
Modelling the occurrence of heat waves in maximum1

and minimum temperatures over Spain and2

projections for the period 2031-603
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Abstract The occurrence of extreme heat events in maximum and minimum daily7

temperatures is modelled using a non homogeneous common Poisson shock pro-8

cess. It is applied to five Spanish locations, representative of the most common9

climates over the Iberian Peninsula. The model is based on an excess over thresh-10

old approach and distinguishes three types of extreme events: only in maximum11

temperature, only in minimum temperature and in both of them (simultaneous12

events). It takes into account the dependence between the occurrence of extreme13

events in both temperatures and its parameters are expressed as functions of time14

and temperature related covariates. The fitted models allow us to characterise the15

occurrence of extreme heat events and to compare their evolution in the different16

climates during the observed period.17

This model is also a useful tool for obtaining local projections of the occur-18

rence rate of extreme heat events under climate change conditions, using the future19

downscaled temperature trajectories generated by Earth System Models. The pro-20
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jections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained21

and analysed using the trajectories from four earth system models which have22

successfully passed a preliminary control analysis. Different graphical tools and23

summary measures of the projected daily intensities are used to quantify the cli-24

mate change on a local scale. A high increase in the occurrence of extreme heat25

events, mainly in July and August, is projected in all the locations, all types of26

event and in the three scenarios, although in 2051-60 the increase is higher un-27

der RCP8.5. However, relevant differences are found between the evolution in the28

different climates and the types of event, with a specially high increase in the29

simultaneous ones.30

Keywords Extreme heat events · non homogeneous Poisson process · bivariate31

models · climate projections · climate change32

1 Introduction33

The analysis of heat waves is an increasingly important issue due to the serious34

impact of this phenomenon on ecosystems, the economy and human health; see for35

example Beniston et al (2007), Barriopedro et al (2011), Amengual et al (2014)36

and Tob́ıas et al (2014). There is no standard definition of heat wave and many37

authors, such as Perkins and Alexander (2013) and Smith et al (2013), address38

the issue of analysing different measurements and definitions of this phenomenon.39

Traditionally, heat waves have been defined using daily maximum temperatures40

but there is an increasing number of definitions including information on both41

maximum and minimum daily temperatures; see for example Tryhorn and Risbey42

(2006), Keellings and Waylen (2014) or the definition by the U.S. National Weather43

Service. According to Hajat et al (2006), both temperatures should be considered44

to analyse the effect of heat waves on human health.45

The global warming induced by the increasing concentration of greenhouse46

gases in the atmosphere during the 20th century, and especially during its last47

decades, will probably continue. Many works, such as Meehl et al (2005), Tryhorn48
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and Risbey (2006) and Lemonsu et al (2014), suggest that heat waves will become49

more frequent. In this context, an important issue for preventing global warming50

impacts is the characterization and future projection, on a local scale, of heat51

waves including information on both maximum and minimum daily temperatures.52

Temperature projections at a daily and local scale are often required, see Wang53

et al (2012), Casanueva et al (2013) and Lau and Nath (2014), who emphasise the54

interest of using a fine spatial resolution to investigate regional phenomena. Nowa-55

days, Earth System Models (ESMs) are the best tool for obtaining future projec-56

tions of atmospheric variables on a monthly or seasonal scale over broad areas.57

However, they are unable to provide reliable temperature trajectories on a daily58

and local scale, and cannot be directly used to project the extreme temperature59

behaviour of local daily series, see Yue et al (2016), Brands et al (2013), Cattiaux60

et al (2013), and Keellings and Waylen (2015) who find that AR5 models are not61

able to reproduce extremes over the 90th percentile. Regional Circulation Mod-62

els (RCMs) neither guarantee an adequate reproduction of extreme temperature63

events. For example, Vautard et al (2013), using the RCM projections driven by64

ERA-Interim, find an overestimation of summer temperature extremes in Mediter-65

ranean regions and an underestimation over Scandinavia.They also conclude that66

the increase of the RCM resolution does not generally improve this deficiency.67

Grotjahn et al (2016) conclude that dynamic methods overestimate the frequency68

of heat waves and underestimate that of cold events.69

In this context, the use of statistical models to obtain heat wave projections is70

essential for many applications which require daily projections at a local spatial71

scale, such as health studies linked to heat extremes in big cities and other climate72

change impact studies. Another advantage of the statistical models is that they are73

able to deal with non stationary situations, be it using non constant thresholds,74

Kyselý et al (2010), or parameters depending on time or other covariates, see75

Cheng et al (2014), Garćıa-Cueto et al (2014) and Abaurrea et al (2015b).76
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In this work, a bivariate point process, the common Poisson shock process,77

is used to model the occurrence of extreme heat events (EHE) in maximum and78

minimum daily temperatures. This model improves the univariate approaches,79

such as those suggested by Abaurrea et al (2007), Furrer et al (2010) or Kyselý80

et al (2010), since it takes into account the dependence between the occurrence81

of extreme events in both temperatures. The model can be easily generalised to a82

non stationary framework by making its parameters be a function of time-varying83

covariates. Here, only temperature related covariates are considered but other type84

of variables could also be used. An advantage of this model is that it can be easily85

estimated using the R package NHPoisson, see Cebrián et al (2015).86

The model can be used to obtain local projections of the occurrence rate of87

EHEs under climate change conditions. These conditions are represented by co-88

variates obtained from the future temperature trajectories generated by ESMs,89

appropriately downscaled to fit the climate characteristics of the considered loca-90

tion. Summary measures of these projected daily intensities allow us to quantify91

the local climate change.92

The methodology is summarised in Section 2. Section 3 describes the data: the93

temperature series from five Spanish locations and four ESM daily trajectories.94

Section 4 shows and compares the fitted models in these locations. In Section 5,95

projections under scenarios RCP4.5, RCP6.0 and RCP8.5 for the period 2031-6096

are obtained and analysed. Section 6 summarises the most relevant conclusions.97

2 Methodology98

2.1 Modelling the occurrence of extreme heat events99

Common Poisson shock process The modelling of extreme events in environmen-100

tal sciences is often based on the excess over threshold (EOT) approach, where an101

extreme event is defined as a run of observations whose values exceed a reference102

threshold; see Coles (2001). There is a point process characterization of extreme103
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value models which states that, under mild conditions and if the threshold is ex-104

treme enough, the occurrence of the extreme events follows a Poisson process.105

Since a heat wave may provoke extreme values both in maximum and minimum106

daily temperatures, a bivariate approach will improve the univariate models usu-107

ally applied to characterize the ocurrence of EHEs. In particular, a bivariate point108

process with dependent marginal processes is a reasonable framework to jointly109

model the occurrence of EHEs. In this work, a common Poisson shock process110

(CPSP) is considered; see Abaurrea et al (2015b) for a full justification of this111

model. One of the advantages of this approach is that it can be easily adapted to112

non stationarity.113

A bivariate CPSP assumes that there is an underlying Poisson process (PP) of114

shocks N0 that can yield two different types of events. The counting processes of115

each type of event are the marginal processes N1 and N2. The CPSP assumes that116

dependence occurs by the simultaneity of the events, so that it can be decomposed117

into three independent indicator PPs N(1), N(2) and N(12), which include the118

events occurring only in processN1, only inN2, and those occurring simultaneously119

in both of them. Their intensities are denoted λ(1), λ(2) and λ(12), respectively,120

so that the intensities of the marginal processes N1 = N(1) + N(12) and N2 =121

N(2) +N(12) are λ1 = λ(1) + λ(12) and λ2 = λ(2) + λ(12).122

The CPSP can be generalised to the nonhomogeneous case, by allowing the123

indicator intensities to be a function of a vector of time-varying predictors x(t)124

and using a logarithmic link, λ(t|x(t)) = exp(β′x(t)). The predictors also help to125

model the dependence induced by the systematic part of the three intensities.126

The estimation of this model reduces to the estimation of three independent127

nonhomogeneous PPs, which can be carried out by maximum likelihood, and the128

covariate selection by a forward approach based on likelihood ratio tests. A detailed129

example of the estimation of a nonhomogenous PP can be found in Abaurrea130

et al (2007) and it can be easily implemented using the R package, NHPoisson,131

previously mentioned.132
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Definition of extreme heat events The use of the CPSP for modelling EHEs in133

maximum and minimum daily temperature series (Txt and Tnt herein) requires134

some previous operational definitions. In particular, the three indicator processes135

and the types of extreme events whose occurrence is modelled in each process136

have to be defined: N(1) is the process which includes the EHEs only in Txt, N(2)137

includes the EHEs only in Tnt, and N(12) those occurring simultaneously in both138

temperatures. Following the EOT definition of extreme event, an EHE only in Txt139

is a run of consecutive days where Txt exceeds Ux but Tnt does not exceed Un,140

being Ux and Un the extreme thresholds of the corresponding temperature series.141

An EHE only in Tnt is defined analogously, and a simultaneous EHE is a run of142

observations with Txt and Tnt exceeding Ux and Un, respectively.143

Predictors Since the final objective of the model is to obtain future projections of144

the occurrence of EHEs, only variables with reliable future projections should be145

considered as potential predictors. Three types of variables are used here.146

• Seasonal terms: Given that temperature series show a seasonal behaviour,147

seasonal terms have to be included in the model. In this case, they are defined148

as the part of the annual harmonic signals corresponding to the period of the149

year under consideration.150

• Short moving averages of temperature: The moving average of Txt and151

Tnt in 15 or 31 day intervals around t, denoted by Txm15, Tnm15, Txm31152

and Tnm31, and their corresponding polynomial terms are considered. The153

reason to use these signals is that the projections provided by ESMs of the154

temperature series on an aggregated time scale of 15 or more days are reliable,155

while the projections of daily temperatures are not.156

• Interaction terms: Interaction terms between the harmonic and the temper-157

ature predictors.158

Validation analysis. The assumptions to be checked in a CPSP model are that159

the three indicator processes are non homogeneous PPs mutually independent.160
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The first assumption is checked using the Kolmogorov-Smirnov (KS) test for the161

distribution of the residuals, and the Pearson test for serial correlation. The inde-162

pendence assumption is checked with the bootstrap test developed by Abaurrea163

et al (2015a). The details of the validation techniques can be found in Abaurrea164

et al (2015b).165

2.2 Projection of the extreme events166

Once a suitable model is fitted, the projection of the occurrence of EHEs is ob-167

tained using as input the covariates built from the future temperature trajectories168

provided by the ESMs. It is noteworthy that the ESM trajectories have to be169

properly downscaled to fit the site climate characteristics, before using them as170

input. In effect, statistical downscaling procedures bridge the gap between the171

ESM output, which are averages in gridcells with areas larger than 1o × 1o, and172

the information at a local scale required by the model, see Gutiérrez et al (2013).173

In addition, a validation analysis of the quality of the downscaled ESM trajectories174

should be carried out before using them for projecting.175

Validating a trajectory. Two aspects are considered in the validation anal-176

ysis. The first is that the downscaled ESM trajectory in the historical scenario177

reproduces satisfactorily the distribution of the observed temperatures, in par-178

ticular, its tail distribution. Three tools are suggested to check this assumption:179

two exploratory graphs, see Section 5.1.1, and the test developed by Rosenbaum180

(2005), which checks the equality of two multivariate distributions. This require-181

ment is not fulfilled by the temperature variables on a daily scale, as previously182

mentioned.183

The second aspect is a control to avoid extrapolation. In a statistical model,184

the values of the covariates used to obtain predictions, in this case the future185

downscaled ESM trajectories, should not extrapolate the range of values used186

to fit the model. In particular, the reason why decadal temperature trends have187

not been considered as potential covariates, is that most of the values of their188
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future projections lead to extrapolation problems. That is also the reason why only189

medium-term projections can be obtained using short moving average temperature190

variables.191

3 Data192

3.1 Observed data193

The daily maximum and minimum temperature series, measured in oC, of five194

Spanish locations (Zaragoza, Barcelona, Badajoz, Albacete and Burgos) are anal-195

ysed in this work. These series have been provided by the Spanish meteorological196

agency, AEMET. Their geographical position and Köppen1 climate classification197

are shown in Figure 1. Three of the series are located in the northern half of Spain:198

Burgos with a Cfb climate, Barcelona sited on the Mediterranean coast with a Csa199

climate and Zaragoza, in the Ebro valley, with a transition climate between the200

previous two, Bsk. Albacete and Badajoz are located in the southern half, in the201

Mediterranean and Atlantic slopes, with Bsk and Csa climates, respectively. These202

1 http://es.climate-dat.org/location/3316

●

●

●

●

●

Albacete

Zaragoza
Barcelona

Burgos

Badajoz

Fig. 1 Köppen classification and localization of the analysed series. Map from AEMET (2011).
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locations represent the most common climates in the Iberian Peninsula. It was no203

possible to analyse other climates since series of the required length and quality204

were not available.205

In the Iberian peninsula summer runs from June to September, and an EHE has206

never been observed before May or after September. Consequently, the analysis of207

the occurrence of EHEs can be restricted to these months (MJJAS). The thresholds208

Ux and Un used to characterize the EHEs in Txt and Tnt are usually defined as209

percentiles of the observed series. The most common value is the 90th percentile,210

see for example Tryhorn and Risbey (2006), but values between the 90th and 99th211

percentiles are also frequently used, see Hajat et al (2006). Since only Spanish212

series are considered in this work, and AEMET (2011) defines heat waves using as213

threshold the 95th percentile of the daily temperature series from July to August214

in the reference period 1971-2000, that percentile is used to define Ux and Un.215

Some characteristics of the Txt and Tnt series are summarised in the first rows216

of Table 1: the altitude of the station, the record periods of Txt and Tnt and their217

means in June, July, August and in the period MJJAS. The thresholds Ux and218

Un are shown in the bottom part of Table 1, together with the observed number219

of EHEs in each indicator process.220

221

3.2 ESM Data222

Four CMIP5 climate models are used in this work, MPI-ESM-LR (MPI in short),223

CanESM2 (CE2), IPSL-CM5A-MR (IPSL) y MRI-CGCM3 (MRI). They are cho-224

sen for the quality of its representation of the summer climate patterns in the225

Atlantic area close to the Iberian Peninsula, among the CMIP5 models evaluated226

by Sánchez de Cos et al (2016).227

Representative Concentration Pathways (RCPs) are greenhouse gas concen-228

tration trajectories which are consistent with a wide range of possible changes in229

future anthropogenic greenhouse gas emissions. In this work, three scenarios are230
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Series Zaragoza Barcelona Badajoz Albacete Burgos

Altitude (m. a.s.l.) 263 412 185 702 891

Record period 1951-2005 1951-2005 1955-2005 1961-2005 1971-2008

Txt MJJAS 28.1 24.7 30.8 28.5 23.5

Txt Jn 27.7 24.1 30.3 27.9 22.0

Txt Jl 31.5 27.8 34.3 32.5 26.4

Txt Au 31.0 27.6 34.0 31.9 26.7

Tnt MJJAS 15.1 16.3 14.9 13.3 9.1

Tnt Jn 14.8 15.3 14.7 12.7 8.5

Tnt Jl 17.6 18.6 17.0 16.0 11.0

Tnt Au 17.8 18.7 16.7 16.1 11.1

Ux 37.0 31.8 39.6 37.0 33.2

Un 21.2 22.0 20.6 19.4 14.8

# EHE N(1) 120 97 93 89 80

# EHE N(2) 92 114 124 117 89

# EHE N(12) 58 82 51 38 22

Table 1 Summary values of Txt and Tnt series (in oC), thresholds Ux and Un used to define
EHEs, and number of EHEs in each indicator process.

considered: RCP4.5 where emissions peak around 2040 and then decline, RCP6.0231

where emissions peak around 2080 and then decline, and RCP8.5 where emissions232

continue to rise throughout the 21st century. These scenarios are the most com-233

monly used in climate change works, see Lau and Nath (2014) and Pereira et al234

(2017) for example, and they cover a range of different future scenarios from less235

to more pessimistic situations.236

AEMET provides in its webpage 2, the downscaled temperature series from237

more than 20 ESMs for different Spanish locations under scenarios RCP4.5 and238

RCP8.5 and in two of the ESMs also under RCP6.0. They are downscaled using a239

statistical procedure based on the regression method SDSM, see Wilby and Dawson240

(2013). In this work, the downscaled daily Tx and Tn trajectories of the previ-241

ously described locations, Albacete, Badajoz, Barcelona, Burgos and Zaragoza,242

are needed. All of them, except Zaragoza, can be downloaded from the previous243

webpage. In that case, Leciñena series, around 35km from Zaragoza, has been used244

after transforming it by correcting the mean level and the variability biases. Only245

2 http://www.aemet.es/es/serviciosclimaticos/cambio climat/datos diarios
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Loc Mod Txm15 Txm31 Tnm15 Tnm31 # par R2 KS PC Ipv

Zar N(1) 0.08 0.22 7 69 0.53 0.50 0.28

I 0.25 0.12

N(2) -0.02 0.11 5 70 0.20 0.63

N(12) 0.04 0.05 5 64 0.93 0.12

Bar N(1) 0.86 -0.02 6 75 0.39 0.28 0.62

Q 0.001

N(2) 0.63 -0.03 6 46 0.40 0.97

Q 0.001

N(12) 0.03 0.10 -0.06 6 73 0.62 0.60

Bad N(1) 0.30 6 36 0.47 0.78 0.55

I 0.23 0.13

N(2) 0.30 6 35 0.06 0.62

I 0.22 0.11

N(12) 0.04 0.06 5 78 0.27 0.70

Alb N(1) 0.09 -0.03 5 41 0.18 0.60 0.24

N(2) 0.10 4 61 0.31 0.26

N(12) 0.047 1.35 6 41 0.60 0.00

Q 0.004

Bur N(1) 0.03 0.26 6 67 0.56 0.08 0.31

Q 0.001

N(2) 0.17 6 55 0.19 0.25

I 0.09 0.06

N(12) 0.04 0.02 5 65 0.13 0.17

Table 2 Coefficients of the temperature covariates; interaction terms between the correspond-
ing covariate and the harmonic, and quadratic terms are labeled I and Q, respectively. Last
columns: # par, the number of model parameters, R2 (in %), and p-values of the KS test, the
Pearson correlation test and the independence test.

two ESMs, IPSL and MRI, have projections for the scenario RCP6.0, so that only246

two trajectories are available in that case.247

248

4 Fitted Models249

A detailed example of the modelling process of a CPSP can be found in Abaurrea250

et al (2015b). The final models obtained following that approach are summarised251

in Table 2, where the coefficients of the significant temperature covariates are252

shown in the first columns. The rows labeled as I correspond to the interaction253

terms between the corresponding covariate and the harmonic, and those labeled254
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as Q to the quadratic term of the temperature variables. The fitted models are255

quite simple, with between 4 and 7 parameters. The linear predictors of the three256

indicator processes N(1), N(2) and N(12) include, in all the locations, an intercept257

and one harmonic term. Only four, out of 15 fitted models, include a significant258

interaction term, and another four include a quadratic temperature term. As ex-259

pected, the covariates based on 15-day moving averages are usually preferred over260

the 31-day averages.261

At least one covariate related to Txt and another to Tnt are significant in262

the N(1) models, except in Badajoz whose model only includes Txm15 and its263

interaction. The Txt terms have an increasing effect in all the locations, since even264

the quadratic effect in Barcelona is positive in the observed temperature range.265

High values of Tnt (greater than 12oC in Burgos due to the quadratic term) lead266

to a reduction of the events in N(1), except in Zaragoza where the harmonic term267

gives a positive slope from the 10th July. This reduction can be explained by the268

fact that high Tnt temperatures lead to an increase in the simultaneous events.269

All the N(2) models include at least one Tnt term, but only Zaragoza requires270

a covariate related to Txt. The effect of Tnt in all the locations increases the271

intensity in the observed temperature range, even the harmonic term in Badajoz272

and Burgos and the quadratic effect in Barcelona.273

At least one covariate related to Txt and another to Tnt are significant in the274

N(12) models. All the Txt terms have a positive linear trend while the effect of the275

Tnt terms is also positive but not always linear.276

The main results of the validation analysis are summarised in the last columns277

of Table 2: R2 (the square correlation coefficient between the empirical and the278

fitted intensities), and the p-values of the KS, Pearson and the independence test,279

(see Section 2.1). All the models pass the validation analysis, and R2 varies from 35280

to 78%. This coefficient is greater than 50 in 67% of the models. The empirical and281

fitted intensities, accumulated in periods of 5 months, are graphically compared282



Modelling the occurrence of heat waves over Spain and projections 13

1960 1970 1980 1990 2000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

time

em
pi

ric
al

 a
nd

 fi
tte

d 
 o

cc
ur

re
nc

e 
ra

te
s

Empirical rate
Fitted rate

Rates calculated in Disjoint intervals of length 153

 Model: Badajoz
N(12)

1960 1970 1980 1990 2000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

time
em

pi
ric

al
 a

nd
 fi

tte
d 

 o
cc

ur
re

nc
e 

ra
te

s

Empirical rate
Fitted rate

Rates calculated in Disjoint intervals of length 153

 Model: Badajoz
N(2)

Fig. 2 Empirical and fitted intensities in Badajoz (models with the best and the worst fit).

with satisfactory results. As an example, the plots for the models with the best283

and the worst fit, Badajoz N(12) and N(2) respectively, are shown in Figure 2.284

Figure 3 shows the LOWESS (with a 75 month window) of the three fitted285

intensities; for a better comparison the same y-scale is used in the three plots.286

A clear increase is observed from around the 90s in all the locations and types287

of event. Burgos shows one of the highest intensities in the tree types of event,288

while Zaragoza and Albacete are among the lowest. The high intensity of the289

simultaneous events in Barcelona is noteworthy. The greatest spatial variability is290

observed in N(2), with intensities in Burgos and Badajoz which are around four291

times the values in Zaragoza. The intensities of the three indicator processes show292

different levels. In all the locations, the highest intensities correspond to N(2), the293

medium ones to N(1) and the lowest to N(12), except for Zaragoza where the order294

of N(2) and N(1) is reversed.295

5 ESM projections296

In this section we obtain the projections under scenarios RCP4.5, RCP6.0 and297

RCP8.5 for the period 2031-60 using the ESM trajectories described in Section298

3.2 and the fitted models discussed in Section 4.299
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Fig. 3 Smoothed fitted intensities of the indicator processes. The y-scale in the plot for N(12)

has been truncated from 0.05 (the maximum intensity in Barcelona) to 0.014.

5.1 Validating the trajectories300

5.1.1 Checking the ESM performance under the current climate conditions301

To check the performance of an ESM trajectory under the current climate condi-302

tions, the intensities fitted with the observed covariates are compared with those303

fitted with the corresponding downscaled historical trajectory. Since high inten-304

sities are of main interest, the comparison focuses on the high tails of the dis-305
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Fig. 4 Comparison of the observed (black points) and ESM percentiles for the historical
scenario (lines), 90th percentile (top row) and 95th percentile (bottom row), Barcelona.

tributions, using two plots and a test. Given the seasonal character of the EHE306

occurrence, this analysis is carried out separately for each month.307

The first plot compares the percentiles of the intensities fitted with the ob-308

served covariates (observed percentiles herein) with those obtained from the avail-309

able downscaled ESM trajectories (ESM percentiles). The plots for the 90th and310

95th percentiles (q90 and q95) of the indicator models in Barcelona, shown as an311

example in Figure 4, are satisfactory.312

The boxplots of the observed and the ESM 95th percentiles, by month, are313

used to check the inter-annual variability of the highest intensities. Each boxplot is314

based on a sample of 30 percentiles, one for each year during 1971-2000. The plots315
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for Barcelona, Figure 5, show that the ESM historical scenarios are compatible316

with the observed ones. The dispersion of CE2 in May and June is much higher317

than the other ESMs, in the three types of events. The same applies to MPI in318

September.319

Finally, the Rosenbaum test is applied to compare the observed and the ESM320

bivariate distribution of the 90th and the 95th percentiles. A comparison for each321

available trajectory and month is applied, using the same samples as in the previ-322

ous boxplots. The results show that only 3% of the 300 trajectories (5 months ×323

4 ESM × 5 locations × 3 types of events) are rejected at an α = 0.05 significance324

level, and 8% at α = 0.1. It is concluded that the downscaled ESM trajectories325

in historical scenarios reproduce satisfactorily the observed distributions, so that326

their future counterparts can be used to project the three types of event in all the327

locations.328

5.1.2 Checking extrapolation in future trajectories329

An extrapolation check of the covariates is essential since, under climate change330

conditions, the cloud of points defined by the future covariates can be significantly331

shifted with respect to the observed one, used to fit the model. As in any statistical332

model, a frequent extrapolation may lead to unreliable projections.333

Both marginal and multivariate extrapolation conditions are checked following334

the approach by Abaurrea et al (2015b). Briefly, given a trajectory, the intensity335

in day t, λ̂t, is obtained only if the values in that day of all the predictors are lower336

than their corresponding maxima in the fitting period (marginal checking). Addi-337

tionally, the Mahalanobis distance of the vector of predictors in t (with respect to338

the observed mean vector and covariance matrix) must be lower than the maxi-339

mum of the Mahalanobis distances in the fitting sample or, alternatively, all the340

predictor values in t must be lower than their 90th percentiles in the fitting period341

(multivariate checking). If the percentage of days not projected in a trajectory is342

greater than 25%, it is removed from the analysis.343
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Fig. 5 Boxplots of the annual 95th percentiles calculated with the observed and the ESM
trajectories in the historical scenario, 1971-2000, Barcelona.
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# traj. RCP4.5 (4 traj) RCP6.0 (2 traj) RCP8.5 (4 traj)

≥ 3 86.2% 0% 77.3%

1 4.0% 3.1% 9.3%

none 1.8% 3.6% 5.3%

(31-40) Alb: Jl, Au, N(12) Alb: Au, N(12)

(41-50) Alb: Jl, N(1), N(12); Au, N(12) Alb: Jl, all N(); Au, N(1), N(12)

(51-60) Alb: Jl, N(12) Alb: Jl, Au, all N() Alb: Jl, Au, all N()

Table 3 Percentage of periods (from 225) where three or more (≥ 3), only one (1) or none of
the available trajectories are projected. The location, month and indicator processes with no
projection in each decade are indicated in the last three rows.

% RCP4.5 (100) RCP6.0 (50) RCP8.5 (100)
N(1) N(2) N(12) N(1) N(2) N(12) N(1) N(2) N(12)

2031-40 5 7 9 2 2 8 10 10 12
2041-50 10 12 13 2 0 2 16 19 15
2051-60 10 10 11 10 10 10 30 34 25

Table 4 Percentage of non projected periods by decade. The total number of periods is in
round brackets.

Extrapolation is not a big problem except in Albacete, where projections in344

July and August cannot be obtained. Table 3 shows the percentages from the 225345

considered periods (5 months × 3 decades× 3 types of event × 5 locations) where346

three or more, only one, or none of the available trajectories are projected. Given347

that 2 to 4 trajectories were initially available, the results are satisfactory.348

349

To analyse the time evolution of the extrapolation problem, Table 4 summarises350

the percentage of non projected periods by decade and type of event. A total of351

100 periods (5 months × 4 trajectories× 5 locations) are available under RCP4.5352

and RCP8.5, and 50 (5×2×5) under RCP6. The maximum percentages under353

RCP4.5 and RCP6.0 are 13 and 10% respectively. Under the more severe RCP8.5354

the percentages increase in the third decade with a maximum value of 34% non355

projected periods.356

5.1.3 Summary measures to analyse the projections357

In each location, the fitted model provides the projected intensity in each day358

in MJJAS for the period 2031-60 (4590 days), under three RCPs and for 2 to359
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4 trajectories. To deal with this huge amount of values, and since the aim is to360

study the general evolution of the EHE occurrence, summaries of the projected361

daily intensities are calculated. Robust summary measures are used to minimise362

the effect of the projections obtained under some extrapolation.363

To study the mean evolution of the projected intensities, we use the 25%364

trimmed mean λ̄25 by month and decade, which is the mean of the daily intensities365

once the lowest 25% and the highest 25% values are discarded. To study the vari-366

ability, the interquartile range IQRλ is used. Since 2 to 4 trajectories are available367

in each location, the corresponding λ̄25 values of each model are summarised by368

their median value, Q2λ̄25
herein. These summary measures allow us to study the369

seasonal behaviour and the time evolution of the projected intensities of each type370

of event in each RCP, for the considered spatial area.371

5.2 Projections 2031-60 under scenario RCP4.5372

A detailed analysis of the projections obtained under RCP4.5 is shown in this373

section, and a comparison with the results under RCP6.0 and RCP8.5, in the next374

one.375

As it was shown in Section 5.1.2 projections for Albacete could be obtained376

only for a few periods, and not in July and August. For that reason, the results for377

Albacete are not included in the figures of the following sections, although they378

are summarized in the tables.379

Global analysis To analyse the global behaviour of the projected intensities over380

the area under study, the distribution of λ̄25 for all the trajectories in the four381

locations is summarised using boxplots, see Figure 6. The boxplots are displayed382

without the outliers to keep the y-scale short. As a reference, the minimum and383

maximum of the observed trimmed means in the four locations are plotted as384

horizontal lines.385
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Fig. 6 Boxplots of the projected trimmed means λ̄25 in the four locations and all the trajec-
tories available under RCP4.5. Green horizontal lines are the minimum and maximum of the
observed λ̄25.

The maximum of the projected values in May is always lower than 0.0004. Since386

projections in this month do not lead to a relevant increase in the occurrence of387

EHEs and their impact is low, May will not be considered in the following analysis.388

The boxplots show that the observed λ̄25 values from June to August are389

always lower than the 50th percentile of the corresponding projected λ̄25 and, in390

most cases, than the 25th percentile. This fact indicates a high agreement between391

the different ESMs in the projection of an important increase of the three types392

of events. In May, June and September this variability is lower in 2031-40 than393
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Fig. 7 Plots, by month and type of event, of Q2λ̄25
under RCP4.5 in the three decades and λ̄25

of the observed period. The projections of each location are displayed with different colours.

in the other decades. Since the variability comes from the different locations and394

trajectories, it means that the projections for the different locations and ESMs are395

more homogeneous in the first decade than later.396

Time evolution To summarise and compare the time evolution of the mean level397

of the projections, Figure 7 shows Q2λ̄25
in the three decades and, as a reference398

value, the observed λ̄25. Most of the projected values increase from 2031-40 to399

2051-60, although this growth is not monotonous. It is noteworthy the case of400
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Fig. 8 Seasonal pattern of the observed λ̄25 and of the Q2λ̄25
values under RCP4.5 in 2031-

40, 2041-50 and 2051-60. Vertical bars show the range of the λ̄25 values used to calculate each
median.

Zaragoza, where Q2λ̄25
decreases in August in all type of events, and in N(1) also401

in July. The increases are more generalised in September and specially in June.402

In order to analyse the time evolution of the seasonal pattern, Figure 8 displays403

the Q2λ̄25
in a different way: the monthly patterns in each decade are plotted in404

a row, with the observed period in the first place. Locations are displayed with405

different colours and the variability within the trajectories is shown by vertical406

bars displaying the range of the λ̄25 values used to calculate each median value.407

To make easier comparisons across the types of event and the scenarios, the same408

y-scale is used in all the plots in Figures from 8 to 11. A clear increase in the409
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projected values is observed in all the months, locations and types of event, since410

Q2λ̄25
values exceed their observed counterparts in all the cases. The seasonal411

pattern does not show relevant differences between the three decades.412

Results by type of event413

N(1). In 2031-40, the projected increases in Barcelona and Badajoz show a414

similar evolution, with a median value in August greater than 0.05, while Burgos415

and Zaragoza show a higher increase. In August 2031-50, the Q2λ̄25
values in416

Zaragoza reach 0.1. In the last decade, the Q2λ̄25
values are similar in all the417

locations, with values from 0.047 to 0.062 in July and from 0.051 to 0.077 in418

August.419

N(2). Q2λ̄25
values in July and August 2031-40 move around 0.05, except in420

July in Zaragoza where it is 0.028. The values in 2051-60 show more spatial het-421

erogeneity than their counterparts in N(1), with the highest increase in Burgos,422

and the lowest one in Zaragoza.423

N(12). As in N(1) and N(2), the levels of the projections in the three decades are424

quite similar. Barcelona shows the highest Q2λ̄25
, over 0.05, in all the months and425

decades, except in August 2031-40. Moreover, in 2051-60, Q2λ̄25
values in N(12)426

in Barcelona are higher than their counterparts in N(1) and N(2). Q2λ̄25
values427

in Burgos increase with respect to the observed ones, but less than in the other428

locations and the other types of events.429

5.3 Comparison of the projections in 2031-60 under RCP4.5, RCP6.0 and RCP8.5430

5.3.1 Evolution of the mean level431

The plots of the observed λ̄25 and the Q2λ̄25
under RCP6.0 and RCP8.5 are shown432

in Figures 9 and 10, respectively. For easier comparison, Figure 11 summarises all433

the projections using different symbols for each scenario. The range of the Q2λ̄25
434

corresponding to the three scenarios is displayed with dashed vertical lines. In435

those figures, the values of Q2λ̄25
which are calculated with only one trajectory436
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Fig. 9 Seasonal pattern of the observed λ̄25 and of the Q2λ̄25
values under scenario RCP6.0,

by decade. Vertical bars show the range of the λ̄25 values used to calculate each median.

are not plotted, since they are not real median values. The numerical values shown437

in these plots are also summarised in tables, see additional material: file 1.438

Scenarios. The projections under the three scenarios suggest a clear increase in439

the mean level of the intensity, with the Q2λ̄25
values under the three scenarios440

higher than the observed λ̄25. In 2031-50, the projections under RCP6.0 are smaller441

than under RCP4.5, as expected due to the evolution of these scenarios. However,442

they show a similar growth in 2051-60, except in N(12), where some locations show443

slight differences in July and August.444
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Fig. 10 Seasonal pattern of the observed λ̄25 and of the Q2λ̄25
values under scenario RCP8.5,

by decade. Vertical bars show the range of the λ̄25 values used to calculate each median.

The evolution under RCP8.5 shows more relevant differences. The first is that445

this scenario leads to more extrapolation problems, so that less projections can446

be obtained. For example, in July and August 2051-60, only Badajoz and Burgos447

have more than one projected trajectory. In 2031-40, similar values are obtained448

under RCP8.5 and RCP4.5. However, in 2041-50 the projections grow faster under449

RCP8.5, and from 2051 onwards much higher values than in the other scenarios450

are projected. The wide range of the λ̄25 values (represented by the vertical bars)451

under RCP8.5 indicates that the ESMs in this RCP show a much higher variability.452
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Fig. 11 Observed λ̄25 and Q2λ̄25
by decade and RCP. Vertical bars show the range of the

projections under the different RCPs.
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Evolution by decade. In 2031-40 there are few differences between the three RCPs.453

In all of them the highest intensities in N(1) are projected in July and August in454

Zaragoza (0.072 and 0.11) and in N(2) in Burgos, (0.077 and 0.079). In N(12),455

Burgos shows the lowest Q2λ̄25
, around 0.02, and Zaragoza and Barcelona the456

highest, in all the scenarios.457

The projections in 2041-50 show more variability between the scenarios. A458

slight increase is projected under RCP8.5, in N(12) and in some locations in N(2).459

In 2051-60, the projections under RCP4.5 do not increase their mean level with460

respect to the previous decades, but around 16% (10 out of 60) of the Q2λ̄25
values461

diminish. On the other hand, RCP8.5 projects a high increase in Burgos (except462

in N(1)) and Badajoz.463

Seasonal pattern. The seasonal pattern does not show important changes in any464

type of event, location or scenario. In all cases, the projections in June and Septem-465

ber are higher than their observed counterparts, but they do not attain the pro-466

jected values in July and August. However, in all the events and all the locations467

except Badajoz, the projections under RCP8.5 in June 2051-60, and sometimes468

even in previous decades, reach the highest observed values in July and August.469

5.3.2 Decomposition of the variability of the projections470

For a given a location, month, decade and type of event, the λ̄25 values corre-471

sponding to the available ESM trajectories and the three scenarios are obtained.472

To analyse the sources of the variability within these sets of projections, we use473

a sum of squares decomposition considering three factors: Location, Scenario and474

ESM, the latter nested in the first two. This decomposition is analogous to that475

performed in an ANOVA model but here it only has descriptive purposes. Similar476

analyses can be found in Déqué et al (2012), Räisanen and Räty (2013) and Paeth477

et al (2017).478

Since our interest lies in the variability due to the Location and the Scenario479

factors, Table 5 summarises the percentages of variability explained by them,480
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Event N(1) N(2) N(12)

% LOC %SCE %LOC %SCE %LOC %SCE
2031-40
May 42.3 3 54.3 5.9 57 3.3
June 26.7 9.3 13.1 6.1 14.9 9.7
July 21.6 11.4 26.1 5.3 16.5 13.1
August 19 6.9 29.6 1.7 12.6 6.5
September 36.4 8.5 37.7 5.5 31.2 8.8
2041-50
May 21.3 2.3 14 5 33 4.2
June 13.4 10.6 10.8 8.1 8.9 7.9
July 18 24.2 22.4 12.5 8.3 9.3
August 9.4 17.6 39.9 11.9 12 18.1
September 13.4 11 17.6 15.7 12.5 19.7
2051-60
May 28.6 5.6 9.9 6.8 27.2 8
June 7.9 17.9 19.3 11.3 7.4 15.8
July 16.3 9.3 34.1 20 18 23.9
August 17.3 9.3 27.7 24.4 14.6 15.5
September 16.4 23.7 16.3 18.3 9.7 23.4

Table 5 Percentage of variability within the sets of projections explained by the factors
Location (%LOC) and Scenario (%SCE).

%LOC and %SCE respectively. A low percentage %LOC (%SCE) indicates that481

the differences between the locations (scenarios) are less relevant than the other482

sources of variability. Differences between scenarios grow over time, with the me-483

dian of %SCE equal to 6.9% in 2031-40 and to 15.8% in 2051-60. The main con-484

clusions are summarised below by type of event.485

N(1). In the first decade, the projections show differences between locations486

but they are similar under the three scenarios, with %SCE percentages lower than487

12%. The projections in all the locations are more similar from 2041, with %LOC488

values lower than 20% except in May.489

N(2). The variability between locations is higher in this type of events, with490

%LOC values greater than 22% in July and August in the three decades and only491

4 (out of 15) lower than 16%. The variability between scenarios is low, with 12492

out of 15 of the %SCE values lower than 16%. In July and August, the sum of the493

variability of both factors increases gradually from the first to the third decade,494

which is consistent with the values in Figure 11.495

N(12). The variability between locations is in general low, with all the values496

lower than 19% except those in May and one in September. The variability between497



Modelling the occurrence of heat waves over Spain and projections 29

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

RCP4.5 2031−2040 June

λ25

IQ
R

λ

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

N(1)
N(2)
N(12)

●

Observed
Projected

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

RCP4.5 2041−2050 July

λ25

IQ
R

λ

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

0.00 0.05 0.10 0.15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RCP4.5 2051−2060 August

λ25

IQ
R

λ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N(1) N(2) N(12)

RCP4.5

●
●●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N(1) N(2) N(12)

RCP6.0

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N(1) N(2) N(12)

RCP8.5

Fig. 12 Plots of IQRλ versus λ̄25 for a month in each decade under RCP4.5 (top row) and
boxplots of the correlation coefficients between IQRλ and λ̄25 under the three RCPs (bottom
row)

scenarios is also low, with all the %SCE values lower than 20% except in the last498

decade, which shows a greater variability.499

5.3.3 Evolution of the variability of the projected daily intensities500

In this section, the evolution of the variability of the projected daily intensities is501

studied using the interquartile range IQRλ defined in Section 5.1.3.502

First, the relationship between the mean level and the variability of the in-503

tensities is checked graphically. A strong linear positive relation is found in most504
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cases, see as an example the top row in Figure 12, where the plots of IQRλ versus505

λ̄25, for the three types of events are shown in June 2031-40, July 2041-50 and506

August 2051-60 under RCP4.5.507

This linear relationship is quantified using the correlation coefficient. Given508

the high number of coefficients (around 540=5 months × 3 decades × 3 RCPs ×509

3 types of event × 4 locations), they are summarised using boxplots by type of510

event and scenario, see bottom row in Figure 12. The median of the coefficients511

under RCP4.5, RCP6.0 and RCP8.5 are 0.92, 0.91 and 0.93 respectively, and the512

first quantiles, 0.84, 0.86 and 0.88. In all the scenarios, more than 82% of the513

coefficients are greater than 0.8. This high correlation between the mean and the514

variability suggests that the conclusions of the projected change for the mean level515

are also valid for the variability.516

A sum of squares decomposition of the variability of the sets of IQRλ values517

(not shown) leads to similar conclusions to those obtained for λ̄25 in Section 5.3.2.518

The variability explained by the scenarios is low, lower than 16% in 2031-40. The519

variability between locations is higher than between scenarios, except in 9 cases520

out of 45. In general, N(2) shows the highest %LOC values (most of them higher521

than 23%), and N(12) the lowest.522

All these results show that the dispersion of the projected daily intensities will523

be greater than that of the observed intensities, in all the decades and scenarios.524

Hence, the increase in the mean frequency of EHEs will be accompanied by an525

increase in the variability of that frequency, so that a very high number of EHEs526

can be expected in some years during the next decades.527

5.4 Comparison with other works528

Projections of high percentiles of Txt in summer have been obtained to analyse529

the future changes in the upper tail of temperature distributions, see for example530

El Kenawy et al (2015) for a study in the Ebro Valley (NE Spain). However, as531

far as we know, there are no projections of the occurrence of EHEs in Spain. This532
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section summarises the conclusions drawn in other studies about projections of533

the occurrence of heat waves in nearby areas, for time periods around mid 21st534

century. It must be taken into account that they are based on different heat wave535

definitions, so that a direct comparison is not possible. However, our results are536

generally consistent with them.537

Lemonsu et al (2014) carried out a study with a similar objective, the analysis538

of the temporal evolution of heat wave frequency in the Paris area under A1B,539

A2 and B1 scenarios for 2020-49 and 2070-99. Their heat wave definition is based540

on the moving average of daily maximum and minimum temperatures over 3 days541

and it is applied to RCM projections. They found a systematic increase in the542

mean number of heat waves: 1 every 7 years during the observed period, 1 every543

2 years in 2020-49, and between 1 and 2 every year in 2070-99. This means that544

the projected increase ratio between 2020-49 and the observed period is around545

3.5. In our case, the median of the projected increase ratios between 2031-40 and546

1971-2000 in July and August is 3.5 for the simultaneous events, 2.2 for N(1) and547

2.4 for N(2).548

Pereira et al (2017) analysed the occurrence of heat waves, defined only with549

Tx, in 12 locations in the Iberian Peninsula. They compared the observed values in550

1986-2005 with those projected in 2046-2065 using a RCM forced with MPI-ESM-551

LR under RCP8.5. They found statistically significant changes in the frequency552

of occurrence in Barcelona, with a projected/observed ratio of 7.9. Some other553

locations next to those considered in this paper are also analysed: Cáceres with554

a ratio of 3.4, Madrid with 3.8 and Sevilla with 3.1. These results are consistent555

with our projections in 2041-50 for N(1) under RCP8.5, where the ratios in July556

and August are 2.6 and 6.5 in Barcelona, 2.4 and 4.8 in Badajoz, and 3.3 and 5.7557

in Zaragoza.558

Fischer and Schär (2010) analysed future changes in summer heat waves using559

six RCMs of the ENSEMBLES multi-model experiment with simulations forced560

with the SRES A1B scenario. They found that in the Iberian Peninsula and the561
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Mediterranean region, the frequency of heat waves per summer will increase from562

an average of about 0.2 in 1961-90 to around 1.3 in 2021-50, so that the increasing563

factor is around 6.5. They also studied the frequency of days with Tx > 35oC564

and Tn > 20oC, which is a similar concept to that of simultaneous events. The565

increasing factor of this frequency between the same periods is 2.3.566

Lau and Nath (2014) obtained projections of the occurrence and intensity of567

spatial heat waves in western Europe, including France and Germany but not568

the Iberian Peninsula, under RCP4.5 and using the GFDL high resolution atmo-569

spheric model (HiRAM) with 50-km grid spacing. They found that the frequency570

of heat waves projected in 2026-35 will increase by a factor 3.3 with respect to the571

frequency observed in 1979-2008.572

6 Conclusions573

In this work, we propose a statistical model for extreme heat events which can be574

used to obtain future projections of the occurrence of those events at a daily and575

local scale. It is shown that the suggested approach is useful to obtain projections576

at those scales, where the dynamic climate models show difficulties, and which are577

required in climate change impact studies and other applications.578

Occurrence model of extreme heat events. A non homogeneous common Poisson579

shock process is applied to jointly model the occurrence of extreme heat events in580

maximum and minimum daily temperature series in five Spanish locations. The581

NHCPSP is made up of three conditionally independent Poisson processes which582

model the occurrence of EHEs only in Txt, only in Tnt and in both temperatures583

simultaneously.584

The set of potential covariates in the models includes harmonic terms, short585

term temperature moving means, Txm15, Tnm15, Txm31 and Tnm31, polynomial586

functions of them and interactions with the harmonic terms. The final fitted models587
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are simple, including only one harmonic and linear temperature terms in most588

cases. All of them are satisfactorily validated.589

Projection methodology. The fitted models are useful for obtaining local projec-590

tions of the intensity of the EHE occurrence under climate change conditions.591

These conditions are described by the covariates obtained from the future temper-592

ature trajectories generated by ESMs, appropriately downscaled to fit the local593

characteristics. Trajectories from RCMs could also be used.594

In order to obtain reliable projections, two issues have to be checked. First, that595

the considered trajectories reproduce adequately the current climate and second,596

that the models are not used under severe marginal or multivariate extrapolation597

conditions. Simple tools to check these requirements are provided. This approach598

has proved to be generally useful for medium-term projections, since four out of599

the five locations considered passed the extrapolation control.600

To analyse the projected daily intensities, two summary measures, the 25%601

trimmed mean λ̄25 for the mean level, and the interquartile range IQRλ for the602

variability are suggested.603

Results of the EHE projections. The most relevant feature of the projections in604

2031-60 is the high increase in the intensities, specially in July and August. The605

projections in June and September are higher than their observed counterparts in606

all the cases, but they do not attain the projected values in July and August. How-607

ever, the projections under RCP8.5 in June in the last decade reach the observed608

values in July and August, except in Badajoz.609

Projections under RCP4.5 and RCP8.5 are quite similar in 2031-40, but in the610

following decades a high increase is projected under RCP8.5, while there is no611

increase under RCP4.5 nor RCP6.0.612

It is noteworthy the high increase projected in the occurrence of simultaneous613

events N(12). Although this type of events shows the lowest intensities in the614

observed period, it shows the highest ratio projected/observed intensities in 2031-615
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40. More precisely, under RCP4.5 and RCP8.5, the frequency in N(12) in July616

and August from 2031 onwards will be more than three times higher than in the617

observed period.618

Concerning spatial behaviour, RCP6.0 shows the lowest variability of the three619

scenarios and RCP8.5 the highest. It is also observed that different evolutions620

are projected in locations with the same Köppen climate classification, such as621

Badajoz and Barcelona. There is not any spatial pattern, except in N(2), where622

Burgos shows the highest projected intensities in all the scenarios and decades.623

The conclusions about the projected change for the mean level of the occurrence624

intensities are also valid for its variability. This result is determined by the high625

correlation found between the mean level and the variability summary measures,626

λ̄25 and IQRλ.627

Future work. The suggested approach is not useful for obtaining long-term pro-628

jections of the EHE occurrence due to the extrapolation problem, and even over a629

medium time horizon it may not be adequate in some cases. We intend to use this630

type of model with other atmospheric covariates to obtain projections up to 2100.631

These covariates also reflect the climate change conditions, but they have a lower632

explicative capacity of the EHE process. Their advantage is that they do not lead633

to severe extrapolation, unlike the temperature variables.634

Acknowledgements The authors acknowledge the financial support from the Ministerio de635

Ciencia e Innovación (Spanish Department of Science) and the Ministerio de Medio Ambi-636

ente (Spanish Department of Environment) through projects CGL2009-09646 and ESTCENA637

2009/0017. They thank the anonymous reviewers for their helpful comments and AEMET, the638

Spanish meteorological agency, and specially Ma Jesús Casado for supplying the temperature639
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