000075999 001__ 75999
000075999 005__ 20200811091508.0
000075999 0247_ $$2doi$$a10.3390/mi9090421
000075999 0248_ $$2sideral$$a108900
000075999 037__ $$aART-2018-108900
000075999 041__ $$aeng
000075999 100__ $$0(orcid)0000-0003-3823-7903$$aDiaz Perez, L.C.$$uUniversidad de Zaragoza
000075999 245__ $$aOne-Dimensional Control System for a Linear Motor of a Two-Dimensional Nanopositioning Stage Using Commercial Control Hardware
000075999 260__ $$c2018
000075999 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075999 5203_ $$aA two-dimensional (2D) nanopositioning platform stage (NanoPla) is in development at the University of Zaragoza. To provide a long travel range, the actuators of the NanoPla are four Halbach linear motors. These motors present many advantages in precision engineering, and they are custom made for this application. In this work, a one-dimensional (1D) control strategy for positioning a Halbach linear motor has been developed, implemented, and experimentally validated. The chosen control hardware is a commercial Digital Motor Control (DMC) Kit from Texas Instruments that has been designed to control the torque or the rotational speed of rotative motors. Using a commercial control hardware facilitates the applicability of the developed control system. Nevertheless, it constrains the design, which needs to be adapted to the hardware and optimized. Firstly, a dynamic characterization of the linear motor has been performed. By leveraging the dynamic properties of the motor, a sensorless controller is proposed. Then, a closed-loop control strategy is developed. Finally, this control strategy is implemented in the control hardware. It was verified that the control system achieves the working requirements of the NanoPla. It is able to work in a range of 50 mm and perform a minimum incremental motion of 1 mu m.
000075999 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-69403-C3-1-R
000075999 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075999 590__ $$a2.426$$b2018
000075999 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b25 / 61 = 0.41$$c2018$$dQ2$$eT2
000075999 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b55 / 94 = 0.585$$c2018$$dQ3$$eT2
000075999 592__ $$a0.536$$b2018
000075999 593__ $$aControl and Systems Engineering$$c2018$$dQ2
000075999 593__ $$aMechanical Engineering$$c2018$$dQ2
000075999 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ2
000075999 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075999 700__ $$0(orcid)0000-0002-3069-2736$$aTorralba Gracia, M.
000075999 700__ $$0(orcid)0000-0003-4839-0610$$aAlbajez Garcia, J.A.$$uUniversidad de Zaragoza
000075999 700__ $$0(orcid)0000-0001-7152-4117$$aYague Fabra, J.A.$$uUniversidad de Zaragoza
000075999 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000075999 773__ $$g9, 9 (2018), 421 [16 pp]$$pMicromachines (Basel)$$tMicromachines$$x2072-666X
000075999 8564_ $$s736893$$uhttps://zaguan.unizar.es/record/75999/files/texto_completo.pdf$$yVersión publicada
000075999 8564_ $$s110685$$uhttps://zaguan.unizar.es/record/75999/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075999 909CO $$ooai:zaguan.unizar.es:75999$$particulos$$pdriver
000075999 951__ $$a2020-08-11-09:03:37
000075999 980__ $$aARTICLE