000075974 001__ 75974
000075974 005__ 20200117221603.0
000075974 0247_ $$2doi$$a10.3390/nano8110931
000075974 0248_ $$2sideral$$a109115
000075974 037__ $$aART-2018-109115
000075974 041__ $$aeng
000075974 100__ $$aPolychronopoulou, K.
000075974 245__ $$aThe effect of Ni addition onto a Cu-based ternary support on the H2 production over glycerol steam reforming reaction
000075974 260__ $$c2018
000075974 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075974 5203_ $$aIn the present study, Ni/Ce-Sm-xCu (x = 5, 7, 10 at.%) catalysts were prepared using microwave radiation coupled with sol-gel and followed by wetness impregnation method for the Ni incorporation. Highly dispersed nanocrystallites of CuO and NiO on the Ce-Sm-Cu support were found. Increase of Cu content seems to facilitate the reducibility of the catalyst according to the H2 temperature-programmed reduction (H2-TPR). All the catalysts had a variety of weak, medium and strong acid/basic sites that regulate the reaction products. All the catalysts had very high XC3H8O3 for the entire temperature (400–750¿ C) range; from ˜84% at 400¿ C to ˜94% at 750¿ C. Ni/Ce-Sm-10Cu catalyst showed the lowest XC3H8O3-gas implying the Cu content has a detrimental effect on performance, especially between 450–650¿ C. In terms of H2 selectivity (SH2) and H2 yield (YH2), both appeared to vary in the following order: Ni/Ce-Sm-10Cu > Ni/Ce-Sm-7Cu > Ni/Ce-Sm-5Cu, demonstrating the high impact of Cu content. Following stability tests, all the catalysts accumulated high amounts of carbon, following the order Ni/Ce-Sm-5Cu < Ni/Ce-Sm-7Cu < Ni/Ce-Sm-10Cu (52, 65 and 79 wt.%, respectively) based on the thermogravimetric analysis (TGA) studies. Raman studies showed that the incorporation of Cu in the support matrix controls the extent of carbon graphitization deposited during the reaction at hand.
000075974 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075974 590__ $$a4.034$$b2018
000075974 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b71 / 293 = 0.242$$c2018$$dQ1$$eT1
000075974 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b39 / 94 = 0.415$$c2018$$dQ2$$eT2
000075974 592__ $$a0.896$$b2018
000075974 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000075974 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000075974 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075974 700__ $$aCharisiou, N.
000075974 700__ $$aPapageridis, K.
000075974 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000075974 700__ $$aHinder, S.
000075974 700__ $$aDabbawala, A.
000075974 700__ $$aAlkhoori, A.
000075974 700__ $$aBaker, M.
000075974 700__ $$aGoula, M.
000075974 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000075974 773__ $$g8, 11 (2018), 931 [27 pp]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000075974 8564_ $$s682101$$uhttps://zaguan.unizar.es/record/75974/files/texto_completo.pdf$$yVersión publicada
000075974 8564_ $$s100210$$uhttps://zaguan.unizar.es/record/75974/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075974 909CO $$ooai:zaguan.unizar.es:75974$$particulos$$pdriver
000075974 951__ $$a2020-01-17-21:44:22
000075974 980__ $$aARTICLE