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Abstract: 
Sodium acetate trihydrate (SAT) can be used as phase change material in latent heat storage with or 

without utilizing supercooling. The change of density between liquid to solid state leads to formation of 

cavities inside the bulk SAT during solidification. Samples of SAT which had solidified from supercooled 

state at ambient temperature and samples which had solidified with a minimal degree supercooled were 

investigated. The temperature dependent densities of liquid and the two types of solid SAT were measured 

with a density meter and a thermomechanical analyzer. The cavities formed inside samples of solid SAT, 

which had solidified after a high or minimal degree of supercooling, were investigated by X-ray scanning 

and computer tomography. The apparent density of solid SAT depended on whether it solidified from a 

supercooled state or not. A sample which solidified from a supercooled liquid contained 15% cavities and 

had a density of 1.26 g/cm3 at 25 °C. SAT which had solidified with minimal supercooling contained 9% 

cavities and had a density of 1.34 g/cm3 at 25 °C. The apparent densities of the solid SAT samples were 

significant lower than the value of solid SAT reported in literature of 1.45 g/cm3. The density of liquid and 

supercooled SAT with extra water was also determined at different temperatures. 

Keywords: Sodium acetate trihydrate; density; phase change material; x-ray tomography; thermal energy 

storage; cavity 

1. Introduction 
Thermal energy storage is needed to match the varying supply of renewable energy sources such as solar 

energy with the more predictable demand for heating of buildings. A lot of research focuses on phase 
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change materials (PCM) because they allow for denser heat storage compared to a sensible heat storage 

with e.g. water as the storage medium. The ability of the PCM to remain at the melting point for an 

extended period during charge and discharge while absorbing or releasing thermal energy allows for 

favorable operating conditions for some applications. Especially in some applications where the melting 

temperature of the PCM fits the supply and demand temperatures. 

Sodium acetate trihydrate (SAT) was identified as a heat storage material with high potential [1–8]. SAT has 

a relatively high melting enthalpy or latent heat of fusion compared to other PCMs and a melting point of 

approximately 58 °C. In addition, the thermal conductivity of salt hydrates is generally higher than e.g. 

paraffins [9]. These characteristics fit well with space heating requirements and domestic hot water 

preparation [10]. This temperature level is also easily reached by simple solar thermal collectors and 

potentially by heat pumps. Stability of the SAT composite in repeated thermal cycles needs to be confirmed 

with boundaries representing the intended application. 

1.1. Supercooling 
The material SAT itself has the ability to supercool far below its melting point. In most applications, the 

supercooling has been seen as a problem. This has been avoided by adding nucleation agents to the SAT 

mixture to start solidification with minimal supercooling during discharge [2][11,12]. Several researchers 

look into developing PCM composites of SAT with thickening agents and nucleation agents for improving 

the PCMs performance in systems where supercooling is suppressed [13–15]. On the other hand, actively 

utilizing the supercooling gives the possibility to store energy over long periods without thermal loss in part 

of the storage period. This is done by having the melted SAT remain in supercooled state in the storage 

period at ambient temperature so that the latent heat of fusion can be stored long term [4,8].  

1.2. Material properties 
SAT, with the chemical notation NaCH3COO·3H2O, consists of 60.3 % sodium acetate and 39.7% water. SAT 

is considered an incongruently melting salt hydrate, which suffers from phase separation. The problem of 

phase separation has been sought solved by adding thickeners or extra water to the SAT [7,8,16–20]. The 

key properties, which determine the capacity of a PCM heat storage, are the specific heat capacity in solid 

and liquid phase, latent heat and the density of the PCM. These thermophysical properties are important to 

know when designing and sizing a storage. Ma et al. did a study on SAT for seasonal heat storage which 

include listing thermo-physical properties of SAT and aqueous solution of sodium acetate [21].  

Kousksou et al. did a review article on applications and challenges of energy storage and touched on latent 

heat storage [6]. They mention that despite the fact that PCMs are extensively researched, their 

thermophysical properties are lacking in the literature. Kenisarin and Mahkamov summaries the material 

properties of different salt hydrates including SAT in a review article [9]. They indicate that the values of the 

thermophysical properties of SAT measured by different researchers have significant variations. Typical 

values in the literature for densities of SAT are 1.45 g/cm3 for solid phase and 1.28 g/cm3 for the liquid 

phase with no dependence on temperature or thermal expansion coefficients provided [22]. Noting that 

the density of the solid SAT of 1.45 g/cm3 is for a SAT crystal formed with a cooling rate low enough to have 

the crystallization process occur slowly and form a dense crystal. Only Inaba et al. present results of 

temperature dependent densities of solid and liquid SAT [23]. In that study, the presented equation giving 



  

the density of liquid SAT as a function of the temperature does however not match with the diagram shown 

in the article. The same faulty expression is listed by Kenisarin and Mahkamov [9].  

The effective density of SAT, may in the case, where it has solidified from supercooled state be very much 

like the density of the liquid SAT because it will solidify rapidly without time to contract to a dense mass. 

Therefore, a volume of cavities representing the difference in liquid and solid density may be enclosed in 

the solidified SAT. 

1.3. Limitations 
One of the limitations of using PCMs as heat storage material is a low heat transfer to and from the PCM 

(especially in solid state). The heat transfer is affected by the heat exchanger design and the properties of 

the PCM. The thermal conductivity governs the heat transfer when the PCM is in solid phase. In liquid state 

convection and thermal conduction governs the heat transfer. As most other PCMs, SAT has a relatively low 

thermal conductivity. The values in the literature for thermal conductivity of solid SAT varies between 0.4-

0.7 W/(m·K) [9]. 

Dannemand et al. reported that the crystal structure of SAT which had solidified from a supercooled state 

was different from SAT which had solidified with minimal supercooling [19]. They state that the SAT 

solidified from a supercooled state did not contract uniformly and cavities were formed in the PCM during 

the fast solidification and crystallization. They showed that the measured thermal conductivity was lower in 

a sample which had solidified from supercooled state (0.3-0.6 W/(m·K)) compared to a sample which had 

solidified with minimal supercooling (0.7 W/(m·K)). 

1.4. Heat storage applications 
Various PCMs have been applied in heat storage development. Khan et al. did a review on ways to enhance 

the performance of PCMs in heat storages [24]. Dheep and Sreekumar did a review on the influence of 

nanoparticles on properties of different PCMs [25]. Sharif et al. describes ways to integrate PCM into 

domestic hot water storage systems (DHW) and concludes that PCM thermal energy storage is expected to 

lower cost and the volumes of heating and DHW systems [26]. Xu et al. did a review article on seasonal heat 

storage for solar heating system and mention SAT with supercooling as one of the technologies [27]. Zhou 

and Han did a numerical simulation of supercooled SAT in heat storage application [28]. Aydin et al. 

concluded that latent heat storage can improve the performance of solar heating systems and are 

especially useful during autumn and spring in the Istanbul climate [29]. Fazilati and Alemrajabi investigated 

adding PCM to a water tank for the solar heating system and find that the PCM improves its performance 

[30]. Sharma et al. also did an extensive review on thermal storage applications with PCM and state that 

the high storage density and isothermal storage process makes PCMs effective storage materials [7]. 

Cabeza et al. did a review on PCMs in building applications and presents different ways of applying the 

materials [22]. They present an overview of a range of PCMs, list important characteristics of PCMs, which 

has to be considered when designing an application. They also show different ways of encapsulating PCMs. 

Also a group of researchers in the International Energy Agency Solar Heating and Cooling program have in 

Task 32 and Task 42 investigated material properties and applications with PCMs including SAT [31], [32]. 

When applying SAT or any other PCM in a heat storage it must be considered how the material will act in 

bulk quantities. It may be that the dimensions of the storage, operating temperature, repeated cycling etc. 

may cause the PCM to act differently compared to investigations made on small samples. Also, whether the 



  

storage is intended to operate with supercooling or not must be considered as it affects the thermal 

conductivity of the solid SAT.  

In a heat storage design, the change of density between solid and liquid states and the associated volume 

change has to be accommodated for in some way. In experimental investigations Dannemand et al. solved 

the expansion and contraction of SAT inside prototype heat storage units by integrating an expansion tank 

in the storage design [16,17]. This allowed for operating the storage units without pressure built up and 

associated deformations of the storage tank.  

Studies have suggested to use oil with high thermal conductivity as an additive to the PCM to fill in the 

cavities formed during contraction of the PCM. This should enhance heat transfer in the PCM and between 

PCM and heat exchanger [17]. Oil can also be used as a heat transfer fluid by letting it be in direct contact 

with the PCM [33],[34],[35]. Oil does not mix with water or SAT and will float on top of the liquid state SAT. 

With these heat transfer enhancement methods in mind, it is relevant to investigate how cavities are 

formed inside SAT during solidification. The cavities may be enclosed in the PCM, or the cavities may form 

channels through the PCM, where the oil can flow. This will affect the heat transfer characteristics of the 

PCM-oil mixture.  

1.5. Scope 
The temperature range that is relevant to investigate considering heat storage systems for solar heating 

system, for space heating and domestic hot water preparation is considered to be 10-90 °C. The density in 

solid and liquid state are therefore investigated in this temperature range. 

When designing a storage tank for a SAT, it is important to know how the density changes between the 

solid and liquid state SAT, so the expansion and contraction can be handled in a way that does not reduce 

the performance of the storage unit. Cavities formed inside the PCM during fast solidification may reduce 

the apparent density of the solid SAT.  

The temperature dependent density of solid SAT formed from crystallization of supercooled SAT is 

presented. This distinction between solid SAT with a compact crystal structure, which is the one typically 

reported in the literature, and SAT solidified with or without prior supercooling has not previously been 

made. The temperature dependent densities of liquid SAT with different amounts of extra water are 

presented – something not previously reported.   

The layouts of the cavities in solid SAT are investigated with the use of X-ray and Computer Tomography 

(CT).  The cavities in two SAT samples, which had solidified after a high or a minimal degree of supercooling, 

were compared. This is done by evaluating the fraction of cavities in the SAT and by determining how much 

of the volume is enclosed cavities and how much is continuous channels. This has not been done 

previously. 

2. Methods 



  

2.1. Density  

2.1.1. Density measurements in the solid phase 

In order to obtain the density related the temperature of SAT in the solid phase, a thermomechanical 

analyzer (TMA) from the manufacturer Mettler Toledo, model TMA 841, was used. Traditionally, TMAs are 

used to characterize the linear expansion of materials. A stress is applied to the material and the resulting 

strain is measured while the material is subjected to a controlled temperature program. To measure this 

expansion, a probe is placed on the sample imposing a minimum stress, allowing the tracking of the sample 

in its expansion or contraction during the test, with a resolution lower than 1 nm. The sample temperature 

is measured very close to the sample by means of a K-type thermocouple. A thin quartz glass coating 

protects it against direct contact and contamination. The temperature accuracy is 0.25 °C. Before each 

temperature ramp, the samples were kept in isothermal state at 10 °C for 10 minutes to set the 

precondition for the experiment. A heating rate of 1K/min was applied. At the end of the heating, the 

sample was kept at a constant temperature for 10 minutes. Figure 1 shows the details of the probe and the 

sample support. 

 

Figure 1. Details of the probe and the sample support from TMA 841. 

Since the TMA provides measurements of the thermal expansion coefficient, it is necessary to determine 

the density at a set temperature, in this case, at room temperature. For that purpose, the sample mass was 

measured by a Mettler Toledo AB135-S precision scale with an accuracy of 0.01 mg, and the dimensions 

with a caliber, which has an accuracy of 0.0011 mm. 

The solid SAT samples were prepared using two different sample holders: 1) one called as open sample 

holder and 2) one called as closed sample holder. ½ 

The measurements with the open and closed sample holders were executed with a blank correction. This 

blank correction consisted in carrying out a baseline measurement, with the probe supporting on the 

empty sample holder in the same conditions as when the sample was measured. Subtracting this signal, 

errors related to the thermal expansion from the support sample, probe and sample holder, were 

eliminated. Both the open and close sample holders were placed between the sample support and the 



  

probe. Two identical samples for both open and closed sample holders were prepared and the resulting 

average values displayed in the result section. 

Open samples 

SAT samples were prepared in a stainless steel cylinder with a diameter of 12.06 mm and a height of 4.99 

mm (see Figure 2). The samples were prepared by melting SAT in a closed glass jar in an oven at 90 °C. A 

seed SAT crystal was placed inside the sample holder to avoid supercooling during the cooling down. The 

melted SAT was poured into the sample holder. Once the SAT had cooled to ambient temperatures and 

solidified, the surfaces of the solid SAT sample were made level. The mass, dimensions and the thermal 

expansion of the sample were measured with the sample being inside the cylindrical sample holder. The 

thermal expansion over the temperature range 10 °C to 40 °C was measured.  

As the SAT solidified and cooled down, cavities were formed in the central area of the sample, as seen in 

Figure 2. It was assumed that the thermal expansion was only occurring in the axial direction of the sample, 

as the diameter (radial direction) was kept constant by the sample holder. Thermal expansion of the sample 

holder may have increased its diameter, however the thermal expansion coefficient of stainless steel is 

significant lower than for SAT and this effect was therefore neglected.  

 

Figure 2. Open sample holder with solid SAT, 12.06 mm diameter and 4.99.mm height.  

Closed sample 

Sample holders of borosilicate glass consisting of a bottom cup and a lid, especially designed by Mettler 

Toledo to measure liquid samples, were used to measure samples in closed sample holders (see Figure 1). 

The samples were prepared by pouring melted SAT into the holder. Once the SAT had cooled down a seed 

crystal was added to initialize the crystallization. This gave a solid SAT sample which had been crystalized 

from supercooled SAT at ambient temperature. Before starting the test, it was ensured that no SAT was 

jammed between the cup and lid so that the lid could move freely together with the sample in its 

contraction and expansion, transferring this movement to the probe. 



  

The thermal expansion over the temperature range 10 °C to 80 °C was measured. Like for the stainless steel 

sample holder it was assumed that the thermal expansion occurred only in the axial direction of the sample 

as the diameter (radial direction) was kept constant by the borosilicate sample holder. When the SAT was 

heated over the melting temperature, the liquid SAT spilled out of the sample holder. Measurement of the 

SAT in liquid state with the TMA were therefore not possible with this sample holder. Force applied to the 

samples was 0.01 N. 

When determining the volume of the sample in the borosilicate sample holder, a correction related the 

specific shape of the sample holder was applied. The correction was required due to the different 

curvatures of the transitions from the flat surfaces to the sides of the cup and lid (see Figure 3).The 

correction factor had previously been determined in a calibration process with water. 

 

Figure 3. Diagram of borosilicate sample holder with PCM and basis for corrected volume. 

In order to associate a deviation to the measurements executed, a solid octadecane sample inside the 

borosilicate sample holder, whose density is known [36] has been measured having adopted the same 

measuring procedure. The deviation observed was 1.3 %. 

 



  

2.1.2. Density measurements in the liquid phase 

A Mettler Toledo Density meter DM40, which measuring principle is based on the oscillating U-tube, was 

used to measure the density of the melted SAT (60.3 % sodium acetate and 39.7% water). The SAT was 

preheated in an oven to 90 °C before injected into the density meter. Successful measurements were made 

on SAT samples in 10 K steps from 60-90 °C. The measurements were repeated twice. Measurements in 

supercooled state at 50 °C and below was not possible as the SAT sample crystalized. A Mettler/PAAR 

DMA45 was used to measure the liquid density of SAT samples with extra water. The DMA 45 is based on 

the same measurement principle as the DM40 (oscillating U-tube) and was calibrated according to the 

manufacturer recommendation.  Measurements were carried out on samples with 58/42%, 56/44%, 

54/46% and 52/48 % sodium acetate/water by weight. Density measurements were successfully made on 

the samples with extra water down to 20 °C, hence including the supercooled state.  

Before the measurements, the DM40 Density meter was adjusted at 60 °C using two standard substances 

whose density is known: distilled water and dry air. The ideal had been to do the adjustment at each 

temperature step of the temperature program: 60, 70, 80 and 90 °C, since the adjustment constants, 

characteristic of the measurement cell, depend on temperature. However, above 60 °C it was not possible 

due to the water evaporation.  

Once the adjustment of the density meter was executed, and likewise with the TMA measurements, a 

density standard (the standard oil S3 from Paragon Scientific) was measured to associate a deviation to the 

SAT measurements. These measurements were executed at 60 and 80 °C, because the certificate of 

calibration provided certified values at these temperature steps according to ASTM D1480 and because 

they were within the temperatures range of the SAT test.  The deviation observed was 0.68% at 60 °C and 

0% at 80%. 

X-ray 

2.2.1. Sample preparation 

Two samples of SAT were prepared in closed glass jars. The samples were heated and melted in an oven.  

One sample was seeded with SAT as it cooled down to ambient temperature to minimize supercooling. The 

other sample was let to cool down to ambient temperature before a seed SAT crystal was added to initiate 

the solidification. Cores from the samples were drilled out. Each sample had a diameter of 10 mm and a 

height of approximately 15 mm. The sample that solidified from supercooled state appeared more white 

and less dense in structure. 

2.2.2. X-ray micro tomography measurements  

The internal structure of the two samples were investigated with X-ray micro tomography using the 

commercial system “Zeiss Xradia 410 versa”. The system has an X-ray source in reflection geometry and 

operates with a pre voltage between 40 kV and 150 kV, samples can be mounted in the system allowing for 

360° rotation. 

The two core-samples were investigated and a large volume X-ray tomography scan was conducted using 

the systems Large-Field-Of-View (LFOV) objective to map the entire core-sample with a pixel size of 24.2 

µm and 22.6 µm and a pre voltage of 40 kV, images were acquired in 1601 angle steps.  



  

Tomographic data were reconstructed using the commercial software available for the system. The 

reconstruction software is based on the FDK method (Feldkamp algorithm) which is a filtered back 

projection algorithm [37]. 

2.2.3. Segmentation  

The scanned samples were analyzed with advanced image analysis tools. The goal was to obtain a 

segmentation, i.e. identify voxels representing either material or air. At first, each voxel was segmented 

into foreground (material) or background (air) with Linear Discriminant Analysis (LDA). The LDA returns a 

probability for each voxel belonging to the foreground. The probability estimates were used as input to 

Iterated Conditional Modes (CIM). Since this method is based on Markov Random Fields it ensures that the 

global structure, i.e. neighborhood information, of the material is taken into account in the segmentation 

step. Finally, a morphological opening operation was applied to the segmentation returned by ICM, in order 

to separate components of the segmentation. 

The segmentation was subject to a connected components analysis to identify connected voxels 

representing air. The fraction of air in a sample was computed as the number of voxels classified as air 

relative to the total number of voxels within the sample volume. The connected air components within the 

volume were found and used for estimating the relative ratio of encapsulated air.   

3. Results and discussions 

3.1. Density 

3.1.1. Solid phase 

The density of the solid SAT in the closed sample which had solidified from supercooled state was 

determined to be 1.24 - 1.28 g/cm3. This measured solid density was up to 14.5% lower than the typical 

value reported in literature of 1.45 g/cm3 for the SAT crystal. The density of the solid SAT in the open 

sample which had solidified with minimal supercooling was determined to be 1.33 - 1.34 g/cm3. 

Cavities were observed in the solid SAT samples. This was due to the contraction of the SAT as it cooled 

down and solidified during preparation of the sample. Cavities or air gaps were therefore formed in the 

central upper part of the samples. The density was higher in the samples made in the open stainless steel 

cylinder compared to the samples in the closed borosilicate sample holders. This may be due to method of 

preparation of the sample where the open samples were prepared with avoidance of supercooling in mind 

whereas the closed sample experienced supercooling down to ambient temperature before solidification.  

In the open samples, an obvious cavity was observed in the upper central part. This gave an obvious error 

in determining the density of the solid SAT when considering the densest crystal structure of the SAT. This 

behavior could however be expected in an actual application with SAT where melting and solidification 

occurs. Reliable measurements for the open sample were achieved up to 40 °C and up to 50 °C for the 

closed sample. At higher temperatures, evaporation of the water from the SAT in the open sample may 

have been the reason for measurement uncertainties.  

The measured density of liquid SAT varied from 1.29 g/cm3 at 60 °C to 1.27 g/cm3 at 90 °C and fitted with 

the typical literature value of 1.28 g/cm3. The measured densities of SAT with extra water varied from 1.24 



  

g/cm3 at 80 °C to 1.28 at 20 °C for a sample with 48 % water. The determined densities of each experiment 

is displayed in Figure 4 along with the literature values from Lane [38] and Inaba [23]. The “SAT (s) open” 

samples represent the density of SAT solidified with minimal supercooling in the open sample holders. The 

“SAT (s) closed” samples represent the density of SAT solidified from supercooling to ambient temperature 

in the closed borosilicate sample holders. 39.7% represents the water content of SAT. 42%, 44%, 46%, 48% 

represent the water content of the liquid samples of SAT with extra water and the measured densities. 

 

Figure 4. Density of solid and liquid SAT including SAT with extra water in supercooled state. 

Equations (1, 2, 3) expressing the densities as a function of temperature for each sample type is determined 

based on the average of the measurements in each sample type.  

The density of SAT solidified with minimal supercooling (measured in the open cylinder sample holder) as a 

function temperature can be expressed by (1): 

                                       For 10 °C ≤ T ≤ 40 °C.  (1) 

The density of SAT solidified from supercooled state (measured in the closed borosilicate sample holder) as 

a function temperature can be expressed by (2): 

                                   For 10 °C ≤ T ≤ 50 °C.  (2) 

The density of liquid SAT (measured in the Density meter) as a function temperature and water content can 

be expressed by (3): 

                                         (3) 

For 20 °C ≤ T ≤ 80 °C, 44 % ≤ w ≤ 48 %; 30 °C ≤ T ≤ 80 °C, w = 42 %  and 60 °C ≤ T ≤ 90 °C, w = 39.7 %.  
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The expressions for the liquid density deviates less then +/- 0.1% and +/- 0.001 g/cm³ compared to the 

measurements. The expression for liquid densities determined in this study deviates less than 1% from the 

expression reported by Ma et al. [21]. 

3.2. X-ray 
Cut planes and a 3D image of the scanned SAT samples are shown in Figure 5 and Figure 6. The two 

samples were very different in their composition.  

   

 
Figure 5a, b, c and d. Cut planes sliced in X-, Y- and Z-axis directions and 3D illustration of sample solidified with minimal 
supercooling 

  
 

 
Figure 6a, b, c and d. Cut planes sliced in X-, Y- and Z-axis directions and 3D illustration of sample solidified from supercooled 
state 

It can be seen that in the upper parts of the samples appear to be more cavities. This is especially 

pronounced for the sample, which had solidified from supercooled state. The phenomena may be due to 

how the sample cools down after crystallization and where in the sample the full phase change is 

completed last. In the sample, which solidified with minimal supercooling, there was one major cavity in 

the sample whereas in the sample, which solidified from supercooled state, cavities were dispersed over a 

larger volume. This corresponds well with the findings of Dannemand et al. who found that the measured 

thermal conductivity was lower in the upper part of a SAT sample which solidified from supercooled state 

compared to the lower part of the sample [19].  

3.2.1 Segmentation  

In the following, the center slice of the scanned part has been extracted, so that the analysis is based on 

slices that do not have scanning artefacts. Figure 7 and Figure 8 show the slices of the raw data and their 

corresponding segmentations as well as 3D illustration of both samples.  



  

The outcome of the segmentation analysis is a volume with 551 slices with two classes representing 

encapsulated air and air channels attached to the surface of the sample. The red parts of the segmentation 

represent connected cavities and the green parts represent enclosed cavities. The two volumes considered 

are of size 1024×1004×551 voxels. 

 

Figure 7a, b and c. Horizontally sliced plane and corresponding segmentation and 3D illustration for sample solidified with 
minimal supercooling. 

 

Figure 8a, b and c. Horizontally sliced plane and corresponding segmentation and 3D illustration for sample solidified with 
supercooling. 

The fractions of air inside the samples are estimated based on the selected volumes, which represents a 

bulk of the samples. Based on the segmentation results, the air/cavity in the samples is determined. The 

fractions are listed in Table 1. The “cavity/total sample volume” fraction refers to the total volume of 

cavities related to the total sample volume. The “enclosed cavity/total cavity” gives the fraction of the 

cavity volume, which is enclosed related to the total cavity volume. In this context, enclosed cavities are 

fully surrounded by PCM whereas the non-enclosed cavities are interconnected. It shows that the total 

fraction of air/cavity in the sample, which had been supercooled, is as expected larger than in the sample 

where supercooling was avoided. This confirms the first hand impression of the samples. It can also be seen 



  

that the amount of enclosed cavity with respect to the total cavity volume, is higher in the minimal degree 

supercooled sample.  

Table 1. Total cavities and enclosed cavity 

 Cavity/total sample volume Enclosed cavity/total cavity 

Non supercooled sample 0.07 0.13 

Supercooled sample 0.15 0.09 

 

4. Conclusions  
The density of SAT crystalized from supercooled state and with minimal supercooling was measured to be 

1.26 g/cm3 and 1.34 g/cm3 at 25 °C, which is significant lower than the literature value for solid SAT of 1.45 

g/cm3. This was due to cavities formed inside the SAT during the crystallization. The densities were slightly 

temperature dependent.  

The density of liquid SAT was measured to be 1.29 g/cm3 at 60 °C and 1.27 g/cm3 at 90 °C. This fits well with 

the literature value for liquid SAT. The liquid density of SAT with extra water was proportional lower and 

was successfully measured in supercooled state down to 20 °C. 

X-ray scanning and segmentation of solid SAT samples showed that a sample, which had solidified from 

supercooled state contained 15% air/cavity and a sample which had solidified with minimal supercooling 

contained 9% air/cavity. In both sample types the majority of the cavities were connected.  

Temperature dependent expressions for the solid and liquid density of SAT derived from the measurements 

and the determined air/cavity fractions are summarized in Table 2. 

Table 2. Results summary.  

Sample Cavity/ 
total 

sample 
volume 

Enclosed 
cavity/  

total cavity 

Density 
g/cm3 

Solid SAT  
(non-supercooled) 

0.07 0.13 
                                     

For 10 °C ≤ T ≤ 40 °C 

Solid SAT 
(supercooled) 

0.15 0.09 
                                 

For 10 °C ≤ T ≤ 50 °C. 

Liquid SAT  NA NA 
                                       
For 20 °C ≤ T ≤ 80 °C, 44 % ≤ w ≤ 48 %; 30 °C ≤ T ≤ 80 °C, 

w = 42 %  and 60 °C ≤ T ≤ 90 °C, w = 39.7 %.  
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Highlights: 

 Density of liquid and solid sodium acetate trihydrate (SAT) was measured 

 Density of supercooled SAT with extra water was measured 

 Solidified SAT contained cavities  

 Cavity fraction in solid SAT depended on solidification 

 The density of SAT was lower after solidified with a high degree of supercooling 

 

 



Accepted Manuscript

Porosity and density measurements of sodium acetate trihydrate for thermal en-
ergy storage

Mark Dannemand, Monica Delgado, Ana Lazaro, Conchita Peñalosa, Carsten
Gundlach, Camilla Trinderup, Jakob Berg Johansen, Christoph Moser, Hermann
Schranszhofer, Simon Furbo

PII: S1359-4311(17)34932-3
DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.052
Reference: ATE 11573

To appear in: Applied Thermal Engineering

Received Date: 26 July 2017
Revised Date: 15 October 2017
Accepted Date: 11 December 2017

Please cite this article as: M. Dannemand, M. Delgado, A. Lazaro, C. Peñalosa, C. Gundlach, C. Trinderup, J. Berg
Johansen, C. Moser, H. Schranszhofer, S. Furbo, Porosity and density measurements of sodium acetate trihydrate
for thermal energy storage, Applied Thermal Engineering (2017), doi: https://doi.org/10.1016/j.applthermaleng.
2017.12.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.applthermaleng.2017.12.052
https://doi.org/10.1016/j.applthermaleng.2017.12.052
https://doi.org/10.1016/j.applthermaleng.2017.12.052

