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Thermal fluctuations in the conical state of monoaxial helimagnets
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The effect of thermal fluctuations on the phase structure of monoaxial helimagnets with external magnetic
field parallel to the chiral axis is analyzed by means of a saddle point expansion of the free energy. The phase
transition that separates the conical and forced ferromagnetic phases is changed to first order by the thermal
fluctuations. In a purely monoaxial system the pitch of the conical state remains independent of temperature and
magnetic field, as in mean-field theory, even when fluctuations are taken into account. However, in the presence
of weak Dzyaloshinskii-Moriya interactions in the plane perpendicular to the chiral axis, thermal fluctuations
induce a dependence of the pitch on temperature and magnetic field. This may serve to determine the nature of
magnetic interactions in such systems.
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I. INTRODUCTION

It is well known that the spin-orbit coupling originates
antisymmetric bilinear exchange interactions between spins
in crystalline structures that have no center of symmetry [1,2].
These so called Dzyaloshinskii-Moriya (DM) interactions are
generically of the form �Dij · [�Si × �Sj ], where �Si represents
the spin operator at site i and �Dij is a vector that sets the
strength of the interaction, and whose direction is dictated by
the crystal symmetry. The DM interactions give rise to chiral
modulated magnetic states such as helices, conical states, chi-
ral soliton lattices, and skyrmion lattices [3–7]. Some of those
chiral structures have been observed experimentally many
years after the theoretical prediction [8–12], and are very
promising candidates for spintronic and magnonic devices
since the modulated magnetic structures appear spontaneously
and can be controlled by externally imposed conditions, such
as temperature and magnetic fields [13].

Systems in which �Dij is restricted to pairs of magnetic ions
i and j that are aligned along a fixed crystalline direction, D̂,
called the DM axis, and �Dij = DD̂, are called monoaxial heli-
magnets. They are very interesting both from the fundamental
physics, related to the realization and breaking of chiral
symmetry, and from the practical point of view (spintronics)
[14], and consequently much theoretical and experimental
effort is being devoted to their study [10,14–36]. Monoaxial
helimagnets include CrNb3S6 and Yb(Ni1−xCux )Al9 [14].

The direct experimental confirmation in 2012 by Togawa
et al. [36] of the development of a chiral soliton lattice in
CrNb3S6, predicted long ago by Dzyaloshinskii in his pioneer-
ing work of 1965 [4], made this compound the archetypical
monoaxial helimagnet. The other known monoaxial helimag-
nets, the series of compounds Yb(Ni1−xCux )Al9, also have
the chiral soliton lattice phase [37], but with a period much
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shorter than in CrNb3S6. Another difference with CrNb3S6 is
the lock-in of the chiral soliton lattice period as a function of
magnetic field [37], which has been observed also in magne-
toresistance for x = 0 [38]. This lock-in has been attributed to
itinerant heavy electrons [39].

The magnetic phase diagram of CrNb3S6 has recently
attracted much attention. Experiments show that with a mag-
netic field perpendicular to the DM axis a chiral modulated
phase appears at low temperature and field. It is separated
from a homogeneous forced FM (FFM) or PM phase by a
line boundary in the temperature–magnetic field plane. The
chiral phase is complex, with several crossovers that show
the smooth evolution of a helical structure at low field to a
chiral soliton lattice at higher field [16,25]. Measurements in-
clude magnetization curves, dc and ac susceptibilities, Lorenz
microscopy, and magnetoresistance. The phase boundary is
more complex than expected, with two lines of second-order
transitions at low T and high T separated by an intermediate
line of first-order transitions. Two tricritical points separate
the first-order line from the two second-order lines [16].
These features of the phase boundary, including the presence
of the tricritical points, were theoretically predicted before
the experimental measurements were available [19–21]. The
phase boundary can be understood in terms of the different
nature of the phase transitions [20,40,41]. At low T the
second-order transition is of nucleation type, associated with
the formation of a chiral soliton lattice; in contrast, at high
T the second-order phase transition is of instability type,
corresponding to the appearance of helical order. These two
lines of second-order transitions have thus a different nature
and cannot merge smoothly. Hence, they are separated by an
intermediate first-order line with one tricritical point at each
end point.

Comparatively, the phase diagram with a magnetic field
parallel to the DM axis has received little attention. Mean-
field theory predicts a low T and low field modulated conical
state that propagates along the DM axis with a wave number
independent of temperature and magnetic field. This phase
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is separated from a homogeneous FFM phase by a line of
second-order transitions. The experimental results seem to
confirm this simple picture, but the measurements are limited
to magnetization curves and thus are not conclusive about the
nature of the transition. To our knowledge, no measurement
of the propagation wave number as a function of temperature
and magnetic field has been reported.

From the theoretical point of view, the investigation of the
effect of correlations in the thermal fluctuations, which may
change some features of the phase diagram, has started only
very recently [24]. In cubic helimagnets, it is known that ther-
mal fluctuations modify the free energy of the different states
in such a way that a metastable skyrmion lattice becomes
the thermodynamical equilibrium state [11,40]. In monoaxial
helimagnets it is not expected that fluctuations cause such
dramatic effects, but the nature of the phase transitions and
some features of the equilibrium states can be modified. In-
deed, in Ref. [24], using the Green’s function method, Masaki
and Stamps reported an analysis of the role of fluctuations
and anisotropies in the monoaxial helimagnet with a magnetic
field applied along the DM axis. They concluded that the
phase boundaries and the nature of the transitions are mod-
ified. In particular, they found metastability in the vicinity
of the phase boundary and pointed out the possibility of a
first-order phase transition.

In this paper we analyze the effect of thermal fluctuations
in the monoaxial helimagnet in the presence of a magnetic
field parallel to the DM axis via a saddle point expansion.
The chiral modulated phase is a conical state. It is shown that
thermal fluctuations change the nature of the conical to FFM
phase transition from second to first order. It is also shown
that the pitch of the conical phase, which is independent of
magnetic field and temperature within the standard mean-field
theory, where the correlations of fluctuations are neglected
[19], acquires a dependence on magnetic field and temperature
due to the fluctuations provided that chiral interactions of
DM type are present in the plane perpendicular to the chiral
axis. However, in a purely monoaxial helimagnet, with DM
interaction restricted to a single axis, the pitch of the conical
state remains independent of magnetic field and temperature
even if fluctuations are taken into account. Therefore, the
dependence of the pitch on the externally imposed conditions
can be used to reveal weak magnetic interactions in monoaxial
helimagnets.

The paper is organized as follows. In Sec. II we introduce
the model and set the notation; Sec. III is devoted to a
description of the saddle point method used to study the
model; Sec. IV briefly analyzes the FFM state; Sec. V is
devoted to the study of the conical state; in Sec. VI the results
of the previous sections are applied to the purely monoaxial
helimagnet; and in Sec. VII we study the effects of weak DM
interactions in the plane perpendicular to the chiral axis. The
paper ends with a brief summary and concluding remarks in
Sec. VIII.

II. MODEL

We consider a classical spin system with exchange FM
and DM interactions along three perpendicular axes, {x̂, ŷ, ẑ},
and uniaxial single-ion magnetic anisotropy along an axis û,

that in principle can be either of easy-axis or easy-plane type.
For simplicity, the FM interaction is taken isotropic in space,
with strength J , but the DM interaction is different along
the three different axes. In the continuum limit the energy is
given by the effective Hamiltonian H = ε0W , where ε0 sets
the energy scale and W , a functional of the unit vector field
n̂ that represents the direction of the local magnetic moment,
can be written as the integral of a density, W = ∫

d3xW , with

W

q0
= 1

2

∑
i

∂i n̂ · ∂i n̂ + q0n̂ · �Dρ

× n̂ − q2
0γ (û · n̂)2 − q2

0
�h · n̂. (1)

In the above expression �Dρ = ∑
i x̂iρi∂i is a differential oper-

ator, with ∂i = ∂/∂xi , and xi runs over {x, y, z} in the obvious
way. The dimensionless coefficients ρi are real numbers that
set the relative strength of the DM interaction along each
axis. The first term in (1) gives the FM exchange interaction;
the second term represents the DM interaction, whose overall
strength relative to the Heisenberg exchange interaction is
given by q0, which has the dimensions of inverse length; the
third term corresponds to the single-ion anisotropy along the
axis given by the unit vector û, the intensity of which, relative
to the Heisenberg exchange energy, is given by the dimen-
sionless parameter γ , which introduces easy-axis anisotropy
if it is positive and easy-plane anisotropy if it is negative;
the last term is the Zeeman energy, and the dimensionless
parameter h is proportional to the magnetic field intensity.
The continuum model is obtained from a lattice model, so
that we have q0 = J/DaL and ε0 = JS2/q0a, where J and
D are the Heisenberg and DM energies, S the spin modulus,
and aL the lattice parameter along the DM axis [40]. Since
q0 sets the scale for the modulation of chiral magnetic states,
the continuum approximation is justified if q0aL � 1, that is,
if the DM interaction is much weaker than the Heisenberg
interaction.

Notice that �Dρ does not transform as a vector under
rotations. In covariant notation the DM interaction has to be
written as ρijkni∂jnk , where ρijk is a tensor antisymmetric
under the exchange of i and k, and summation over repeated
indices is understood. Nevertheless, we find it convenient to
work with the non-covariant notation. Hence, the equations
presented in this paper hold in the reference frame in which
ρijk = ρiεijk , where εijk is the totally antisymmetric tensor.

The cubic helimagnet is obtained if ρi = 1 for all i, and
the monoaxial helimagnet if ρx = ρy = 0 and ρz = 1. In the
latter case the magnetic anisotropy should be directed along
the same axis as the DM interaction, and therefore û = ẑ.

The equilibrium properties of the system at temperature T

are given by the partition function,

Z =
∫

[d2n̂] exp[−W/t], (2)

where t = T/T0 is a dimensionless temperature, with T0 =
ε0/kB.

To close this section, let us discuss the parameters appro-
priate for CrNb3S6 [8,9], which has a noncentrosymmetric
hexagonal crystal structure with space group P 6322. The
lack of inversion symmetry allows a DM interaction prop-
agating along the c axis. A DM interaction in the plane

144445-2



THERMAL FLUCTUATIONS IN THE CONICAL STATE OF … PHYSICAL REVIEW B 98, 144445 (2018)

perpendicular to c is also allowed by the symmetry, provided
that ρx = ρy = ρT. The isotropy of the magnetic interactions
in this plane is supported by the fact that no sensitivity of
magnetization curves to the direction of the magnetic field
component perpendicular to the c axis has been found [9,16].
The zero-field critical temperature depends on the sample,
and is Tc ≈ 125 K. The ordered phase is a helimagnet with
a period L0 ≈ 480 Å, which corresponds to a wave number

q0 = 0.013 Å
−1

. The critical fields perpendicular and parallel
to the c axis depend also on the sample. They are of order
2000 Oe and 20 000 Oe, respectively [9]. This big differ-
ence implies that there is an important easy-plane anisotropy
described by the single-ion anisotropy term with û directed
along the c axis. The value γ = −2.58 is appropriate to
reproduce the zero-temperature phase diagram [23]. The FM
Heisenberg interaction is also spatially anisotropic, with the
spins in the same ab plane more strongly coupled than the
spins in different ab planes [21]. Thus, the high anisotropy
suggests that ρT � ρz = 1, and the system is a monoaxial
helimagnet. The experimental results (formation of a chiral
soliton lattice when the magnetic field is perpendicular to c)
are consistent with this view. The lattice parameter along the
c axis is 12.1 Å. The magnetic Cr ions, however, form an hcp
lattice, with a separation between nearest-neighbor ions in the
ab plane of 5.73 Å, and of 6.90 Å between nearest-neighbors
in different ab planes. The separation between Cr planes is,
therefore, aL ≈ 6.05 Å. The continuum approach is justified
since the period of the helimagnet is very large compared to
the magnetic ion lattice parameter, L0/aL ≈ 80. To analyze
the thermal fluctuations we use the short distance cutoff
provided by the crystal structure, � = π/aL = (L0/2aL)q0,
which it is � ≈ 40q0 for CrNb3S6.

III. SADDLE POINT EXPANSION

The inverse of the dimensionless temperature, 1/t , is a
large number if T � T0, and the partition function can be
obtained by the saddle point expansion [40]. Consider the
generic model defined by the energy density (1) and let n̂0

be a stationary point, that is, a solution of the Euler-Lagrange
equations, δW/δn̂ = 0, which reads

∇2n̂0 − 2q0( �Dρ × n̂0) + 2q2
0γ (û · n̂0)û + q2

0
�h = μn̂0, (3)

where μ is a position-dependent Lagrange multiplier that
implements the constraint n̂2

0 = 1, which supplements Eq. (3).
Notice that the FFM state, with constant n̂0, is always a
solution of the Euler-Lagrange equations.

The field n̂ in the neighborhood of n̂0 can be written in
terms of two real fields ξα (α = 1, 2) as

n̂ =
√

1 − ξ 2n̂0 +
∑

α

ξαêα, (4)

where the three unit vectors {ê1, ê2, n̂0} form a right-handed
orthonormal triad. They can be parametrized in terms of the
two angles θ and ψ (determined by n̂0) as

ê1 = (cos θ cos ψ, cos θ sin ψ,− sin θ ), (5)

ê2 = (− sin ψ, cos ψ, 0), (6)

n̂0 = (sin θ cos ψ, sin θ sin ψ, cos θ ). (7)

Let us expand W in powers of ξα up to quadratic order:

W = W (n̂0) + q0

2

∫
d3x

∑
α,β

ξαKαβξβ + O(ξ 3), (8)

with

Kαβ = −[∇2 + 2W (n̂0)/q0 + q2
0
�h · n̂0]δαβ + ∂i êα · ∂i êβ

+ q0(êα · �Dρ × êβ + êβ · �Dρ × êα )

− 2q2
0γ (û · êα )(êβ · û) − (2 �G · ∇ + ∇ · �G)εαβ, (9)

where εαβ is the two-dimensional antisymmetric unit tensor,

�G =
∑

i

(ê1 · ∂i ê2 + q0ρix̂i · n̂0)x̂i , (10)

and W (n̂) is given by Eq. (1). The linear term in Eq. (8)
vanishes on account of the Euler-Lagrange equations.

The fluctuation operator Kαβ is a symmetric differential
operator that is positive definite if n̂0 is a local minimum of
W . In this case the free energy density, f = −(t/V ) lnZ ,
can be obtained from the saddle point method [42], which is
an asymptotic expansion in powers of t that to lowest order,
ignoring some irrelevant constants, gives

f = 1

V
W (n̂0) + (t/V ) ln

√
det KK−1

0 + O(t2). (11)

The constant operator K0αβ = −∇2δαβ is introduced merely
as a convenient way of normalizing the contribution of fluctu-
ations to the free energy. In the quantum field theory jargon,
the first term of (11) is called the tree level and the term
proportional to tn the n-loop order. If K is not positive definite
the stationary point is unstable and the saddle point expansion
does not exist.

The 1-loop term diverges in the continuum limit due to
the short-distance fluctuations and a short-distance cutoff is
necessary. In solid state physics it is naturally provided by
the crystal lattice. The fluctuation free energy is dominated
by the short-distance fluctuations and depends strongly on the
cutoff [11]. Hence, the comparison of free energies of states
computed with different cutoff schemes (different lattice dis-
cretization) is not meaningful. The low-lying spectrum of K ,
however, is well defined in the continuum limit and shows a
weak dependence on the cutoff.

The 1-loop approximation is valid if the terms of order
ξ 3 and higher that are neglected in (8) do not give a large
contribution. Since the leading contribution of the cubic term
vanishes by symmetry, the contribution of the higher order
terms relative to the quadratic terms can be estimated by the
ratio 〈ξ 4〉/〈ξ 2〉 ∼ 〈ξ 2〉 = tTrK−1/q0V .

It is well known that critical fluctuations are generically
non-Gaussian, and the 1-loop approximation does not de-
scribe the physics of critical points. The fluctuations con-
sidered in this work, however, are not critical. They become
critical when the gap, A, vanishes and the soft modes become
massless. As we will see in the next sections, this regime will
not be approached in our computations. Thus, the role of fluc-
tuations is merely to modify the free energy of the competing
states, although this leads to changes in the properties of the
equilibrium states and in the nature of the transitions.
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IV. FORCED FERROMAGNETIC STATE

In this and the remaining sections we take the single-ion
anisotropy and the magnetic field along ẑ, so that û = ẑ and
ĥ = hẑ. With no loss we take h � 0.

The FFM state is always a stationary point, with θ = 0 and
ψ undetermined (may be taken as ψ = 0). Its K operator,

Kαβ = [ − ∇2 + q2
0 (h + 2γ )

]
δαβ − 2ρzq0∂zεαβ, (12)

is readily diagonalized by Fourier transform, and its spectrum
reads

λ± = k2
x + k2

y + (kz ± ρzq0)2 + q2
0 (h + 2γ − ρ2

z ), (13)

where �k is the wave vector of the eigenfunction. The lowest
eigenvalue is attained for kx = ky = 0 and kz = ±ρzq0 and
reads λmin = (h + 2γ − ρ2

z )q2
0 . Therefore, the FFM state is

stable for h > hc and unstable for h < hc, where

hc = ρ2
z − 2γ (14)

is the tree-level (mean field) critical field.

V. CONICAL STATE

The conical state, which has the form θ = θ0 and ψ = qz,
where θ0 and q are constants, is a stationary state for any value
of the ρi . The Euler-Lagrange equations are satisfied if and
only if the relation

cos θ0 = h

hc − �2(q )
(15)

holds, where

�(q ) = q/q0 − ρz. (16)

Since | cos θ0| � 1, this stationary point exists only for

�2 � hc − h. (17)

This equation sets bounds to the pitch of the conical state, q,
and implies also 0 � h � hc. A second possibility for Eq. (15)
is �2 > hc + h, which implies that the mean magnetic mo-
ment is opposite to the applied magnetic field, lies in the
unstable region, and need not be considered.

The tree-level free energy of the conical state is a function
of the wave number q:

WC(�) = q2
0

2

[
�2 − ρ2

z − h2

hc − �2

]
. (18)

The equilibrium value of q is determined by minimizing
the free energy in the region where the stationary point is
locally stable. The minimum is attained at � = 0, and thus
the equilibrium value is qeq = ρzq0, which is independent of
ρx , ρy , i.e., of the DM interaction in the transverse plane XY,
and of the magnetic field h and the strength of the uniaxial
anisotropy, γ .

The fluctuation operator can be readily obtained:

K11 = −∇2 + q2
0A, (19)

K22 = −∇2, (20)

K12 = −2q0 sin θ0(ρx cos qz∂x + ρy sin qz∂y )

+ 2q0� cos θ0ρz∂z, (21)

where

A = hc − �2 − h2/(hc − �2) (22)

is a constant. Notice that A is positive in the neighborhood of
� = 0 owing to the inequality (17). However, it is negative if
�2 > hc + h. In Appendix A it is shown that the operator K

is positive definite for � = 0 if A0 � 0 and ρ2
m < hc, where

A0 is the value of A at � = 0 and ρm = max{|ρx |, |ρy |}.
Thus the conical state is a locally stable stationary state if the
DM interaction in the plane perpendicular to the propagation
direction is weak enough.

In the remaining of the paper we restrict our attention to
nearly monoaxial helimagnets, in which the DM interactions
in the plane perpendicular to the chiral axis, ẑ, are much
weaker than along this axis. For simplicity, we consider
isotropic interactions within the perpendicular plane, so that
ρx = ρy = ρT � ρz. With no loss we set ρz = 1.

For a nearly monoaxial helimagnet, the 1-loop free energy
of the conical state can be obtained perturbatively by an
expansion in powers of ρT. The fluctuation operator can
be written as K = K (0) + ρTQ, where K (0) corresponds to
the monoaxial helimagnet, given by setting ρx = ρy = 0 in
Eqs. (19)–(21), and

Qαβ = −2q0 sin θ0(cos qz∂x + sin qz∂y )εαβ. (23)

The 1-loop free energy can be expanded in powers of Q as
follows:

ln det K = Tr ln K (0) −
∞∑

n=1

(−1)n

n
ρn

T Tr(QK (0)−1
)n. (24)

Then, the free energy to 1-loop order can be written as

f (�) = WC(�) + t

[
I0(�) −

∞∑
n=1

(−1)nρn
TIn(�)

]
, (25)

where

I0(�) = 1

2V
Tr ln

(
K (0)K−1

0

)
(26)

and, for n � 1,

In(�) = 1

2nV
Tr(QK (0)−1

)n. (27)

These functions are studied in Appendix C for n � 2. It
happens that I1(�) vanishes. Some of these functions, for
instance I0, are ultraviolet divergent and thus a short-distance
cutoff has to be introduced. For the numerical evaluation we
use a sharp cutoff in the wave vectors, |�k| < �, with �/q0 =
40, a value appropriate for CrNb3S6 (see Sec. II).

VI. MONOAXIAL HELIMAGNET

In the previous section it has been shown that the tree-level
equilibrium period of the conical state is qeq = ρzq0, indepen-
dently of magnetic field and the other parameters of the model.
Indeed, the tree-level free energy is an even function of � and
thus � = 0 has to be either a maximum or a minimum. It turns
out that it is always a minimum in the region of stability of
the conical state. It was shown in Ref. [40] that in cubic he-
limagnets the 1-loop fluctuations induce a dependence of the

144445-4



THERMAL FLUCTUATIONS IN THE CONICAL STATE OF … PHYSICAL REVIEW B 98, 144445 (2018)

conical state wave number on magnetic field and temperature,
due to the fact that the spectrum of its fluctuation operator is
not invariant under the change of � by −� and, therefore, the
1-loop free energy shifts the minimum away from � = 0. The
same is expected for generic noncubic helimagnets.

For the monoaxial helimagnet, however, the spectrum of
the conical state fluctuation operator is invariant under the
exchange of � by −�, since K

(0)
αβ (−�) = K

(0)
βα (�). Thus,

at least for low enough t , the free energy minimum is not
shifted from � = 0 and the equilibrium wave number of the
conical state is constant, independently of magnetic field and
temperature.

Let us analyze the stability of the monoaxial helimagnet
in detail. The spectrum of K (0) is studied in Appendix B.
Its eigenfunctions are plane waves with wave vector �k and
eigenvalues λσ (�k), with σ = ±1, whose expression is given
in Eqs. (B3) and (B4). Hence, the spectrum of K contains
two branches. The σ = +1 branch has a gap equal to A. The
σ = −1 branch is gapless and corresponds to a Goldstone
boson associated to the spontaneous breaking of rotational
symmetry in spin space around the magnetic field direction.
The presence of the Goldstone modes does not invalidate the
saddle point expansion, since the interactions of the Goldstone
modes vanish at zero momentum [43], so that the contribution
of the zero mode to the higher order terms of the saddle
point expansion vanish. Therefore, the validity of the 1-loop
approximation at low enough t is guaranteed by the gap, A.

The Goldstone branch becomes unstable for large �. To
see this, notice that λ− is an even function of kz that for kx =
ky = 0 has the following expansion in powers of kz:

λ−(kz) =
(

1 − 4�2 cos2 θ0

A

)
k2
z + O

(
k4
z

)
. (28)

Hence, λ− becomes negative if 4�2 cos2 θ0/A > 1. Thus, the
conical state becomes unstable for |�| > �i where �i is the
solution of

4�2
i cos2 θ0

A
= 1, (29)

where cos θ0 and A are functions of �i . The above equation
is cubic in �i and can be solved analytically, but we do not
write the explicit solution here. It happens that �2

i < hc − h,
and thus the conical state exists as a stationary point for �2 <

hc − h, but it is stable only if �2 < �2
i , while for �2

i < �2 <

hc − h is unstable. For hc − h < �2 < hc + h the conical
state does not exist, owing to Eq. (15), and for �2 > hc + h

the conical state exists but it is unstable. The same behavior
was found in the cubic case [40]. Obviously, the free en-
ergy of Gaussian (1-loop) fluctuations is meaningful only for
|�| < �i .

The free energy to 1-loop order is given by setting ρT = 0
in Eq. (25). It happens that I0(�) is an even function of
� that has the opposite sign of WC(�). Thus, there is a
competition between the tree-level and 1-loop components of
the free energy. Figure 1 displays WC and I0 as a function of
� for γ = −2.58 and h = 4, with a cutoff in wave numbers
�/q0 = 40. Notice that I0(�) remains finite and well defined
in the limits � → ±�i .

-2

-1

 0

-1 -0.5  0  0.5  1

Δ

WC

I0

FIG. 1. Components of the free energy (tree level, WC, and 1-
loop, I0) as a function of � for γ = −2.58 and h = 4.

A phase transition results from the competition between
WC and I0. For low t the tree level dominates the free energy
and its minimum is at � = 0. At a critical temperature, t =
tc1, the local minimum at � = 0 equals the free energy at the
limiting value �i :

tc1 = −WC(�i ) − WC(0)

I0(�i ) − I0(0)
. (30)

A first-order phase transition takes place at tc1. The conical
state remains metastable for tc1 < t < tc2, where

tc2 = −W ′′
C (0)

I ′′
0 (0)

(31)

is the temperature at which � = 0 becomes a maximum of
the free energy. For t > tc2 the conical state is not even
metastable. In our numerical example we obtained tc1 =
0.1002 and tc2 = 0.1339. The behavior of the free energy
by increasing temperature is illustrated in Fig. 2 for the case
h = 4.0.

Notice that the first-order phase transition takes place be-
fore the gap vanishes and thus before the fluctuations become
critical. Indeed, critical fluctuations are characterized by the
presence of infrared divergences that invalidate the Gaussian
(1-loop) approximation, but no infrared divergence appears in
our computation.

The phase diagram is displayed in Fig. 3. The temperature
is normalized by the zero-field critical temperature, TC. With
our choice of parameters for the numerical computations we
have TC = 0.462 T0. The red line represents the transition line,
given by tc1. The conical state is metastable in the region
filled by stripes, and disappears on the blue line, tc2. The
criterion that the saddle point expansion is valid if 〈ξ 2〉 � 0.1
is satisfied on the left-hand side of the vertical black line.
Thus, the solid lines of the tc1 and tc2 boundaries are reliable,
while the broken lines may receive important contributions
from higher order terms and we do not consider them reliable.

The pink line signals, for comparison, the phase boundary
obtained with the variational mean field approach, which
predicts a second-order instability type phase transition [19].
The saddle point expansion is reliable at low temperature, but
fails at high temperature. The variational mean field theory is
the lowest order term of a cumulant expansion, and neglects
the correlations between the spin fluctuations at different sites.
No small parameter justifies this expansion and it is thus
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FIG. 2. The behavior of the free energy as a function of � for different temperatures and fixed h = 4.0, in the pure monoaxial case
(ρT = 0).

questionable, although it is more reliable at higher temper-
atures, since the correlations between fluctuations diminish
as temperature increases. The exception, of course, is the
zero-field critical point, where the fluctuations are strongly
correlated. The conclusion is then that the phase transition is
of first order at low temperature, as predicted by the saddle
point expansion, and of second-order instability type at high
temperature, as predicted by the variational mean field theory.
These two transitions of different nature have to be separated
by a tricritical point. Thus the phase diagram obtained in
Ref. [19] from the variational mean field theory has to be
modified at low temperature.

The emergence of first-order transitions originated by
fluctuations is reminiscent of the Coleman-Weinberg mecha-
nism in quantum field theory [44] and the related Halperin-
Lubensky-Ma effect in superconductors and liquid crystals

h 
/ h

c

T / Tc

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 0  0.2  0.4  0.6  0.8

Conical

FFM

FIG. 3. Phase diagram of the monoaxial helimagnet in the Gaus-
sian approximation. The conical state is stable on the red region
and metastable in the striped region. The red line corresponds to
first-order phase transitions (tc1). The metastable conical state dis-
appears on the blue line (tc2). The 1-loop (Gaussian) approximation
is considered reliable on the left-hand side of the vertical dashed line.
The pink line is the phase boundary predicted by the variational mean
field approximation. The transition in this case is of second-order
instability type. The temperature is normalized to the zero-field
transition temperature, TC.

[45]. In these cases Gaussian fluctuations modify the effective
potential and drive the phase transition from second to first
order.

VII. NEARLY MONOAXIAL HELIMAGNET

In this section it is shown that the equilibrium period of the
conical state of a nearly monoaxial helimagnet shows a weak
dependence on magnetic field and temperature, proportional
to ρ2

T, since thermal fluctuations at the 1-loop level shift the
free energy minimum away from � = 0. Thus, any variation
of the conical state period with temperature or field of a pre-
sumed monoaxial helimagnet reveals weak chiral interactions
in the plane perpendicular to the chiral axis.

The equilibrium value of �, denoted by �eq, corresponds
to the minimum of the free energy, so that it obeys the equation

W ′
C(�eq ) + t

[
I ′

0(�eq ) − ρ2
TI ′

2(�eq )
] = 0, (32)

where the prime stands for the derivative with respect to �.
Notice that WC and I0 are even functions of �, and it

has been shown in the previous section that the free energy
minimum is always at � = 0 if ρT = 0. For small ρT the
equilibrium value of � will be of order ρ2

T and can be
expressed as

�eq = ρ2
Tϒ(t, h). (33)

Expanding Eq. (32) around �eq = 0 we get

ϒ(t, h) = tI ′
2(0)

W ′′
C (0) + tI ′′

0 (0)
. (34)

The equilibrium wave number of the conical state is given by

qeq

q0
= ρz + ρ2

Tϒ(t, h). (35)

The function ϒ(t, h) is plotted as a function of h for several
values of t in Fig. 4. Notice that ϒ(t, h) is negative and
decreases with h. Thus the wave number decreases (and the
period increases) with temperature and magnetic field. This is
consistent with the fact that the FFM state will be attained
by increasing temperature or magnetic field. The solid and
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FIG. 4. The wave number variation with h, given by the function
ϒ(t, h), for the values of the dimensionless temperature, t , displayed
in the legend. Solid and dashed lines correspond to the regions
where the conical state is stable and metastable, respectively (red
and striped regions of Fig. 3).

dashed lines of Fig. 4 correspond respectively to the regions
in which the conical state is stable and metastable (i.e., to the
red and striped regions of Fig. 3). Notice that ϒ(t, h) diverges
as t → tc2. This divergence, however, is spurious, since the
perturbative computation assumes that ϒ(t, h) is small and
thus breaks down as it becomes large. Finally, notice that
although the relative variation of the wave number is small,
it grows with temperature, and it can become important at
higher temperatures where the computations presented here
are not valid.

VIII. CONCLUSIONS

Mean-field theory, which neglects the correlations between
thermal fluctuations, predicts a second-order instability type
phase transition between the conical and the FFM states in
a monoaxial helimagnet with a magnetic field parallel to the
chiral axis. In this paper we have shown that the correlation
of fluctuations at Gaussian level, computed via the saddle
point expansion to 1-loop order, changes the nature of the
phase transition from second to first order. Signals of a first-
order transition for this system have also been noticed in
Ref. [24], where the correlation of fluctuations are included
via the Green’s function method. The saddle point expansion,
which is an asymptotic expansion in powers of T/T0 and
therefore not valid at high temperature, is more reliable at low
temperature than the variational mean field theory. Therefore,
it is likely that the transition changes from first to second order
as temperature increases. This means that a tricritical point
appears on the phase boundary.

It is worthwhile to point out that fluctuations of different
types drive phase transitions to first order in different systems,
from relativistic quantum fields [44] to superconductors and
liquid crystals [45], and cubic helimagnets at low magnetic
field [46,47].

According to mean-field theory, the pitch of the conical
state of an helimagnet is independent of temperature and
magnetic field. For a pure monoaxial helimagnet, with DM
interactions only along one axis, the correlated fluctuations
preserve this property. But in the presence of DM interactions
in the plane perpendicular to the chiral axis, however weak

they are, thermal fluctuations induce a dependence of the
pitch on temperature and magnetic field. This variation of the
pitch with the externally imposed conditions may be used to
determine the nature of the chiral interactions in helimagnets.
The perturbative computations presented here give only a
small variation of the pitch in the region where they are
reliable, but show a growing trend with temperature and thus
it may be experimentally detectable. Thus, any temperature or
field dependence of the pitch in presumed monoaxial chiral
magnets, such as CrNb3S6, can be interpreted as a departure
from a purely monoaxial DM interaction.
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APPENDIX A: LOCAL STABILITY OF THE
CONICAL STATE

Let us show that the conical state fluctuation operator, K ,
defined by Eqs. (19)–(21), with � = 0 is definite positive if
ρx and ρy are small enough (here we do not assume isotropy
in the plane perpendicular to the chiral axis). The most general
square integrable wave function can be written as

ξα (�x) =
∫

d3k

(2π )3
exp(i�k · �x)ξ̃α (z, �k), (A1)

where −q0/2 � kz � q0/2 and ξ̃α (z, �k) is periodic in z:

ξ̃α (z + L0) = ξ̃α (z), (A2)

with L0 = 2π/q0. The expectation value of K with this
generic wave function is given by

〈ξ | K |ξ 〉 =
∫

d3k

(2π )3

∫ L0

0
dzT (z, �k), (A3)

with

T (z, �k) =
∑

α

[
k2|ξ̃α|2 + |ξ̃ ′

α|2 + 2Im(kzξ̃
∗
α ξ̃ ′

α )
] + q2

0A0|ξ̃1|2

+ 2Im[q0 sin θ0(ρxkx cos q0z

+ ρyky sin q0z)ξ̃ ∗
1 ξ̃2], (A4)

where A0 = hc − h2/hc is the value of A at � = 0, the
prime stands for derivative with respect to z, and we omit
the arguments z and �k in the functions ξ̃α and ξ̃ ′

α . Using
the inequalities a + b � a − |b|, valid for any pair of real
numbers a and b, |Im c| � |c|, valid for any complex number
c, and

|ρxkx cos q0z + ρyky sin q0z| � ρmkT, (A5)
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where ρm = max{|ρx |, |ρy |} and k2
T = k2

x + k2
y , we have

〈ξ | K |ξ 〉 �
∫

d3k

(2π )3

∫ L0

0
dz

[∑
α

(|kzξ̃α| − |ξ̃ ′
α|)2 + �

]
,

(A6)

where

� = k2
T|ξ̃2|2 + (

k2
T + q2

0A0
)|ξ̃1|2 − 2q0 sin θ0ρmkT|ξ̃1||ξ̃2|

(A7)

is a quadratic form in |ξ̃α|. The operator K will be positive
definite if � is positive definite for any kT. The condition for
the quadratic form to be positive definite is that all its principal
minors be positive, that is,

k2
T + q2

0A0 � 0, (A8)

k2
T

(
k2

T + q2
0A0 − q2

0ρ2
m sin2 θ0

)
� 0. (A9)

The first inequality implies A0 � 0, and the second inequality
gives ρ2

m � A0/ sin2 θ0. Recalling the expressions for A0 and
sin2 θ0 we get

ρ2
m � ρ2

z − 2γ. (A10)

APPENDIX B: SPECTRUM OF K (0)

The operator K (0), given by Eqs. (19)–(21) with ρx = ρy =
0, can be diagonalized by Fourier transform. Its normalized
eigenfunctions are plane waves

|ξσ (�k)〉 = 1√
V

(
φσ

1 (�k)
φσ

2 (�k)

)
ei�k·�x, (B1)

with σ = ±1, V is the volume, and

φσ∗
1 (�k)φσ ′

1 (�k) + φσ∗
2 (�k)φσ ′

2 (�k) = δσσ ′ . (B2)

They form a complete set. The corresponding eigenvalues are

λσ (�k) = k2 + f (σ )(kz), (B3)

with

f (σ )(kz) = q2
0A

2

(
1 + σ

√
1 + 16�2 cos2 θ0

A2

k2
z

q2
0

)
. (B4)

The σ = +1 branch of the spectrum has a gap of value
q2

0A. The σ = −1 branch is gapless and corresponds to a
Goldstone boson associated with the spontaneous breaking of
the rotational symmetry in spin space corresponding to the
rotation around the magnetic field direction.

The polarization of the plane waves can be chosen of the
form (

φσ
1 (kz)

φσ
2 (kz)

)
= 1√

1 + �2

(
(−i�)

1−σ
2

(−i�)
1+σ

2

)
, (B5)

with

�(kz,�) =
(
q2

0A2 + 16�2 cos2 θ0k
2
z

)1/2 − Aq0

4� cos θ0kz

. (B6)

Notice that lim�→0 �(kz,�) = 0.
The spectrum of K (0) depends on � through �2 and is thus

invariant under the exchange of � by −�.

APPENDIX C: THE FUNCTIONS In(�)

The evaluation of the In(�) functions defined by Eqs. (26)
and (27) involves integrals over the wave number �k that are
ultraviolet divergent and thus a short distance cutoff, �, has
to be introduced. The cutoff, of course, is naturally provided
by the underlying crystal lattice. We find it convenient to use a
sharp cylindrical cutoff, so that the spectrum of K (0) is limited
to the wave vector region defined by |�kT| < � and |kz| < �,
where �kT = kxx̂ + kyŷ is the wave vector projection onto the
plane perpendicular to the magnet axis. This cutoff choice
is not unreasonable since we are dealing with monoaxial
helimagnets.

The function I0(�) is given by the following integral:

I0(�) = 1

2

∑
σ=±1

∫
d3k

(2π )3
ln

(
λσ (�k)

k2

)
. (C1)

The integral in �kT can be readily performed, and it remains an
integral in kz that can be performed numerically. The integral
is linearly divergent with the cutoff, and its leading term as
� → ∞ is

I0(�) ∼ q3
0

8π2
[(ln 2 + π/2)A + π�2 cos2 θ0]

�

q0
. (C2)

The function ϒ(t, h) involves I ′′
0 (0), which, to leading order

in �, can be obtained from (C1):

I ′′
0 (0) ∼ − q3

0

4π2

[
ln 2 + π

2
+

(
ln 2 + 3π

2

)
h2

h2
c

]
�

q0
. (C3)

To evaluate I1 and I2 we need the matrix elements of Q

between the eigenstates of K (0). They read

〈ξσ ′
(�k′)| Q |ξσ (�k)〉

= −iC
∑
αβ

εαβφσ ′
α (k′

z)
∗
φσ

β (kz)[k−δ�k′,�k+qẑ + k+δ�k′,�k−qẑ],

(C4)

where C = q0 sin θ0 and k± = kx ± iky . The diagonal ele-
ments vanish since q > 0 in the region of stability of the
conical state. Therefore, I1(�) = 0.

Inserting a resolution of the identity in terms of the eigen-
values of K (0) into the definition of I2(�), we get

I2(�) = 1

4ρ2
TV

∑
σσ ′

∑
�k,�k′

| 〈ξσ ′
(�k′)| Q |ξσ (�k)〉 |2
λσ ′ (�k′)λσ (�k)

. (C5)

Using (C4) and taking the infinite-volume limit we get

I2(�) = −C2

4

∑
σ=±1

∫
d3k

(2π )3
k2

T Tr[G(�k)τyG(�k + σqẑ)τy],

(C6)

where τy is the Pauli matrix and the matrix G is defined by

Gαβ (�k) =
∑

σ=±1

φσ
α (kz)φσ

β (kz)∗

λσ (�k)
. (C7)

The integral (C6) is complicated, but actually we are only
interested in the derivative of I2(�) at � = 0, which enters
the function ϒ(t, h), and this is much simpler. It is not difficult
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to see that all the � dependence on the right-hand side of
Eq. (C6) is through �2, except for the dependence via q =
q0(ρz + �). Hence, we only need to compute the derivative
of Gαβ with respect to kz. Taking into account the relations

lim
�→0

G11 = (
k2 + q2

0A0
)−1

, (C8)

lim
�→0

G22 = k−2, (C9)

lim
�→0

G12 = 0, (C10)

lim
�→0

∂G11/∂kz = −2kz

(
k2 + q2

0A0
)−2

, (C11)

lim
�→0

∂G22/∂kz = −2kzk
−4, (C12)

lim
�→0

∂G12/∂kz = 0, (C13)

where A0 is the value of A at � = 0, we obtain

I ′
2(0) = q3

0A0

4hc

∫
d3k

(2π )3
k2

T

[
1

k2 + q2
0A0

2(kz − q0)

[(�k − q0ẑ)2]2
+ 1

k2

× 2(kz − q0)[
(�k − q0ẑ)2 + q2

0A0
]2 − (q0 → −q0)

]
. (C14)

The integral over �kT can be readily performed and the follow-
ing integral over kz remains:

I ′
2(0) = q3

0A0

8π2hc

∫ �

−�

dkz(kz − q0)
{
J
[
k2
z + q2

0A0, (kz − q0)2
]

+ J
[
k2
z , (kz − q0)2 + q2

0A0
]}

, (C15)

where

J (E1, E2) = E1

(E2 − E1)2
ln

E1(�2 + E2)

E2(�2 + E1)

+ �2

(E2 − E1)(�2 + E2)
. (C16)

The function J (E1, E2) is analytic at E1 = E2. The inte-
gral (C15) is ultraviolet finite. The logarithmic divergence
coming from the integration region kz ∼ � which cancels
exactly with the divergence coming from the kz ∼ −� region.
It has been evaluated numerically using for � the same value
as in the computation of I0(�) and I ′′

0 (0).
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