3.0 2.846848 0.01
DAS2 | 225 1.18868612  0.2050 24322 5.0 5.124685 0.01
DAS3 6.0 5.2 0.30037  15.16725 3.0 4.631165 | 0.01/h

Table 1: Summary of the dam-break test cases with exact solution.

Cases DAS1 and DAS2 prove the numerical scheme to converge to the exact solution
of both Riemann problems. The CCM model correctly reproduces the rarefaction waves
involved in these two problems. The contact and shock waves were also captured accurately,
in terms of strength and position, for all the conserved variables (Fig. 2).
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Figure 2: Numerical and exact solution at r = 2 s for the test cases (top row) DAS1 and (bottom row) DAS2.

Case DAS3 clarifies the influence of the cellwise flux term in the numerical formulation
when A, is not constant through the local Riemann problem. The CCM model is able to
describe properly the solution structure for all the conserved variables and all the waves were
captured accurately. Furthermore, with the NCCM model the numerical solution degenerates
clearly due to the lack of conservation of the solid bed material volume (Fig. 3).

https://doi.org/10.1051/e3sconf/20184005012
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Figure 3: Numerical and exact solution at = 2 s for the test case DAS3.

4.3 Dam-break over bed step and cross-section changes

In this test, a dam-break with Ay = 2.5 m and hg = 0.7 m is simulated over a bed step (z;; =
1.5 m and zpz = 1.0 m) for different cross-section shapes both upstream and downstream.
A progressive linear cross-section transition occurs between x € [-1 m,+1 m]. Upstream
and downstream of this transition region, the channel is prismatic with the cross-sections
indicated in Table 2. All the cases were simulated with CFL = 1, Ax = 0.05 m, p = 0.6,
n = 0.025sm™'/3 and g, was estimated by the MPM model. The solution was evolved until a
final simulation time 7 = 3.0 s.

Test Up-shape M (m) tgy Down-shape M (m) tgy Ay
1 Rectangular 1.0 0 Rectangular 1.0 0 MPM
Rectangular 1.0 0 Rectangular 1.25 0 MPM
Rectangular 1.0 0 Rectangular 0.75 0 MPM
Rectangular 1.0 0 Trapezoidal 1.25 0.2 | MPM
0
0.2

Trapezoidal 1.25 0.2 Rectangular 1.0 MPM
Trapezoidal 1.25 0.2  Trapezoidal 1.25 MPM

AU A W

Table 2: Summary of the geometrical features for the hypothetical dam-breaks cases.

The numerical model is able to handle the solid discharge variations caused by sudden
expansions and contractions in rectangular channels (Fig. 4). An expansion downstream
leads to higher erosion upstream the bed step. On the contrary, a contraction downstream
caused a lower erosion upstream the bed step.

Figure 4: Dam-breaks in rectangular channels with variable width: (left) free-surface level, (center) bed level at the
transition region and (right) solid discharge per unit width g;.

Finally, the of the scheme to handle cross-section shape changes is evaluated by Test 4
and Test 5. Results for a prismatic rectangular (Test 1) and prismatic trapezoidal (Test 6)
channels were selected as reference. Results depicted in Fig. 5 show the influence of the
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cross-section shape change over the erosion on the bed step, leading to marked differences
with respect to the case in which only width varies but the shape remains rectangular.

Figure 5: Dam-breaks in channels with cross-section shape changes: (left) free-surface level, (center) bed level at
the transition region and (right) solid discharge per unit width g;.

5 Conclusions

A new finite volume scheme has been proposed for the coupled system of shallow water and
Exner equations which is applicable to 1D channels with arbitrary geometry. The equations
were treated to deal with cross-section shape variations by distinguishing the intercell conser-
vative fluxes due to geometry variations from that caused by the flow features. The resulting
coupled system of equations was rewritten as a non-conservative hyperbolic system with three
non-linear characteristic fields. An upwind augmented Roe’s scheme is proposed for both the
solid discharge evaluated by the Grass law and by others empirical models. The scheme is
able to describe properly the exact solution structure for the conserved variables in all the
cases tested. Furthermore, we remark that the ability of the model to handle cross-section
shape changes was also proved.
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