Embedded System Based on an ARM Microcontroller to Analyze Heart Rate Variability in Real Time Using Wavelets
Resumen: The analyses of electrocardiogram (ECG) and heart rate variability (HRV) arc of primordial interest for cardiovascular diseases. The algorithm used for the detection of the QRS complex is the basis for HRV analysis and HRV quality will depend strongly on it. The aim of this paper is to implement HRV analysis in real time on an ARM microcontroller (MCU). Thus, there is no need to send raw data to a cloud server for real time HRV monitoring and, consequently, the communication requirements and the power consumption of the local sensor node would be far lower. The system would facilitate the integration into edge computing, for instance, in small local networks, such as hospitals. A QRS detector based on wavelets is proposed, which is able to autonomously select the coefficients the QRS complex will be detected with. To validate it, the MITBIH and NSRDB databases were used. This detector was implemented in real time using an MCU. Subsequently HRV analysis was implemented in the time, frequency, and nonlinear domains. When evaluating the QRS detector with the MITBIH database, 99.61% positive prediction (PP), 99.3% sensitivity (SE), and a prediction error rate (DER) of 1.12% were obtained. For the NSRDB database the results were a PP of 99.95%, an SE of 99.98%, and a DER of 0.0006%. The execution of the QRS detector in the MCU took 52 milliseconds. On the other hand, the time required to calculate the HRV depends on the data size, but it took only a few seconds to analyze several thousands of interbeat intervals. The results obtained for the detector were superior to 99%, so it is expected that the HRV is reliable. It has also been shown that the detection of QRS complex can be done in real time using advanced processing techniques such as wavelets.
Idioma: Inglés
DOI: 10.1155/2018/9138578
Año: 2018
Publicado en: WIRELESS COMMUNICATIONS & MOBILE COMPUTING 2018, 9138578 (2018), [14 pp.]
ISSN: 1530-8669

Factor impacto JCR: 1.396 (2018)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 113 / 154 = 0.734 (2018) - Q3 - T3
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 186 / 265 = 0.702 (2018) - Q3 - T3
Categ. JCR: TELECOMMUNICATIONS rank: 67 / 88 = 0.761 (2018) - Q4 - T3

Factor impacto SCIMAGO: 0.246 - Electrical and Electronic Engineering (Q3) - Information Systems (Q3) - Computer Networks and Communications (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/FSE
Financiación: info:eu-repo/grantAgreement/ES/DGA/T49-17R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-11-16-12:00:18)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Tecnología Electrónica



 Registro creado el 2018-12-18, última modificación el 2023-11-16


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)