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Abstract

Monitoring of ventricular premature beats (VPBs), being abundant in hemo-

dialysis patients, can provide information on cardiovascular instability and elec-

trolyte imbalance. In this paper, we describe a method for VPB detection

which explores the signals acquired from the arterial and the venous pressure

sensors, located in the extracorporeal blood circuit of a hemodialysis machine.

The pressure signals are mainly composed of a pump component and a car-

diac component. The cardiac component, severely overshadowed by the pump

component, is estimated from the pressure signals using an earlier described

iterative method. A set of simple features is extracted, and linear discriminant

analysis is performed to classify beats as either normal or ventricular premature.

Performance is evaluated on signals from nine hemodialysis treatments, using

leave-one-out crossvalidation. The simultaneously recorded and annotated pho-

toplethysmographic signal serves as the reference signal, with a total of 149 686

normal beats and 3 574 VPBs. The results show that VPBs can be reliably

detected, quantified by a Youden’s J statistic of 0.9, for average cardiac pulse

pressures exceeding 1 mmHg; for lower pressures, the J statistic drops to 0.55.

It is concluded that the cardiac pressure signal is suitable for VPB detection,

provided that the average cardiac pulse pressure exceeds 1 mmHg.
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Highlights

• A novel method for VPB detection is proposed, based on the signals from

the arterial and the venous pressure sensors of a hemodialysis machine.

• Features describing amplitude, duration, and area, combined with linear

discriminant analysis, is used for classification of normal beats and VPBs.5

• It is shown that the cardiac pressure signal is suitable for VPB detection,

provided that the average cardiac pulse pressure exceeds 1 mmHg.
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1. Introduction

It is well-known that ventricular premature beats (VPBs) are frequent in

dialysis patients [1, 2], and increase in number when excess potassium is re-10

moved [3]. Ventricular arrhythmias in dialysis patients have been studied in

long-term, ambulatory electrocardiogram (ECG) recordings, showing that VPBs

are much more frequent during hemodialysis than during the postdialysis pe-

riod [4]. Patients with regional wall motion abnormalities, ischemic heart dis-

ease, and left ventricular hypertrophy have a higher rate of VPBs during hemo-15

dialysis than have patients without these diseases. Rapid changes in this rate

may be a sign of cardiovascular instability and electrolyte imbalance, and the

significance of such changes have been investigated for prediction of acute, in-

tradialytic hypotension [5].

Pulse pressure waves propagate from the heart through the arteries to the20

fistula, where the waves enter the extracorporeal blood circuit of the dialysis

machine. In this blood circuit, the waves are measured by the arterial and the

venous pressure sensors. A peristaltic blood pump generates a pulsatile blood

flow through the extracorporeal circuit. The blood flows from an arterial needle

inserted into the fistula, through the dialyzer, purifying the blood, and then25

back to the fistula through a venous needle. The amplitude of the pressure

pulses generated by the blood pump is drastically larger than is the amplitude

of the pressure pulses generated by the heart.

We have previously shown that a cardiac pressure signal can be extracted

from the signals produced by the arterial and the venous pressure sensors [6],30

see also [7]. In these studies, we compared heart rate and heartbeat occurrence

time estimated from the extracted cardiac pressure signal to the corresponding

quantities obtained from the photoplethysmographic (PPG) signal. The results

showed that the proposed method offers excellent accuracy of heart rate and

heartbeat occurrence time, also at low signal-to-noise ratios.35

In the present paper, we investigate, for the first time, whether the extracted

cardiac pressure signal is suitable for VPB detection. A set of features, describ-
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ing amplitudes, durations, and areas, is proposed and used to classify detected

beats as either VPBs or normal based on linear discriminant analysis. Using

leave-one-out crossvalidation, the performance is evaluated by comparing the40

results from the proposed classifier to the annotated reference PPG signals.

2. Background

2.1. Cardiac Pressure Signal Estimation

The cardiac pressure signal is estimated using the iterative method described

in [6]. The method alternates between modeling of separate arterial and venous45

pump components, and estimation of a cardiac pressure signal. The resulting

estimate is based on both the arterial and the venous pressure signals, by mix-

ing the arterial cardiac component with the venous cardiac component. The

mixing consists of time shifting and averaging, where the time shift is deter-

mined by maximizing the correlation between the arterial and venous cardiac50

components. The arterial and the venous cardiac components are obtained by

subtracting the arterial and the venous model pump components from the re-

spective arterial and venous pressure signals. The arterial and the venous pump

signal estimates are determined by subtracting the cardiac pressure signal esti-

mate from the respective signals. The pump signal estimates are, in turn, used55

to iteratively refine the arterial and the venous model pump components, so

that the pump component remainders in the cardiac pressure signal estimate

are reduced. The iteration continues until the difference in successive cardiac

pressure signal estimates no longer improves. The main building blocks of the

method are shown in Fig. 1(a), where the input signals and the output signal60

are illustrated in Figs. 1(b) and (c), respectively.

3. Experiment and Database

3.1. Clinical Study

The data originate from a clinical study performed at Sk̊ane University Hos-

pital, Lund, Sweden. The study was approved by the local ethical review board,65
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Figure 1: (a) Block diagram of the method for cardiac pressure signal estimation. Note that

the output signal is referred to as “cardiac pressure signal”, whereas the intermediate signals

are referred to as “components”. (b) The arterial and the venous pressure signals are the input

to the method, whereas (c) the cardiac pressure signal is the output. Note the considerable

difference in amplitude between the signals in (b) and (c).
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and all patients signed an informed consent form before participating.

The data set includes 9 treatments from 7 patients with kidney failure who

underwent hemodialysis treatment for at least three months prior to the study

onset. The treatments were performed according to the regular prescription

provided by the nephrologist, and lasted 4 to 5 hours. Four patients had a his-70

tory of heart complication. One patient had a graft as vascular access, whereas

all others had fistulas. The average cardiac pulse pressure P̄np was determined

during a blood pump stop at the treatment onset, see Table 1. Treatments with

P̄np below 0.5 mmHg [6], as well as patients with pacemaker, patients under-

going hemodiafiltration treatment, and patients participating in other studies,75

were not included.

The patients were treated with AK 200 hemodialysis machines from Gam-

bro. An external device with pressure sensors was connected to the extracorpo-

real blood circuit to acquire the arterial and the venous pressure signals. The

external device was used instead of the built-in pressure sensors to avoid the80

time-consuming work that comes with a software update of a dialysis machine.

However, the recorded data can be regarded as originating from the built-in

sensors, since the external and built-in sensors were of identical brand and type.

As reference, a PPG signal was acquired using the LifeSenseTM finger pulse

oximeter. The PPG signal and the estimated cardiac pressure signal were low-85

pass filtered, using a cut-off frequency of 5 Hz. All analyzed signals had a time

resolution of 10 ms. The use of the PPG signal as a reference is discussed in

Section 6.

3.2. Annotation of the Reference PPG Signal

Firstly, pulse detection was performed on the reference PPG signal, using90

a lowpass differentiator filter and a time-varying threshold, where the time of

the peak amplitude of each heart pulse was used as reference [8, 9]. Secondly,

the detected pulses were classified as either normal or VPB using the method

in [9]. Next, all VPBs were manually reviewed to avoid incorrect annotations.

Segments with motion artifacts were manually excluded, leading to that 9% of95

7



Table 1: Treatment characteristics

Treatment Duration Discarded P̄np mpp ± σpp #VPBs #normal

# (h:mm) (h:mm) (mmHg) (ms)

1 4:13 0:10 5.0 993 ± 109 158 14 526

2 4:10 0:03 2.9 952 ± 175 507 15 029

3 4:31 0:11 1.8 767 ± 51 6 19 768

4 4:41 0:04 1.3 785 ± 107 336 20 852

5 4:40 0:26 1.3 966 ± 111 54 15 665

6 4:54 1:49 0.70 790 ± 72 23 13 879

7 4:52 0:04 0.70 756 ± 134 773 22 060

8 4:37 0:02 0.55 871 ± 191 1382 17 586

9 3:42 0:51 0.54 961 ± 180 335 10 321

The category “Discarded” is the accumulated duration of discarded segments due to motion

artifacts in the PPG signal. P̄np is the average pulse pressure of the cardiac pressure signal

determined during blood pump stop. mpp and σpp denote the mean and standard deviation,

respectively, of the peak-to-peak interval. Note that the number of VPBs and normal beats,

mpp, and σpp are determined from the annotated PPG signals.

the total treatment time were excluded. For each treatment, Table 1 presents

its duration, the duration of discarded segments, P̄np, the mean and standard

deviation of the peak-to-peak interval in the PPG signal, and the number of

annotated normal and premature beats.

4. Methods100

4.1. Preprocessing

The cardiac pressure signal pc(t) is estimated from the observed arterial and

venous pressure signals, denoted pa(t) and pv(t), respectively, using the iterative

method briefly described in Section 2.1. Segments in pc(t) with excessive noise,

manifested as sudden changes in energy (at least a factor of 4), or a heart rate105

lower than 15 or higher than 180 beats per minute, are excluded. Figures 2(a)

and (b) illustrates pa(t), pv(t), and pc(t), respectively.
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Since the amplitude of pc(t) varies significantly during treatment, pc(t) is

detrended and normalized to produce amplitude-independent features, using a

method based on empirical mode decomposition [10, 11]. The local extrema

are identified in pc(t). If two local extrema with the same polarity are closer

than 350 ms to each other, then only the extremum with the largest magnitude

is kept. If the peak-to-peak interval Tpp is 1.8–2.2 times larger than the 5-

point sliding median of Tpp, denoted T̃pp, the previously excluded extremum is

recovered, provided that a pulse with the peak-to-peak amplitude larger than

0.4 mmHg exists in the interval [0.85, 1.15] · T̃pp. The upper envelope emax(t) is

obtained by connecting the local maxima using cubic spline interpolation. The
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Figure 2: Illustration of signals and VPB detection for treatment #1. (a) Venous pressure

signal pv(t) (black) and arterial pressure signal pa(t) (grey). (b) Cardiac pressure signal pc(t)

estimated from pv(t) and pa(t) (black), the envelopes emax(t) and emin(t) (grey), and the

trend b(t) (dotted line). (c) The normalized cardiac pressure signal pn(t); VPBs are labeled

with “*” and normal beats with “.”. (d) The reference PPG signal with annotations. Note

the large difference in amplitude between pc(t) in (b) and pv(t) and pa(t) in (a).
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lower envelope emin(t) is obtained in the same way, but instead connecting the

local minima. The average envelope ē(t) and the trend b(t) are determined by

ē(t) =
1

2
(emax(t)− emin(t)), (1)

b(t) =
1

2
(emax(t) + emin(t)), (2)

respectively. Figure 2(b) illustrates emax(t), emin(t), and b(t), together with pc(t).

The detrended and normalized cardiac pressure signal is obtained by

pn(t) =
pc(t)− b(t)

ē(t)
, (3)

illustrated in Fig. 2(c) along with information on beat type as produced by the

method described below. Figure 2(d) shows the reference PPG signal and the

annotations.110

4.2. Feature Extraction

The simple features X ∈ {P, T,A}, illustrated in Fig. 3 and based on (a)

amplitude P , (b) duration T , and (c) area A, are considered for classification.

Four amplitude features are extracted from pc(t), whereas 6 area features and

7 duration features are extracted from pn(t) since this signal is much less influ-115

enced by variations in baseline and amplitude. Since a VPB may influence the

features of the preceding beat X−, as well as the following beat X+, the fea-

tures of the two enclosing beats are also evaluated, leading to an additional 34

features. Since the features may vary considerably within a treatment session,

the median of the five most recent beats is used for centering, denoted with120

superscript c, or normalizing the features, denoted with superscript n, either

with Xc = X − X̃ or Xn = X/X̃, thus leading to 102 additional features based

on X−, X, X, X+. In addition, the difference between the current beat’s peak-

to-peak interval and that of the preceding beat, denoted ∆Tpp, is included as a

feature. In total 154 features are extracted, and considered for classification.125

4.3. Classification and Training

Beats detected in pc(t) are classified as either normal or ventricular pre-

mature, using linear discriminant analysis. For each beat, the following linear
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Figure 3: (a) Amplitude features determined from pc(t). (b) Duration and (c) area features

determined from pn(t). The following area features are evaluated: A = A1 + A2 + A3 + A4,

Apn = A3 + A4, Anp = A1 + A2, Azz = A2 + A3, Azp = A2, Apz = A3. The vertical axis in

(a) has arbitrary units.

discriminant function (LDF) is evaluated [12],

f(x) =(mT
v −mT

n )C−1x (4)

− 1

2
mT

vC
−1mv +

1

2
mT

nC
−1mn + ln

(
Pv

Pn

)
,

where x is a vector containing the K features of one beat, mv is the average

feature vector for all VPBs, mn is the mean for all normal beats, C is the

estimated covariance matrix of the features based on all beats. The a priori
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probabilities Pv and Pn of VPBs and normal beats, respectively, are for each130

treatment determined from the annotations of all other treatments. A different

LDF is used for each treatment, determined by leave-one-out cross validation,

i.e., for each treatment the LDF is trained using all other treatments. If f(x) >

0, the beat is classified as VPB, otherwise as normal.

Youden’s J statistic [13] is used as performance index to determine the K135

most relevant features,

J =
NTP

NTP +NFN
+

NTN

NTN +NFP
− 1, (5)

where NTP is the number of annotated VPBs classified as VPBs (true positives),

NFN is the number annotated VPBs classified as normal beats (false negatives),

NTN is the number of annotated normal beats classified as normal beats (true

negatives), and NFP is the number of annotated normal beats classified as VPBs140

(false positives). Note that perfect performance, i.e., J = 1, is achieved for

NFN = 0 and NFP = 0. The J statistic was chosen as performance index since

the data set is highly unbalanced, with many more normal beats than VPBs.

To determine the most relevant feature, LDFs with feature vector length

of K = 1 are first determined for all features separately. The feature whose145

LDFs (one for each treatment) yields the largest J for the evaluated set of

treatments, is judged as the most relevant. Then, the second most relevant

feature is determined for LDFs when x contains two features, i.e., K = 2. The

feature which, together with the most relevant feature, results in the largest

J is judged as the second most relevant. The third most relevant feature is150

determined in the same way, and so on.

5. Results

Figure 4 presents the performance index J as a function of the number of

features. The performance index J was evaluated for all 154 features, but only

the 10 most relevant are plotted, since J does not increase much when more than155

5 features are included. For the complete data set the following five features were
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Figure 4: The performance index J versus the number of features used for linear discriminant

analysis when based on (black squares) all nine treatments, (red diamonds) seven treatments

with P̄np ≥ 0.7 mmHg, and (blue triangles) five treatments with P̄np ≥ 1 mmHg.

found to be the most relevant—T n
pp, T c

zp, T c−
np , ∆Tpp, and P c−

np —and therefore

used for classification. When the data set is reduced to only include treatments

with P̄np ≥ 1 mmHg, Tn
pp remains the most relevant feature, whereas the order

of relevance changes for the other features; the same observation applies to160

P̄np ≥ 0.7 mmHg. From Fig. 4 it is noted that J equals 0.9 when requiring that

P̄np ≥ 1 mmHg, while it drops to 0.55 when all treatments are analyzed.

Histograms of f(x) for normal and VPBs are shown in Fig. 5. Since the

total number of normal beats is much larger than the total number of VPBs,

the histograms have been normalized with respect to the total number of beats165

in each class. As expected, the two beat classes becomes more well-separated

as the lower limit of P̄np increases.

The receiver operating characteristic (ROC) is shown in Fig. 6 when the
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Figure 5: Normalized histograms of normal beats and VPBs as a function of the linear

discriminant function f(x), involving (a) all nine treatments, (b) seven treatments with

P̄np ≥ 0.7 mmHg, and (c) five treatments with P̄np ≥ 1 mmHg.

five most significant features are used for classification. As expected, better

performance is achieved as the lower limit of P̄np increases.170

The ectopic beat count (EBC) is defined as the relative number of VPBs in a

10-min sliding window [5]. EBC is derived from both the estimated cardiac pres-

sure signal and the annotations of the PPG signal, and shown for treatment #1

in Fig. 7. The agreement between the EBC derived from the estimated cardiac

pressure signal and the EBC derived from the annotations is satisfactory. The175

number of VPBs increases towards the end of the treatment—a behavior often

observed in hemodialysis patients. The EBC for treatment #2 fluctuates more

over time, see Fig. 8, but the agreement is still satisfactory. For both these
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Figure 6: Receiver operating characteristic for VPB detection using linear discriminant anal-

ysis of the five most relevant features, for treatments with different lower limits of P̄np.

treatments, P̄np exceeds 1 mmHg. On the other hand, the agreement is much

worse for treatment #8 due to that P̄np is very low (0.55 mmHg), see Fig. 9.180

∆EBC, i.e. the difference between the EBC derived from the pressure signal

and the EBC derived from the annotations of the PPG signal, is computed, and

its mean and standard deviation for all treatments is presented in Table 2.

6. Discussion

We have demonstrated that the information provided by the extracorporeal185

arterial and venous pressure sensors can be used for detecting VPBs when the

average cardiac pulse pressure P̄np exceeds 1 mmHg, previously suggested in [6].

When exceeding, the detection performance is similar to that achieved by an-

alyzing the PPG. However, for P̄np < 1 mmHg, the performance drops due

to reduced separation between normal beats and VPBs, see Fig. 5. Another190

manifestation of a low P̄np is that the number of VPBs is overestimated, see
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Figure 7: EBC versus treatment time, i.e. percentage of VPBs during a 10-min sliding

window plotted versus time during treatment #1. “PPGref” denotes the percentage of VPBs

according to the annotations, and “Pressure” denotes the percentage of VPBs from detection.

Fig. 9, which is related to inaccurate estimation of the peak-to-peak interval

Tpp in treatments with P̄np < 1 mmHg. For the particular treatment in Fig. 9

the considerable variation in heart rate (σpp = 191 ms, see Table 1) may have

contributed to overestimation of VPBs.195

In our experience, the properties of the fistula largely determines the am-

plitude of the cardiac pressure signal, and, accordingly, whether the patient is

suitable for VPB detection. In addition, this amplitude may vary between dif-

ferent designs of hemodialysis machine. Unfortunately, the present data set is

much too small to provide insight on the percentage of the hemodialysis popu-200

lation which is suitable for VPB detection with the present method.

For treatments with P̄np ≥ 1 mmHg, the performance index J does not

improve when more than one feature are analyzed, see Fig. 4. On the other

hand, for P̄np < 1 mmHg, J improves with at least four additional features.

Irrespective of P̄np, T n
pp remains the most relevant feature on the present data205
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window plotted versus time during treatment #2. “PPGref” denotes the percentage of VPBs

according to the annotations, and “Pressure” denotes the percentage of VPBs from detection.

set.

Given that the data set is unbalanced, the number of false positives will

surpass the number of true positives for P̄np < 1 mmHg, see Fig. 6. As a

result, the classifier overestimates the number of VPBs for virtually any point

on the ROC. On the other hand, for P̄np ≥ 1 mmHg, a true positive rate of 0.9210

is achieved with very few false positives.

Heartbeat classification is a well-studied problem in ECG signal processing,

and many sophisticated techniques have emerged for this purpose, see, e.g., [14,

15, 16, 17]. While those studies rest on solid knowledge on the properties of

the ECG signal, the present study explores heartbeat classification in relation215

to a novel type of signal whose properties have never before been explored for

VPB detection. As a result, the present focus is more on feasibility than on

methodological advances, and, therefore, well-known techniques are embraced

such as empirical mode decomposition and linear discriminant analysis.
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window plotted versus time during treatment #8. “PPGref” denotes the percentage of VPBs

according to the annotations, and “Pressure” denotes the percentage of VPBs from detection.

A limitation of the present study is that the annotations of VPBs were not220

based on the ECG, but on the PPG.. When collecting the present database, it

was unfortunately not practically feasible to record the ECG. However, we have

previously shown that VPBs can be classified from the PPG signal, and that the

PPG signal can be used as a surrogate for the ECG signal when analyzing heart

rate turbulence [9], see also related work on automated VPB detection in the225

PPG signal [18, 19]. Although the ECG signal offers better temporal accuracy

than does the PPG signal, we consider the accuracy of PPG-based classification

to be sufficient when the goal is to evaluate detection performance for a method

analyzing the cardiac pressure signal.

A major limitation of the present study is that the data set is much too small230

for a meaningful division into training and test sets. Therefore, the results of

the present study should be viewed as a proof-of-concept that VPBs can be

detected from the cardiac pressure signal.
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Table 2: Ectopic beat count

Treatment # P̄np Mean ∆EBC, % Std ∆EBC, %

1 5.0 −1.46 1.89

2 2.9 −0.40 1.18

3 1.8 0.32 1.01

4 1.3 −0.52 2.41

5 1.3 0.15 0.74

6 0.70 0.49 2.39

7 0.70 32.99 12.67

8 0.55 23.63 11.91

9 0.54 −4.56 13.76

P̄np is the average pulse pressure of the cardiac pressure signal

determined during blood pump stop. ∆EBC denotes the differ-

ence between classified and annotated EBC.

A limitation of the present method is its inability to distinguish between

atrial premature beats and ventricular premature beats; this limitation applies235

also to the reference PPG method. In the ECG, atrial premature beats can

be distinguished from ventricular premature beats since the QRS complex is

preceded by an abnormal P wave. In the cardiac pressure signal, however, it

is not possible to distinguish whether a heartbeat is preceded by an abnormal

P-wave.240

7. Conclusions

The results show that VPB detection based on the cardiac pressure signal,

estimated from the arterial and the venous pressure signals, is feasible. Satis-

factory detection performance can be achieved when the average cardiac pulse

pressure exceeds 1 mmHg. Another study is required on a much larger data set.245
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