000075914 001__ 75914
000075914 005__ 20191122145054.0
000075914 0247_ $$2doi$$a10.1038/s41565-017-0001-2
000075914 0248_ $$2sideral$$a101788
000075914 037__ $$aART-2018-101788
000075914 041__ $$aeng
000075914 100__ $$aMartinez-Castro, Jose
000075914 245__ $$aElectric polarizaion switching in an atomically thin binary rock salt structure
000075914 260__ $$c2018
000075914 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075914 5203_ $$aInducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal–insulator junctions, although this effect can be circumvented by specially designed interfaces. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and func- tionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilay- ers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
000075914 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-46593-C6-3-P
000075914 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000075914 590__ $$a33.407$$b2018
000075914 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b2 / 94 = 0.021$$c2018$$dQ1$$eT1
000075914 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b4 / 293 = 0.014$$c2018$$dQ1$$eT1
000075914 592__ $$a17.049$$b2018
000075914 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1
000075914 593__ $$aBioengineering$$c2018$$dQ1
000075914 593__ $$aBiomedical Engineering$$c2018$$dQ1
000075914 593__ $$aNanoscience and Nanotechnology$$c2018$$dQ1
000075914 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1
000075914 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000075914 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000075914 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075914 700__ $$aPiantek, Marten
000075914 700__ $$aSchubert, Sonja
000075914 700__ $$aPersson, Mats
000075914 700__ $$0(orcid)0000-0002-3260-9641$$aSerrate, David$$uUniversidad de Zaragoza
000075914 700__ $$aHirjibehedin, Cyrus F.
000075914 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000075914 773__ $$g13 (2018), 19-23$$pNat. Nanotechnol.$$tNature Nanotechnology$$x1748-3387
000075914 8564_ $$s1147428$$uhttps://zaguan.unizar.es/record/75914/files/texto_completo.pdf$$yPostprint
000075914 8564_ $$s132073$$uhttps://zaguan.unizar.es/record/75914/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075914 909CO $$ooai:zaguan.unizar.es:75914$$particulos$$pdriver
000075914 951__ $$a2019-11-22-14:44:35
000075914 980__ $$aARTICLE