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Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This
usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon,
coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique
based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-
data limit. We provide examples on the performance of the technique in up to ten dimensions.

1. Introduction

In recent years there has been a growing interest in incor-
porating data-driven techniques into the field of mechanics.
While almost classical in other domains of science like eco-
nomics, sociology, etc., big data has arrived with important
delay to the field of computational mechanics. It is worth
noting that, in our field, the amount of data available is
very often no so big, and therefore we speak of data-driven
techniques instead of big-data techniques.

Among the first in incorporating data-driven technolo-
gies to the field of computational mechanics one can cite the
works of Kirchdoerfer et al. [1, 2], or the ones by Brunton
et al. [3–5]. Previous attempts exist; however, to construct
data-driven identification algorithms, see, for instance [6, 7].
More recently, the issue of compliance with general laws
like the ones of thermodynamics has been also achieved,
which is a distinct feature of data-driven mechanics [8]. Other
applications include the identification of biological systems
[9] or financial trading [10], to name but a few.

The problem with high dimensional systems is that data
in these systems is often sparse (due precisely to the high

dimensional nature of the phase space) while the system
has, on the contrary, low dimensional features—at least very
frequently. Based on this, a distinction should be made
between methods that require an a priori structure of the
sampling points and others which do not require such a
regularity.

Regarding the methods that need a rigid structure in the
sampling points, the Nonintrusive Sparse Subspace Learning
(SSL) method is a novel technique which has proven to
be very effective [11]. The basic ingredient behind such a
technique is that the parametric space is explored in a hierar-
chical manner, where sampling points are collocated at the
Gauss-Lobato-Chebychev integration points. Also, using a
hierarchical base allows improving the accuracy adding more
hierarchical levels without perturbing the previous ones. To
achieve such hierarchical property, just the difference at a
given point between the real function minus the estimated
value, using the precedent hierarchical levels, is propagated.
For more details about the method, the reader is referred to
[11]. However, in the high-dimensional case, this technique
shows severe limitations, as will be detailed hereafter.
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On the other hand, nonstructured data-driven techniques
are commonly based on Delaunay triangularization tech-
niques, providing an irregular mesh whose nodes coincides
with the sampling points. Afterwards, depending on the
degree of approximation inside each one of the Delaunay
triangles, it gives rise to different interpolation techniques;
i.e., linear, nearest, cubic, and natural, among other tech-
niques, are commonly used. Apart from techniques that
depend on a given triangularization, it is worth mentioning
Kriging interpolants as an appealing technique to provide
response surfaces from nonstructured data points. The key
ingredient behind such technique is that each sampling point
is considered as a realization of a random process. Therefore,
defining a spatial correlation function allows to infer the
position of unknown points just like providing confidence
intervals based on the distance to the measured points.
Nevertheless, the calibration of the correlation matrix has an
important impact in the performance of the method itself.

Kriging also possesses a very interesting property: it is
able to efficiently filter noise and outliers. Therefore, it is
expected that it also could help us in problems with noise in
the data.

However, in high dimensional settings, all of the just
mentioned techniques fail to identify the nature of the
system due precisely to the curse of dimensionality. A recent
alternative for such a system could be Topological Data
Analysis (TDA), which is based on the use of algebraic
topology and the concept of persistent homology [12]. A sparse
version of this technique also exists [13].

Hence, if a competitive data-driven identification tech-
nique is desired, such a technique should meet the following
requirements:

(i) Nonstructured data set: this characteristic provides
versatility to the method. Indeed, when evaluating
the response surface requiring a lot of computational
effort, recycling previous evaluations of the response
surface, which do not coincide with a given structure
of the data, may be very useful. In addition, the
SSL technique establishes sampling points at locations
in the phase space with no physical meaning in an
industrial setting.

(ii) Robustness with respect to high dimensionality:
triangularization-based techniques suffer when
dealing with multidimensional data just because
a high dimensional mesh has to be generated.
Nevertheless, the separation of variables could be an
appealing technique to circumvent the problem of
generating such a high dimensional mesh.

(iii) Curse of dimensionality: all previous techniques suf-
fer when dealing with high dimensional data. For
instance, the SSL needs 2𝐷 sampling points just to
reach the first level of approximation. Thus, when
dealing with high dimensional data (𝐷 > 10 uncor-
related dimensions) plenty of sampling points are
required to properly capture a given response surface.

In what follows we present a method based on the
concept of separate representations to overcome the curse of

dimensionality. Such separate representation has previously
been employed by the authors to construct a priori reduced-
order modeling techniques, coined as Proper Generalized
Decompositions [14–20]. This will give rise to a sparse
Proper Generalized Decomposition (s-PGD in what follows)
approach to the problem. We then analyze the just developed
technique through a series of numerical experiments in
Section 4, showing the performance of the method. Examples
in up to ten dimensions are shown. The paper is completed
with some discussions.

2. A Sparse PGD (s-PGD) Methodology

2.1. Basics of the Technique. In this section we develop a novel
methodology for sparse identification in high dimensional
settings. For the ease of the exposition and, above all,
representation, but without loss of generality, let us begin by
assuming that the unknown objective function 𝑓(𝑥, 𝑦) lives
in R2 and that is to be recovered from sparse data. As in
previous references, see, for instance [21]; we have chosen to
begin with a Galerkin projection, in the form

∫
Ω
𝑤∗ (𝑥, 𝑦) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦 = 0, (1)

where Ω ⊂ R2 stands for the—here, still two-
dimensional—domain in which the identification is
performed and 𝑤∗(𝑥, 𝑦) ∈ C0(Ω) is an arbitrary test
function. Finally, 𝑢(𝑥, 𝑦) will be the obtained approximation
to 𝑓(𝑥, 𝑦), still to be constructed. In previous works of the
authors [8] as well as in other approaches to the problem
(e.g., [21]), this projection is subject to additional constraints
of thermodynamic nature. In this work no particular
assumption is made in this regard, although additional
constraints could be imposed to the minimization problem.

Following the same rationale behind the Proper Gener-
alized Decomposition (PGD), the next step is to express the
approximated function 𝑢𝑀(𝑥, 𝑦) ≈ 𝑢(𝑥, 𝑦) as a set of separate
one-dimensional functions,

𝑢𝑀 (𝑥, 𝑦) = 𝑀∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) . (2)

The determination of the precise form of functional pairs𝑋𝑘(𝑥)𝑌𝑘(𝑦), 𝑘 = 1, . . . ,𝑀, is done by first projecting them
on a finite element basis and by employing a greedy algorithm
such that once the approximation up to order𝑀−1 is known,
the new𝑀th order term

𝑢𝑀 (𝑥, 𝑦) = 𝑢𝑀−1 (𝑥, 𝑦) + 𝑋𝑀 (𝑥) 𝑌𝑀 (𝑦)
= 𝑀−1∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) + 𝑋𝑀 (𝑥) 𝑌𝑀 (𝑦) , (3)

is found by any nonlinear solver (Picard, Newton,. . .).
It is well-known that this approach produces optimal

results for elliptic operators (here, note that we have in fact
an identity operator acting on 𝑢) in two dimensions, see
[14] and references therein. There is no proof, however, that
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this separate representation will produce optimal results (in
other words, will obtain parsimonious models) in dimensions
higher than two. In two dimensions and with 𝑤∗ = 𝑢∗ it
provides the singular value decomposition of 𝑓(𝑥, 𝑦) [15].
Our experience, nevertheless, is that it produces almost
optimal results in the vast majority of the problems tested so
far.

It is worth noting that the product of the test func-
tion 𝑤∗(𝑥, 𝑦) times the objective function 𝑓(𝑥, 𝑦) is only
evaluated at few locations (the ones corresponding to the
experimental measurements) and that, in a general high
dimensional setting, we will be in the low-data limit neces-
sarily. Several options can be adopted in this scenario. For
instance, the objective function can be first interpolated in
the high dimensional space (still 2D in this introductory
example) and then integrated together with the test function.
Indeed, this will be the so-called PGD in approximation [15],
commonly used when either 𝑓(𝑥, 𝑦) is known everywhere
and a separated representation is sought or if 𝑓(𝑥, 𝑦) is
known in a separated format but a few pairs 𝑀 are needed
for any reason. Under this rationale the converged solution𝑢(𝑥, 𝑦) tries to capture the already interpolated solution in the
high dimensional space but in a more compact format. As a
consequence, the error due to interpolation of experimental
measurements on the high dimensional space will persist in
the final separate identified function.

In order to overcome such difficulties, we envisage a
projection followed by interpolation method. However since
information is just known at 𝑃 sampling points (𝑥𝑖, 𝑦𝑖), 𝑖 =1, . . . , 𝑃, it seems reasonable to express the test function not
in a finite element context, but to express it as a set of Dirac
delta functions collocated at the sampling points,

𝑤∗ (𝑥, 𝑦) = 𝑢∗ (𝑥, 𝑦) 𝑃∑
𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖)
= (𝑋∗ (𝑥) 𝑌𝑀 (𝑦) + 𝑋𝑀 (𝑥) 𝑌∗ (𝑦)) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) ,
(4)

giving rise to

∫
Ω
𝑤∗ (𝑥, 𝑦) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

= ∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
= 0,

(5)

The choice of the test function 𝑤∗(𝑥, 𝑦) in the form
dictated by (4) is motivated by the desire of employing a
collocation approach while maintaining the symmetry of
standard Bubnov-Galerkin projection operation.

2.2. Matrix Form. Let us detail now the finite element pro-
jection of the one-dimensional functions 𝑋𝑘(𝑥) and 𝑌𝑘(𝑦),𝑘 = 1, . . . ,𝑀, (often referred to as modes) appearing in
(2). Several options can be adopted, ranging from standard
piecewise linear shape functions, global nonlinear shape

functions, maximum entropy interpolants, splines, kriging,
etc. Regarding the kind of interpolant to use, an analysis will
be performed in the sequel. Nevertheless, no matter which
precise interpolant is employed, it can be expressed in matrix
form as

𝑋𝑘 (𝑥) = 𝑁∑
𝑗=1

𝑁𝑘𝑗 (𝑥) 𝛼𝑘𝑗 = [𝑁𝑘1 (𝑥) . . . 𝑁𝑘𝑁 (𝑥)] [[[[[
𝛼𝑘1...𝛼𝑘𝑁
]]]]]

= (N𝑘𝑥)𝑇 a𝑘,
(6)

𝑌𝑘 (𝑦) = 𝑁∑
𝑗=1

𝑁𝑘𝑗 (𝑦) 𝛽𝑘𝑗 = [𝑁𝑘1 (𝑦) . . .𝑁𝑘𝑁 (𝑦)][[[[[
𝛽𝑘1...𝛽𝑘𝑁
]]]]]

= (N𝑘𝑦)𝑇 b𝑘,
(7)

where 𝛼𝑘𝑗 and 𝛽𝑘𝑗 , 𝑗 = 1, . . . , 𝑁, represent the degrees of
freedom of the chosen approximation. We employ Nk as the
most usual nomenclature for the shape function vector. It is
important to remark that the approximation basis could even
change from mode to mode (i.e., for each 𝑖). For the sake of
simplicity we take the same number of terms for both 𝑋𝑘(𝑥)
and 𝑌𝑘(𝑦), namely, 𝑁.

By combining (1), (2), (4), (6), and (7) a nonlinear system
of equations is derived, due to products of terms in both
spatial directions. An alternate direction scheme is here
preferred to linearize the problem, which is also a typical
choice in the PGD literature. Note that, when computing
modes 𝑋𝑀(𝑥), the variation in the other spatial direction
vanishes, 𝑌∗(𝑦) = 0, and vice versa.

In order to fully detail the matrix form of the resulting
problem, we first employ the notation “⊗” as the standard
tensorial product (i.e., b ⊗ c = 𝑏𝑖𝑐𝑗) and define the following
matrices

A𝑘ℓ𝑥 = N𝑘𝑥 ⊗ Nℓ𝑥,
A𝑘ℓ𝑦 = N𝑘𝑦 ⊗ Nℓ𝑦,
C𝑘ℓ𝑥𝑦 = N𝑘𝑥 ⊗ Nℓ𝑦.

(8)

For the sake of simplicity but without loss of generality,
evaluations of the former operators at point (𝑥𝑖, 𝑦𝑖) are
denoted as

A𝑘ℓ𝑥𝑖 = N𝑘𝑥 (𝑥𝑖) ⊗Nℓ𝑥 (𝑥𝑖) ,
A𝑘ℓ𝑦𝑖 = N𝑘𝑦 (𝑦𝑖) ⊗Nℓ𝑦 (𝑦𝑖) ,
C𝑘ℓ𝑥𝑖𝑦𝑖 = N𝑘𝑥 (𝑥𝑖) ⊗N𝑗𝑦 (𝑦𝑖) .

(9)

Equations (10)-(11) below show the discretized version of
the terms appearing in the weak form, (1), when computing
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modes in the 𝑥 direction. Again,𝑀 stands for the number of
modes in the solution 𝑢(𝑥, 𝑦) while 𝑃 denotes the number of
sampling points.

∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) 𝑢 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
= 𝑀∑
𝑘=1

𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑘𝑦𝑖 b𝑘) ((a∗)𝑇A𝑀𝑘𝑥𝑖 a𝑘) ,
(10)

∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
= 𝑃∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖) ((a∗)𝑇 C𝑀𝑀𝑥𝑖𝑦𝑖 b𝑀) .
(11)

Hence, by defining

M𝑥 = 𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑀𝑦𝑖 b𝑀)A𝑀𝑀𝑥𝑖 ,
m𝑥 = 𝑀−1∑

𝑘=1

𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑘𝑦𝑖 b𝑘)A𝑀𝑘𝑥𝑖 a𝑘,
f𝑥 = 𝑃∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)C𝑀𝑀𝑥𝑖𝑦𝑖 b𝑀,
(12)

allows to write a system of algebraic equations

M𝑥a
𝑀 = f𝑥 −m𝑥. (13)

Exactly the same procedure is followed to obtain an
algebraic system of equations for b𝑀. This allows performing
an alternating directions scheme to extract a new couple of𝑋𝑀(𝑥) and 𝑌𝑀(𝑦) modes.

This formulation has several aspects that deserve to be
highlighted:

(1) No assumption about 𝑓(𝑥, 𝑦) has been made other
than assuming known its value at sampling points.
Indeed, both problems of either interpolating or
making a triangulation in a high dimensional space
are circumvented due to the separation of variables.

(2) The operator M𝑥 is composed of 𝑃 rank-one updates,
meaning that the rank of such operator is at most 𝑃.
Furthermore, if a subset of measured points share the
same coordinate 𝑥𝑖, the entire subset will increase the
rank of the operator in one unity.

(3) The position of the sampling points will constrain the
rank of the PGD operators. That is the reason why
even if the possibility of having a random sampling of
points is available, it is always convenient to perform a
smart sampling technique such that the rank in each
direction tends to be maximized. Indeed, the higher
the rank of the PGD operator is, the more cardinality
of a and b can be demanded without degenerating
into an underdetermined system of equations.

There are plenty of strategies to smartly select the position
of the sampling points. They are based on either knowing an
a priori error indicator or having a reasonable estimation of
the sought response surface. Certainly, an adaptive strategy
based on the gradient of the precomputed modes could be
envisaged. However, the position of the new sampling points
will depend on the response surface calculated using the
previous sampling points, making parallelization difficult.
That is the reason why Latin hypercube is chosen in the
present work. Particularly, Latin hypercube tries to collocate𝑃 sampling points in such a way that the projection of those
points into 𝑥 and 𝑦 axis are as far as possible.

2.3. Choice of the 1D Basis. In the previous section, nothing
has been specified about the basis in which each one of the
one-dimensional modes was expressed. In this subsection, we
will use an interpolant based on Kriging techniques. Simple
Kriging has been used throughout history in order to get
relatively smooth solutions, avoiding spurious oscillations
characteristic of high order polynomial interpolation. This
phenomena is called Runge’s phenomenon. It appears due to
the fact that the sampling point locations are not chosen prop-
erly; i.e., they will not be collocated, in general, at the Gauss-
Lobato-Chebychev quadrature points. Kriging interpolants
consider each point as a realization of a Gaussian process, so
that high oscillations are considered as unlikely events.

Hence, by defining a spatial correlation function based on
the relative distance between two points, D(𝑥𝑖 − 𝑥𝑗) = D𝑖𝑗,
an interpolant is created over the separated 1D domain,

𝑋𝑘 (𝑥) = 𝑁∑
𝑖=1

𝛼𝑘𝑖𝑁 + 𝑁∑
𝑗=1

𝜆 (𝑥 − 𝑥𝑗)(𝛼𝑘𝑗 − 𝑁∑
𝑙=1

𝛼𝑘𝑙𝑁) , (14)

where 𝜆(𝑥 − 𝑥𝑗) is a weighting function which strongly
depends on the definition of the correlation function and
the 𝛼𝑖 coefficients are the nodal values associated to the 𝑥𝑖
Kriging control points. Note that these control points are
not the sampling points. We have chosen this strategy so as
to allow us to accomplish an adaptivity strategy that will be
described next. In the present work, these control points are
uniformly distributed along the 1D domain. Although several
definitions of the correlation function exist, a Gaussian
distribution is chosen as

D𝑖𝑗 = D (𝑥𝑖 − 𝑥𝑗) = 1𝜎√2𝜋𝑒−(𝑥𝑖−𝑥𝑗)2/2𝜎2 , (15)

where 𝜎 is the variance of the Gaussian distribution. Several
a priori choices can be adopted to select the value of the
variance based on the distance between two consecutive
control points, e.g., 𝜎 = ℎ√(𝑥𝑖+1 − 𝑥𝑖)2. The magnitude of ℎ
should be adapted depending on the desired global character
of the support. To ensure the positivity of the variance, ℎ
should be in the interval ]0, +∞[.

Let us define now a set of 𝐶 control points

x𝑐𝑝 = [𝑥𝑐𝑝1 , 𝑥𝑐𝑝2 , . . . , 𝑥𝑐𝑝𝐶 ] (16)

and the 𝑃 sampling points

x𝑠𝑝 = [𝑥𝑠𝑝1 , 𝑥𝑠𝑝2 , . . . , 𝑥𝑠𝑝𝑃 ] . (17)
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Let us define in turn a correlation matrix between all control
points and a correlation matrix between the control points
and the sampling points as

C
𝑐𝑝−𝑐𝑝
𝑖𝑗 = D (𝑥𝑐𝑝𝑖 − 𝑥𝑐𝑝𝑗 ) ,

C
𝑐𝑝−𝑠𝑝
𝑖𝑗 = D (𝑥𝑐𝑝𝑖 − 𝑥𝑠𝑝𝑗 ) . (18)

Under these settings, we define a weighting function for each
control point and for each sampling point as

Λ = (C𝑐𝑝−𝑐𝑝)−1C𝑐𝑝−𝑠𝑝, (19)

where 𝜆(𝑥𝑐𝑝𝑖 − 𝑥𝑠𝑝𝑗 ) = Λ 𝑖𝑗.
If we reorganize the terms in the same way that we did in

the previous section to have a compact and close format of
the shape function N𝑘𝑥, we arrive to

𝑋𝑘 (𝑥𝑠𝑝𝑗 ) = 𝑁∑
𝑖=1

N𝑘𝑖 (𝑥𝑠𝑝𝑗 ) 𝛼𝑘𝑖
= [𝑁𝑘1 (𝑥𝑠𝑝𝑗 ) . . . 𝑁𝑘𝑁 (𝑥𝑠𝑝𝑗 )][[[[[

𝛼𝑘1...𝛼𝑘𝑁
]]]]]

= (N𝑘
𝑥
𝑠𝑝

𝑗

)𝑇 a𝑘,

(20)

where each shape function is given by

𝑁𝑘𝑖 (𝑥𝑠𝑝𝑗 ) = 1 − ∑𝑁𝑗=1 Λ 𝑖𝑗𝑁 + Λ 𝑖𝑗. (21)

Figures 1 and 2 depict the appearance of the simple Krig-
ing interpolants using 7 control points uniformly distributed
along the domain, for ℎ = 1 and ℎ = 1/3, respectively.
It can be highlighted that both the Kronecker delta (i.e.,
strict interpolation) and the partition of unity properties are
satisfied for any value of ℎ. Moreover, it is worth noting that
the higher the variance the correlation function has, the more
global the shape functions are. Furthermore, it is known that99 per cent of the probability of a Gaussian distribution is
comprised within an interval of [𝑚−3𝜎,𝑚+3𝜎], being𝑚 the
mean value of the distribution. This issue explains perfectly
well why the support of each Gaussian distribution takes 2
elements for the case, where ℎ = 1/3. Indeed, the shape of the
interpolants is quite similar to standard finite element shape
functions, but with a Gaussian profile. The remaining 1 per
cent of probability is comprised in the small ridges happening
in the middle of the elements.

In light of these results, a family of interpolants based
on Kriging can be easily created just selecting the value
of the variance within the correlation function. Therefore,
globality of the support can be easily adjusted always under
the framework of the partition of unity.
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Figure 1: Kriging shape functions using 𝜎 = √(𝑥𝑖+1 − 𝑥𝑖)2 for 7
control points uniformly distributed along the 1D domain.
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Figure 2: Kriging shape functions using 𝜎 = (1/3)√(𝑥𝑖+1 − 𝑥𝑖)2 for
7 control points uniformly distributed along the 1D domain.

2.4. Modal Adaptivity Strategy. In a standard PGD frame-
work, the final solution is approximated as a sum of𝑀modes
or functional products; see (2). Each one of the separated
modes must be projected onto a chosen basis to render the
problem finite dimensional. A standard choice is to select the
same basis for each one of the modes:

N1 = N2 = ⋅ ⋅ ⋅ = N𝑀. (22)

Despite of the fact that this choice seems reasonable,
when dealing with nonstructured sparse data, it may not be
such. In the previous section we proved that the rank of the
separated system strongly depends on the distribution of the
data sampling. Therefore, the cardinality of the interpolation
basis must not exceed the maximum rank provided by the
data sampling. Indeed, this constraint, which provides an
upper bound to build the interpolation basis, only guarantees
that the minimization is satisfied at the sampling points,
without saying anything out of the measured points. Hence,
if sampling points are not abundant, in the limit of low-data
regime, high oscillations may appear out of these measured
points. These oscillations are not desirable since the resulting
prediction properties of the proposed method could be
potentially decimated.

In order to tackle this problem, we take advantage of the
residual-based nature of the PGD. Indeed, the greedy PGD
algorithm tries to enrich a solution composed by𝑀 modes,

𝑢𝑀 (𝑥, 𝑦) = 𝑀∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) , (23)
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just by looking at the residual that accounts for the contribu-
tion of the previous modes, as shown in 8).

Therefore, an appealing strategy to minimize spurious
oscillations out of the sampling points is to start the PGD
algorithm looking for modes with relatively smooth basis
(for instance, Kriging interpolants with a few control points).
Therefore, an indicator in order to make an online modal
adaptive strategy is required. In the present work, we use the
norm of the PGD residual,

R
𝑀
P = 1√𝑃√∑𝑖∈P (𝑓 (𝑥𝑖, 𝑦𝑖) − 𝑢𝑀 (𝑥𝑖, 𝑦𝑖))2, (24)

where P is the set of 𝑃 measured points and 𝑓(𝑥, 𝑦) is the
function to be captured.

In essence, when the residual norm stagnates, a new
control mesh is defined, composed by one more control point
and always uniformly distributed, following

ΔR𝑀P =R
𝑀
P −R

𝑀−1
P < 𝜖𝑟. (25)

By doing this, oscillations are reduced, since higher-order
basis will try to capture only what remains in the residual.
Here, 𝜖𝑟 is a tolerance defining the resilience of the sPGD to
increase the cardinality of the interpolation basis. The lower𝜖𝑟 is, the more resilient method is to increase the cardinality.

To better understand the method, we will quantify the
error for two set of points: the first set is associated with the
sampling points, P,

EP = 1
#P

∑
𝑠∈P

√ (𝑓 (𝑥𝑠, 𝑦𝑠) − 𝑢𝑀 (𝑥𝑠, 𝑦𝑠))2𝑓 (𝑥𝑠, 𝑦𝑠)2 , (26)

where 𝑓(𝑥𝑠, 𝑦𝑠) is assumed not to vanish and where L also
includes points other than the sampling points. This is done
in order to validate the algorithm, by evaluating the reference
solution—which is a priori unknown in a general setting—at
points different to the sampling ones,

EL = 1
#L

∑
s∈L

√ (𝑓 (𝑥𝑠, 𝑦𝑠) − 𝑢𝑀 (𝑥𝑠, 𝑦𝑠))2𝑓 (𝑥𝑠, 𝑦𝑠)2 . (27)

Since the s-PGD algorithm minimizes the error only at
the sampling points P it is reasonable to expect that EP ≤
EL.

2.5. A Preliminary Example. To test the convergence of the
just presented algorithm, we consider

𝑓1 (𝑥, 𝑦) = (cos (3𝜋𝑥) + sin (3𝜋𝑦)) 𝑦2 + 4, (28)

which presents a quite oscillating behavior along the 𝑥 direc-
tion, whereas the𝑦 direction is quadratic. We are interested in
capturing such a function in the domain Ω𝑦 = Ω𝑥 = [−1, 1].

Figures 3 and 4 show the errorsEP andEL in identifying
the function 𝑓1(𝑥, 𝑦). In this case, we consider two distinct
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Figure 3: EL (points) and EP (asterisk) versus the number of
modes for 𝑓1(𝑥, 𝑦), #P = 100, #L = 1000. No modal adaptivity.
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Figure 4: EL (points) and EP (asterisk) versus the number of
modes for 𝑓1(𝑥, 𝑦), #P = 100, #L = 1000. Modal adaptivity based
on the residual, 𝜖𝑟 = 1e-2.

possibilities: no modal adaptivity at all and a modal adaptivity
based on the residual, respectively. Several aspects can be
highlighted. The first one is that EP (asterisks) decreases
much faster when there is no modal adaptivity. This is
expected, since we are minimizing with a richer basis since
the very beginning, instead of starting with smooth functions
like in the residual based approach. However, even if the min-
imization in the sampling points is well achieved, when no
modal adaptivity is considered, the error out of the sampling
points may increase as the solution is enriched with new
modes. Nevertheless, the residual-based modal adaptivity
alleviates this problem. As it can be noticed, starting with
relatively smooth functions drives the solution out of the
sampling points to be smooth as well, avoiding the problem
of high oscillations appearing out of the sampling points.

3. A Local Approach to s-PGD

It is well-known that, as in POD, reduced basis or, in general,
any other linear model reduction technique, PGD gives poor
results—in the form of a nonparsimonious prediction—when
the solution of the problem lives in a highly nonlinear
manifold. Previous approaches to this difficulty included the
employ of nonlinear dimensionality reduction techniques
such as Locally Linear Embeddings [22], kernel Principal
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Component Analysis [23, 24] or isomap techniques [25].
Another, distinct, possibility, is to employ a local version of
PGD [18], in which the domain is sliced so that at every sub-
region PGD provides optimal or nearly optimal results. We
explore this last option here for the purpose of sparse regres-
sion, although a bit modified, as will be detailed hereafter.

The approach followed herein is based on the employ
of the partition of unity property [26, 27]. In essence, it
is well-known that any approximating function (like finite
element shape functions, for instance) that forms a partition
of unity can be enriched with an arbitrary function such that
the resulting approximation inherits the smoothness of the
partition of unity and the approximation properties of the
enriching function.

With this philosophy in mind, we proposed to enrich
a finite element mesh with an s-PGD approximation. The
resulting approximation will be local, due to the compact
support of finite element approximation, while inheriting
the good approximation properties, already demonstrated,
of s-PGD. In essence, what we propose is to construct an
approximation of the type𝑢 (𝑥, 𝑦) ≈ ∑

𝑖∈I

𝑁𝑖 (𝑥, 𝑦) 𝑢𝑖
+ ∑
𝑝∈Ienr

∑
𝑒∈I𝑝

𝑁𝑒 (𝑥, 𝑦) 𝑀∑
𝑘=1

𝑋𝑘𝑝 (𝑥) 𝑌𝑘𝑝 (𝑦)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑓enr𝑝 (𝑥,𝑦)

, (29)

where I represents the node set in the finite element mesh,
Ienr the set of enriched nodes, 𝑢𝑖 are the nodal degrees of
freedom of the mesh, I𝑝 is the number of finite elements
covered by node 𝑝 shape function’s support and 𝑋𝑘𝑝(𝑥) and𝑌𝑘𝑝(𝑥) functions are the 𝑘-th one-dimensional PGD modes
enriching node𝑝, that in fact constitute an enriching function𝑓enr(𝑥, 𝑦).

Of course, as already introduced in Eqs. (6) and (7), every
PGD mode is in turn approximated by Galerkin projection on
a judiciously chosen basis. In other words,𝑢 (𝑥, 𝑦)

≈ ∑
𝑖∈I

𝑁𝑖 (𝑥, 𝑦) 𝑢𝑖
+ ∑
𝑝∈Ienr

∑
𝑒∈I𝑝

𝑁𝑒 (𝑥, 𝑦) 𝑀∑
𝑘=1

(N𝑘𝑥)𝑇 a𝑘𝑝 (N𝑘𝑦)𝑇 b𝑘𝑝,
(30)

with a𝑘𝑝 and b𝑘𝑝 the nodal values describing each one-
dimensional PGD mode.

In this framework, the definition of a suitable test func-
tion can be done in several ways. As a matter of fact, the test
function can be expressed as the sum of a finite element and
a PGD contribution, 𝑢∗ = 𝑢∗𝐹𝐸𝑀 + 𝑢∗𝑃𝐺𝐷, (31)
so that an approach similar to that of Eq. (4) can be
accomplished.

An example of the performance of this approach is
included in Section 4.4.
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Figure 5: EL of 𝑓1(𝑥, 𝑦) varying #P for different identification
techniques. #L = 1000.

4. Numerical Results

The aim of this section is to compare the ability of sparse
model identification for different interpolation techniques.
On one hand, the performance of standard techniques based
on Delaunay triangulation such as linear, nearest neighbor
or cubic interpolation is compared. Even though these
techniques are simple, they allow to have a nonstructured
sampling point set since they rely on a Delaunay triangu-
lation. On the other hand, the results are compared to the
Sparse Subspace Learning (SSL) [11]. The convergence and
robustness of this method is proven to be very effective since
the points are collocated at the Gauss-Lobato-Chebychev
points. However, two main drawbacks appear considering
this method. The first one is that there is a high concentration
of points in the boundary of the domain, so that this
quadrature is meant for functions that vary mainly along the
boundary. Indeed, if the variation of the function appears
in the middle of the domain, many sampling points will be
required to converge to the exact function. The second one is
that the sampling points have to be located at specific points
in the domain. The s-PGD method using simple Kriging
interpolants will be compared as well.

The numerical results are structured as follows: first
two synthetic 2D functions are analyzed; secondly, two
2D response surfaces coming from a thermal problem and
a Plastic Yield function are reconstructed; finally, a 10D
synthetic function is reconstructed by means of the s-PGD
algorithm.

4.1. 2D Synthetic Functions. The first considered function
is 𝑓1(𝑥, 𝑦), as introduced in the previous section. Figure 5
shows the reconstruction error (EL) of 𝑓1(𝑥, 𝑦) for different
sampling points. As it can be noticed, the s-PGD algorithm
performs well for a wide range of sampling points. Neverthe-
less, the SSL method is the one presenting the lower error level
when there are more than 150 sampling points.

A second synthetic function is defined as𝑓2 (𝑥, 𝑦) = cos (3𝑥𝑦) + log (𝑥 + 𝑦 + 2.05) + 5. (32)

This function is intended to be reconstructed in the domainΩ𝑥 = Ω𝑦 = [−1, 1]. It was chosen in such a way that it is
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Figure 6: EL of 𝑓2(𝑥, 𝑦) varying #P for different identification
techniques. #L = 1000.

relatively smooth in the center of the domain, whereas the
main variation is located along the boundary of the domain.
Indeed, this function is meant to show the potential of the SSL
technique.

Figure 6 shows the reconstruction error of the 𝑓2(𝑥, 𝑦)
function for different interpolation techniques. As it can be
noticed, both SSL and s-PGD methods are the ones that
present the best convergence properties. If the number of
points is increased even more, the SSL method is the one
that presents the lowest interpolation error. They are followed
by linear and natural neighbor interpolations. Finally, the
nearest neighbor method is the one presenting the worst error
for this particular case.

4.2. 2D Response Surfaces Coming from Physical Problems.
Once the convergence of the methods have been unveiled for
synthetic functions, it is very interesting to analyze the power
of the former methods by trying to identify functions that
are coming from either simulations or models popular in the
computational mechanics community. Indeed, two functions
will be analyzed: the first one is an anisotropic Plastic Yield
function, whereas the second one is a solution coming from
a quasistatic thermal problem with varying source term and
conductivity.

Figure 7 shows the Yld2004-18p anisotropic plastic yield
function, defined by Barlat et al. in [28]. Under plane stress
hypothesis, this plastic yield function is a convex and closed
surface defined in a three-dimensional space. Therefore, the
position vector of an arbitrary point in the surface can be
easily parameterized in cylindrical coordinates as 𝑅(𝜃, 𝜎𝑥𝑦).
The 𝑅(𝜃, 𝜎𝑥𝑦) function for the Yld2004-18p is shown in
Figure 8, where anisotropies can be easily seen. Otherwise,
the radius function will be constant for a given 𝜎𝑥𝑦.

Figure 9 shows the error in the identification of Barlat’s
plastic yield function Yld2004-18p. As it can be noticed, the
s-PGD technique outperforms the rest of techniques. Indeed,
the s-PGD is exploiting the fact that the response surface is
highly separable.

As mentioned above, the second problem is the sparse
identification of the solution of a quasistatic thermal problem
modeled by
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Figure 7: Barlat’s Yld2004-18p function under plane stress hypoth-
esis.
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Figure 8: 𝑅(𝜃, 𝜎𝑥𝑦) function for Barlat’s Yld2004-18p yield function.

∇ ⋅ (𝜂 (𝑥, 𝑡) ∇ (𝑢 (𝑥, 𝑡))) = 𝑓 (𝑡) ,
in Ω𝑥 × Ω𝑡 = [−1, 1] × [−1, 1] , (33)

where conductivity varies in space-time as

𝜂 (𝑥, 𝑡) = (1 + 10 abs (𝑥) + 10𝑥2) log (𝑡 + 2.5)
𝑢 (1, 𝑡) = 2 (34)

𝑓 (𝑥, 𝑡) = 10 cos (3𝜋𝑡)𝑢 (−1, 𝑡) = 2, (35)

and the source term varies in time. Homogeneous Dirichlet
boundary conditions are imposed at both spatial boundaries
and no initial conditions are required due to quasistationarity
assumptions.

Figure 10 shows the evolution of the temperature field as a
function of space time for the set of (33)-(35). It can be noticed
how the variation of the temperature throughout time is
caused mainly due to the source term. However, conductivity
modifies locally the curvature of the temperature along the
spatial axis. Symmetry with respect the𝑥 = 0 axis is preserved
due to the fact that the conductivity presents a symmetry
along the same axis.

Figure 11 shows the performance of each one of the
techniques when trying to reconstruct the temperature field
from certain sampling points. As can be noticed, the s-PGD in
conjunction with Kriging interpolants is the one that presents
the fastest convergence rate to the actual function, which
is considered unknown. It is followed by linear and natural
interpolations. The SSL method presents a slow convergence
rate in this case, due to the fact that the main variation of the
function 𝑢(𝑥, 𝑡) is happening in the center of the domain and
not in the boundary.
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Figure 9: EL of 𝑅(𝜃, 𝜎𝑥𝑦) varying #P for different sparse identifi-
cation techniques. #L = 1000. 𝜖𝑟 = 5 ⋅ 10−4.
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Figure 10: Quasistatic solution to the thermal problem 𝑢(𝑥, 𝑡).
4.3. A 10D Multivariate Case. In this subsection, we would
like to show the scalability that s-PGD presents when dealing
with relatively high-dimensional spaces. Since our solution is
expressed in a separated format, an 𝑁 dimensional problem
(𝑁𝐷) is solved as a sequence of 𝑁 1D problems, which are
solved using a fixed-point algorithm in order to circumvent
the nonlinearity of the separation of variables.

The objective function that we have used to analyze the
properties of the s-PGD is defined as

𝑓3 (𝑥1, 𝑥2, . . . , 𝑥𝑁) = 2 + 18 𝑁∑𝑖=1𝑥𝑖 +
𝑁∏
𝑖=1

𝑥𝑖 + 𝑁∏
𝑖=1

𝑥2𝑖 , (36)

with 𝑁 = 10 in this case.
Figure 12 shows the error convergence in both sampling

points (EP, asterisks) and points out of the sampling (EL,
filled points). The L data set was composed by 3000 points,
and theP data subset for the s-PGD algorithm was composed
by 500 points. The number of points required to properly
capture the hypersurface has increased with respect to the
2D examples due to the high dimensionality of the problem.
Special attention has to be paid when increasing the cardi-
nality of the interpolant basis without many sampling points,
because the problem of high oscillations outside the control
points may be accentuated.

4.4. An Example of the Performance of the Local s-PGD.
The last example corresponds to the sparse regression of
an intricate surface that has been created by mixing three
different Gaussian surfaces so as to generate a surface with
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Figure 11: EL of 𝑢(𝑥, 𝑡) varying #P for different identification
techniques. #L = 1000. 𝜖𝑟 = 2.5 ⋅ 10−3.
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Figure 12: EL (points) and EP (asterisk) versus the number of
modes for 𝑓3(𝑥1, 𝑥2, . . . , 𝑥𝑁), #P = 500, #L = 3000. Modal
adaptivity based on the residual, 𝜖𝑟 = 1𝑒 − 3.

no easy separate representation (a nonparsimonious model,
if we employ a different vocabulary). The appearance of this
synthetic surface is shown in Figure 13.

The sought surface is defined in the domain Ω =[0, 1]2, which has been split into the finite element mesh
shown in Figure 14. Every element in the mesh has been
colored according to the number of enriching PGD functions,
ranging from a single one to four. The convergence plot of this
example as a function of the number of PGD modes added to
the approximating space is included in Figure 15.

5. Conclusions

In this paper we have developed a data-based sparse reduced-
order regression technique under the Proper Generalized
Decomposition framework. This algorithm combines the
robustness typical of the separation of variables together with
properties of collocation methods in order to provide with
parsimonious models for the data at hand. The performance
of simple Kriging interpolation has proven to be effective
when the sought model presents some regularity. Further-
more, a modal adaptivity technique has been proposed in
order to avoid high oscillations out of the sampling points,
characteristic of high-order interpolation methods when data
is sparse.
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Figure 13: A synthetic surface generated by superposition of three
different Gaussians, that is to be approximated by local s-PGD
techniques.
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Figure 14: Finite element mesh for the example in Section 4.4. All
the internal nodes have been enriched.
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Figure 15: Convergence plot for the example in Section 4.4.

For problems in which the result lives in a highly
nonlinear manifold, a local version of the technique, which
makes use of the partition of unity property, has also been
developed. This local version outperforms the standard one
for very intricate responses.

The s-PGD method has been compared advantageously
versus other existing methods for different example func-
tions. Finally, the convergence of s-PGD method for a high
dimensional function has been demonstrated as well.

Although the sparsity of the obtained solution could
not seem evident for the reader, we must highlight the fact

that the very nature of the PGD strategy a priori selects
those terms on the basis that it plays a relevant role in the
approximation. So to speak, PGD algorithms automatically
discard those terms that in other circumstances will be
weighted by zero. Sparsity, in this sense, is equivalent in
this context to the number of sums in the PGD separated
approximation. If only a few terms are enough to reconstruct
the data—as is almost always the case—then sparsity is
guaranteed in practice.

Sampling strategies other than the Latin hypercube
method could be examined as well. This and the coupling
with error indicators to establish good stopping criteria
constitute our effort of research at this moment. In fact,
the use of reliable error estimators could even allow for the
obtention of adaptive samplings in which the cardinality of
the basis could be different along different directions.
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