000075969 001__ 75969
000075969 005__ 20200716101511.0
000075969 0247_ $$2doi$$a10.1016/j.jcis.2018.11.058
000075969 0248_ $$2sideral$$a109106
000075969 037__ $$aART-2019-109106
000075969 041__ $$aeng
000075969 100__ $$aArmenia, I.
000075969 245__ $$aEnzyme activation by alternating magnetic field: Importance of the bioconjugation methodology
000075969 260__ $$c2019
000075969 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075969 5203_ $$aIron oxide nanoparticles (NPs) are attractive materials for enzyme immobilization and, thanks to their superparamagnetism, can be accessed by remote stimuli. This can be exploited to activate molecules that are not remotely actuable. Here, we demonstrate that thermophilic enzymes chemically linked to NPs can be activated in a “wireless” fashion by an external alternate magnetic field (AMF). To this aim, we have conjugated, with different binding strategies, the thermophilic enzymes a-amylase and L-aspartate oxidase to iron oxide NPs obtaining NP-enzyme systems with activities depending on the different orientations and stretching of the enzymes. Since enzyme activation occurs without a significant rise of the “overall” temperature of the systems, we have speculated a local NP-enzyme heating that does not immediately interest the rest of the solution that remains at relatively low temperature, low enough to allow non-thermophilic enzymes to work together with the NP-conjugated thermophilic enzymes. Nanoactuation of thermophilic enzymes by AMF has potential applications in different fields. Indeed, multi-enzymatic processes with enzymes with different temperature optima could be carried out in the same reaction pot and thermolabile products could be efficiently produced by thermophilic enzymes without suffering for the high temperatures. Moreover, our findings represent a proof of concept of the possibility to achieve a fine-tuning of the enzyme-NP system with the aim to intervene in cell metabolism.
000075969 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2017-84246-C2-1-R
000075969 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075969 590__ $$a7.489$$b2019
000075969 591__ $$aCHEMISTRY, PHYSICAL$$b31 / 158 = 0.196$$c2019$$dQ1$$eT1
000075969 592__ $$a1.45$$b2019
000075969 593__ $$aBiomaterials$$c2019$$dQ1
000075969 593__ $$aSurfaces, Coatings and Films$$c2019$$dQ1
000075969 593__ $$aElectronic, Optical and Magnetic Materials$$c2019$$dQ1
000075969 593__ $$aColloid and Surface Chemistry$$c2019$$dQ1
000075969 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075969 700__ $$0(orcid)0000-0001-6170-4237$$aGrazú Bonavia, M.V.$$uUniversidad de Zaragoza
000075969 700__ $$0(orcid)0000-0001-6995-4302$$aDe Matteis, L.
000075969 700__ $$aIvanchenko, P.
000075969 700__ $$aMartra, G.
000075969 700__ $$aGornati, R.
000075969 700__ $$0(orcid)0000-0003-1081-8482$$ade la Fuente, J.M.
000075969 700__ $$aBernardini, G.
000075969 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000075969 773__ $$g537 (2019), 615-628$$pJ. colloid interface sci.$$tJournal of Colloid and Interface Science$$x0021-9797
000075969 8564_ $$s453861$$uhttps://zaguan.unizar.es/record/75969/files/texto_completo.pdf$$yVersión publicada
000075969 8564_ $$s78047$$uhttps://zaguan.unizar.es/record/75969/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075969 909CO $$ooai:zaguan.unizar.es:75969$$particulos$$pdriver
000075969 951__ $$a2020-07-16-09:18:53
000075969 980__ $$aARTICLE