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Abstract 

We proposed a genome association study for pig growth curves based on 

Bayesian hierarchical framework considering different sets of SNP markers and 

pedigree. Additionally, we aimed also to identify possible chromosome regions 

affecting the growth curve parameters using empirical weight-age data from an outbred 

F2 (Brazilian Piau vs commercial) pig population. Under the proposed hierarchical 

approach, individual growth trajectories were modeled by the nonlinear Gompertz 

function, so that the parameter estimates were considered to be affected by additive 

polygenic, systematic and SNP markers effects. The model assuming jointly pedigree 
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and SNP markers presented the best fit based on Deviance Information Criterion. 

Heritability estimates ranged from 0.53 to 0.56 and from 0.55 to 0.57, respectively for 

the parameters mature weight (a) and maturing rate (k).  Additionally, we found high 

and positive genetic correlation (0.78) between “a” and "k". The percentages of the 

genetic variances explained by each SNP allowed identifying the most relevant 

chromosome regions for each phenotype (growth curve parameters). The majority of 

these regions were closed to QTL regions previously reported for growth traits. 

However, we identified three relevant SNPs (55840514 bp at SSC17, 55814469 at 

SSC17 and 76475804 at SSC X) affecting "a" and "k" simultaneously, and three SNPs 

affecting only "a" (292758 bp at SSC1, 67319 bp at SSC8 and 50290193 bp at SSC17), 

that are located in regions not previously described as QTL for growth traits in pigs.  
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Introduction 

Most of the genome association studies of pig growth assume the body weight at 

specific ages as phenotypes. However, it may be extended for a more general context by 

considering the whole weight-age data under a growth curve approach. In general, pig 

growth curves have been studied through several nonlinear functions such as Logistic, 

von Bertalanffy and Gompertz (Koivula et al., 2008; Cai et al., 2012; Silva et al., 2013). 

These functions present a reduced number of parameters with biological interpretation 

(for instance, mature weight and maturing rate). Thus, breeding goals can be defined 

aiming to change the shape of the growth curves by treating these parameter estimates 

as phenotypic observations in statistical genetic models.  
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Traditionally, genetic analysis of growth curves considering only pedigree 

information has been performed in two distinct steps. First, the growth curve parameters 

are estimated for each animal; and, second, (co)variance components, genetic and 

environmental effects are estimated on them. This approach ignores the adjustment 

errors and does not allow estimating growth curve parameters for individuals with a 

scarce amount of records (Varona et al., 1999). In this context, hierarchical Bayesian 

models for growth curves were proposed by calculating joint posterior distributions for 

the curve parameters, (co)variance components, and systematic and genetic effects. 

Under this approach, adjustment errors are discarded and all the available information is 

then used for the genetic prediction of individual growth curves (Varona et al., 1997; 

Blasco et al., 2003; Forni et al., 2009). 

Ibáñez-Escriche and Blasco (2011) generalized the hierarchical Bayesian models 

for growth curves under a genome wide selection approach considering a simulated 

population. These procedures provide information on location of specific genome 

regions affecting growth curve components, that may lead to new insights about marker 

assisted selection in pig breeding approaching desirable genetic changes on growth 

curves. However, generalization for genome association studies have been under 

exploited in literature, especially for real data.  

In this context, we proposed a genome association study for pig growth curves 

based on Bayesian hierarchical framework considering different sets of SNP markers 

and pedigree. Additionally, we aimed also to identify possible chromosome regions 

affecting the growth curve parameters.  
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Materials and methods  

Experimental population and phenotypic data  

The phenotypic data was obtained from the Pig Breeding Farm of the 

Department of Animal Science, Universidade Federal de Viçosa (UFV), MG, Brazil. A 

three-generation resource population was created and managed as described by Hidalgo 

et al. (2013) and Verardo et al. (2015). Briefly, two naturalized Piau breed grandsires 

were mated with 18 granddams from a commercial line composed of Large White, 

Landrace and Pietrain breeds, to produce the F1 generation from which 11 F1 sires and 

54 F1 dams were selected. These F1 individuals were mated to produce the F2 

population, of which 345 animals were weighed at birth and at 21, 42, 63, 77, 105 and 

150 days of age.  

DNA extraction, genotyping and SNP quality control  

DNA was extracted at the Animal Biotechnology Lab from Animal Science 

Department of Universidade Federal de Viçosa. Genomic DNA was extracted from 

white cells of parental, F1 and F2 animals, more details can be found in Band et al. 

(2005). The low-density customized SNPChip with 384 markers was based on the 

Illumina Porcine SNP60 BeadChip (San Diego, CA, USA, Ramos et al., 2009). 

These SNPs were selected according to QTL positions previously identified on 

this population using meta-analyses (Silva et al., 2011) and fine mapping (Hidalgo et 

al., 2013, Verardo et al., 2015). Thus, although a small number of markers have been 

used, the customized SNPchip based on previous identified QTL positions ensures an 

appropriate coverage of the relevant genome regions in this population. Using previous 

information based on pre-determined chromosome regions has successfully improved 

genomic predictions as reported by Zhang et al. (2015). 
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From the total of 384 markers, 66 SNPs were discarded for no amplification, and 

from the remaining 318 SNPs, 81 were discarded due to very low minor allele 

frequency (close to zero). Thus, 237 SNPs markers were used and distributed as 

follows: SSC1 (56), SSC4 (54), SSC7 (59), SSC8 (30), SSC17 (25) and SSCX (13), 

being the average distance within each chromosome, respectively, 5.17, 2.37, 2.25, 

3.93, 2.68 and 11.00 Mb. 

The model  

A hierarchical Bayesian model was applied to analyze individual pig growth 

curves based on nonlinear Gompertz function, whose parameters were modeled by a 

multitrait linear model including additive polygenic, SNP marker and systematic 

effects.  

In the first stage, it was considered the following Gompertz growth model: 

ii i ij ijijy a b t εk=  exp(- exp(- )) + ,  (1) 

where yij is the observed body weight of individual i at age j, ai represents the mature 

weight, bi is a time scale parameter (it does not have biological interpretation), ki is the 

maturing rate, tij is the day in which the body weight were measured, and εij is the 

residual term, considered to be independent and normally distributed among 

individuals. The following distribution was assumed for the weight-age data in this first 

stage: 

2 2
ii i ijii i j jijy a b a b tk kf( | , , , ) ~ N(  exp(- exp(- )), )    

The standard deviation (σεj) for the residual term in (2) was considered as a 

linear function of two parameters (ra and rb) aiming to model its trajectory over time 

(i.e., to consider residual heterogeneity of variance): 

a bj ijtr r= + .  (2) 
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In the second stage, additive polygenic, systematic and SNP marker effects were 

estimated under a multitrait linear model considering the parameter estimates from the 

first stage as phenotypic observations. Three alternative models, characterized by the 

inclusion of different genetics effects in addition to the systematic effects, were 

proposed. The first one assumed the additive polygenic effects (Pedigree) – M1 (3); the 

second one the SNP genotypes effects (Markers) – M2 (4); and the third one considered 

both previously mentioned effects (Pedigree and markers) – M3 (5). These models are 

given respectively by:  

= + + ,θ Χβ Ζu e  (3) 

= + + ,θ Χβ Mc e  (4) 

= + + + ,θ Χβ Mc Ζu e  (5) 

where θ is a vector containing the estimates of the parameter “a”, “b”, and “k” for all 

individuals, 1 2 n1 2 n 1 2 n' = [ ]' = [ , , ..., , , , ... , , , ... ];a a a b b b k k kθ a, b, k β is the vector of 

systematic effects (intercept and 19 contemporary groups given by the combination of 

sex, batch and halothane gene genotype), β~ N( , ),β 0 IΣ  being βΣ  a known 

diagonal matrix with values 1e+10 (large variances) to represent vague prior 

knowledge; a1 a2 an b1 b2 bn k1 k2 knu u u u u u u u u= ( , , ..., , , , ..., , , , ..., )u  is the vector of 

additive polygenic effects, assumed as: g g| , ~ N( , ),u A 0 AΣ Σ  n is the total 

number of individuals and in this study was also the number of records within 

individual, A is the additive relationship matrix among the animals and gΣ  is the 

additive genetic (co)variance matrix; 

a1 a2 am b1 b2 bm k1 k2 km= ( ,  , ...,  ,  ,  , ...,  ,  ,  , ..., )c c c c c c c c  cc  is the vector of random SNP 

effects with known incidence matrix M with (345x3) rows and (237x3) columns of SNP 
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genotypes (coded as AA, AB, or BB), assumed as c c| ~ N( , ),c 0 IΣ Σ  where I and 

cΣ  are, respectively, an identity and SNP markers (co)variance matrices. The X and Z 

are the incidence matrices corresponding to systematic and additive polygenic effects, 

respectively; and a1 a2 an b1 b2 bn k1 k2 kn= ( , , ..., , , , ..., , , , ..., )e e e e e e e e ee  is the residuals 

vector, assumed as e e| ~ N( , ),e 0 IΣ Σ  where I and eΣ  are, respectively, an 

identity and residual (co)variance matrices. The halothane gene genotype was included 

as a fixed effect because of its significant effect on carcass and performance traits in this 

population, as reported by Band et al. (2005). 

The inference  

The joint posterior distribution for individual growth curve parameters, their 

variance components, and systematics, additive polygenic and SNP effects was accessed 

under a hierarchical framework following the Bayes theorem: 

ec gj j

ec g gj

g c c e

,

,

f( , , , , , , | ) f( | , )

f( | , , , , )  f( ) f( ) f( | )

f( )f( | ) f( ) f( ) 

 



 



Σ Σ Σθ u c y y θ
Σ Σ Σ Σθ u c   u

Σ Σ Σ Σc  



   

Assuming independence among individuals, the conditional distribution of data 

y, given the growth curve parameters, was a product of normal distributions:  

N n

j
2i=1 j=1
j

(- k t )i ij 2i
ij i

2
j

(- b )exp

1f( | , ) =
2π

[y  - (a exp )]
              exp - ,

2







 





  
 
  

y θ

 (8) 

where N is the total number of individuals; n the number of records within individual; 

ai, bi and ki are the parameters of the Gompertz growth function for the animal i; and tij 

the age (days) at time j. 
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The prior distribution for the growth curve parameters given the additive 

polygenic, systematic and SNP effects, as well as the (co)variance components, was 

assumed as a multivariate Gaussian distribution given by: 

- N/2
g c e e

- 1
e

f( | , , , , , ) =| |
1exp - ( - β - u - c)'( ) ( - β - u - c)
2

 
 

 

Σ Σ Σ Σθ β u c

θ X Z Μ I θ X Z ΜΣ  (9) 

where θ is the vector containing the parameters “a”, “b” and “k”; Σg is the additive 

polygenic genetic (co)variance matrix; cΣ  is the SNP markers (co)variance matrix; Σe 

the residual (co)variance matrix between the parameters “a”, “b”, and “k”; and I is an 

identity matrix. 

Following the proposed hierarchical approach, Gaussian prior distributions were 

assumed for the systematics, additive polygenic and SNP effects: 

- 1/ 2 -1

- N / 2A
g g g

- h / 2
c c c

1f( | , ) | | exp ( - )' ( - ) ,2
1f( | ) | | exp and2

1f ( ) | | exp ,2

 

  

  

 
 

 
 

 
 

 

 - 1

- 1

β s V V β s  V β s

Σ Σ Σu , A u'( A) u  , 

Σ Σ Σc | c'( I) c

 

where s and V are subjective means and (co)variances for the prior beliefs about the 

systematic effects, NA is the number of animals in the genealogy, I is an identity matrix 

of order h represent the SNP markers (h = 1, 2, …, 237), and A is the numerator 

relationship matrix. Bounded uniform distributions were assumed for σεj and 

(co)variance matrices (Σg, Σc and Σe) (Varona et al., 1998; Forni et al., 2007). 

The sampling methods require random independent draws from the conditional 

posterior distribution for each parameter. Thus, if θik is the kth growth curve parameter 
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for the ith animal, θ- ik are the other parameters for the ith animal and all parameters for 

all other animals. Thus we have: 

- ik jik

- ik j - ikik ik

θ θf( | , , , , , , , , )
θ θ θ θf( | , , ) f( | , , , , , , )





 



c g e 

c g e  

Σ Σ Σβ u c y
Σ Σ Σy β u c  

The fully conditional distributions for all parameters of the hierarchical 

multistage models were derived according to Varona et al. (1999). In the present study, 

these distributions for growth curve parameters are the products of the conditional 

distribution of data (Eq.[8]) and the prior distributions of the growth curve parameters 

(Eq. [9]).   

The fully conditional distribution of parameter “a” can be written as: 

 
ii i j

i ii i j i ii

a b kf( | , , , , , , , , , )
ya b a bk kf( | , , , )  f( | , , , , , , , ),





 



g c e

g c e

Σ Σ Σβ u c y  
Σ Σ Σβ u c

 

where,  

(- )tki iji
ij

j=1 j
ii i j i (- ) (- )t tk k2 2i iij iji i

j=1 j=1

n (- )expb

n n(- )exp (- )expb b

( )y exp

ya b kf( | , , , ) ~ N , .
[( )] [( )]exp exp










 

 
 
 
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The fully conditional distribution of parameter “b” can be written as: 

ii i j

i ii i j i ii

b a kf( | , , , , , , , , , )
yb a b ak kf( | , , , )  f( | , , , , , , , ),





 



g c e

g c e

Σ Σ Σβ u c y  
Σ Σ Σβ u c

 

where,  
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(- )tki ij 2
iij

i bi i j i
jj=1

(- )expbin [ -( )]y expa
yb a k rf( | , , , , ) exp - .2



 


 
 
 

  

 

The fully conditional distribution of parameter “k” can be written as: 

i i i j

i ii i j i ii

a bkf( | , , , , , , , , , )  
ya b a bk kf( | , , , )  f( | , , , , , , , ),





 



g c е

g c е

Σ Σ Σβ u c y  
Σ Σ Σβ u c

 

where, 

(- k t )i ij 2iiij
i i i j i

jj=1

(- b )expn [ -( )]y expa
ya bkf( | , , , ) exp - .2



 


 
 
 

 

The parameter “a” could be sampled from a normal distribution by using Gibbs 

sampling algorithm, but the conditional posterior distribution for the parameters “b” and 

“k” did not have a closed form. In these cases, the Metropolis-Hastings algorithm with 

normal proposal distribution centered on the values of bi and ki sampled in the 

immediately previous iteration was used (Forni et al., 2007). The mixed model 

equations were constructed assuming as observed traits the growth curve parameters (θ) 

obtained from earlier steps:  

-1-1 -1 -1 -1

-1-1 -1 -1 -1

-1-1 -1 -1 -1

ˆ' + ' ' 
( ) ˆ  +  

( ) ˆ   +

  
  

   
       

 
 
  

g

c

 θVR R RX  X X  Z X  M X' Rβ
AΣR R RZ'  X Z'  Z Z'  M u  θZ' R

I cΣR R RM'  X M'  Z M'  M  θM' R

 where, 

 eR IΣ .  (10) 

The conditional posterior distributions for each location parameter βl, ui, and ch 

were given by normal distributions defined by the coefficients and the right-hand side 

(RHS) of the mixed model equations (Eq. [10]): 
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

 

where β- l, u- i, and c- h, are the vectors including the current values of these effects after 

discarding the ith one, h represent the SNP markers (h = 1, 2, …, 237) and λ is the 

corresponding element from the coefficient matrix of the mixed models equations. 

The conditional posterior distributions for the (co)variance matrices were the 

following inverted Wishart distributions: 

-1
pj a

pj h

pj

N nf( | , , , , , , , ) ~ IW[( ' ), - ( + 1)],
N nf( | , , , , , , , ) ~ IW[( ' ), - ( + 1)],  and

nf( | , , , , , , , ) ~ IW[( ' ), N - ( + 1)].













g c e

c g e

e g c

Σ Σ Σθ β u c y u uA
Σ Σ Σθ β u c y c c
Σ Σ Σθ β u c y e e

 

where np is the number of parameters assumed in the growth curve and Nh is the total 

number of SNP markers. 

The conditional posterior distribution for the residual standard deviation (σεj) 

have not closed form, thus the Metropolis-Hasting algorithm was used: 

j

(- )tk 2i ijiiij

jj=1

(- )expbn

f( | , , , , , , , )

[ -( )]y expa
exp - 2










 
 
 

g c eΣ Σ Σθ β u c y

                      

We applied a Metropolis-Hastings algorithm with a uniform proposal 

distribution centered at the current values bi and ki (as mentioned earlier). The choice of 
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the limits for this distribution determines the acceptance rate. If the width of such an 

interval is too small, the proposed values will be closed to the current ones, the rejection 

rate will be low but the process will move slowly throughout the parameter space. On 

the other hand, if it is too large, the proposed values are far away from the current ones 

and these results in a high rejection rate (Blasco et al., 2003). The above choice led to 

acceptance rates ranging between 50.74% and 52.45% (M1), 45.00% and 48.76% (M2), 

48.80% and 50.67% (M3). 

A total of 400,000 samples were generated, assuming a burn-in period and 

sampling interval (thin) of 100,000 and 10 iterations, respectively. The convergence of 

the MCMC chains using the BOA package (Smith, 2007) of R software.  

Model testing  

The goodness of fit analyzes for the considered models was based on the 

deviance information criterion (DIC) developed by Spiegelhalter et al. (2002): 

DDIC = D(θ) + 2p , where D(θ)  is a point estimate of the deviance obtained by 

replacing the parameters by their posterior means estimates in the likelihood function 

and pD is the effective number of parameters in the model, where D = D(θ) - D(θ)p . 

Models with smaller DIC should be preferred to models with larger DIC. 

In addition to the goodness of fitting, we also calculated the predictive ability by 

cross-validation, which involved training one subset of the population (300 animals), 

and validating on the remaining individuals (45 animals). Here, we randomly split the 

data sets into two groups from the original data set (345 animals), these two subset were 

redefined 10 times, D1, D2, ..., D10. Finally, the average of the 10 correlation 

coefficients between the predicted and observed phenotypes was obtained. 
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The predicted weight ( ijŷ ) for animal i in time j based on Gompertz model was 

calculated as follows: iji ii iy a t=  exp(- exp(- )),b kˆ ˆˆ ˆ where i ii
ˆ ˆâ ,    and  b k are elements of 

the estimated vector θ̂  given by: ˆ ˆ ˆˆ=  Χβ Zu Mc . Thus, the solutions for these 

animals of the validation population were obtained based on the solutions of the training 

population animals.  

The five tested models were applied to the 10 cross-validation replicates. In each 

replicate, systematic, genetic effects and SNPs markers effects were estimated and 

provided a phenotypic prediction for the masked animals. Finally, the predictive ability 

used to measure the efficiency of the models was given by the correlation between 

observed and predicted phenotypes from the validation population. 

QTL identification  

Based on SNP markers that were considered as relevant based on M2 (Eq. [4]) 

we verified the existence of QTL already described for growth traits by using the 

PigQTLdb tool (National Animal Genome Research Program, 2016). The traits which 

have been used in the PigQTLdb were body weights 34 weeks and at slaughter (related 

to parameter “a”) and average daily gain (related to parameter “k”).  

 

Results and Discussion 

Model comparison  

Models were compared using the Deviance Information Criteria (DIC). The 

following results were obtained: model M3 (DIC=10572.73), model M1 

(DIC=10745.97) and model M2 (DIC=10792.77) (Table 1). The M3 that considered the 

pedigree of animals associated with the information of SNP markers presented the best 

fit based on the lower DIC value.  
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Correlation coefficient between all predicted and observed phenotypic values 

were also used to access the goodness of fit (Table 2). The same model indicated by 

DIC (Pedigree and markers) was considered as the best one since presented higher 

correlation coefficients at all ages, except at birth. The superiority of this model was 

remarkable at last age (150 days), which has the greater economic relevance because 

correspond to weight at slaughter.   

This result is in agreement with de los Campos et al. (2009) that, analyzing a 

mice population, concluded that the model that considered the pedigree with SNP’s 

markers effects showed the best goodness of fit.  

Predictive abilities were also calculated for all tested models in each evaluated 

ages (Table 2). All models presented lower predictive ability for initial phase of growth 

curve. Nevertheless, they were able to predict with higher predictive ability the weights 

at ages above 21 days. This lower predictive ability may be related to the fact that 

growth models do not fit well to the initial age, once prenatal growth of animals is not 

measured. This period is known for the maximum rate of tissues and organs, so will 

determine traits such as weight birth of piglets and the consequences established during 

prenatal life will be continuous throughout the life of the animal (Fall et al., 2003; 

Foxcroft and Town, 2004).  

A slight decrease in the correlations at later ages (105 to 150 days) was also 

observed. This decay can be explained because the last age considered in this study is 

not the age of maturity itself, but the age at slaughter (150 days - 65 kg), i.e., the 

animals continue to growing after this period, as can be seen in Peloso et al. (2010) that 

evaluated carcass traits and meat quality in five distinct genetic groups of pigs with 

animals up to 202 days old. 
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Correlations between the predicted and observed phenotypes at different ages in 

growth functions are seldom used in the literature. However, the importance of these 

results is remarkable because they are useful in identifying factors in animal production 

that may be modified in order to change growth trajectories.  

Variances components and heritability  

The marginal posterior densities of the variance components showed that a large 

part of adult weight variation is due to additive genetic effects (Table 3). Higher 

influence of additive genetic factors on these growth curves parameters was also 

reported by Koivula et al. (2008) and Cai et al. (2012) in pigs, and by Forni et al. (2007) 

in beef cattle. The "a" parameter of the growth curve can be used as a selection criterion 

to control adult body weight that increases when selecting for growth rate, especially in 

situations in which the slaughter weight is reached before the maturity, as occurred in 

this study. Also "k" parameter can be used as a selection criterion indicating the rate that 

animals approach the adult weight (Table 3).  

We opted to show only the results obtained for parameters “a” and “k”, since the 

parameter “b” has no biological interpretation. The heritability estimates (Table 3) 

indicate that “a” and “k” parameters can be an alternative for pig breeding programs that 

aim to produce animals with higher growth rate. Estimated values of the present study 

were higher than those found by Koivula et al. (2008) (a=0.44, b=0.55 and k=0.31), 

working on Finnish Yorkshire pigs also using the Gompertz model. This may be due to 

the effect of the variance of performance given the production function parameters, 

which was not considered in the analyses of those authors, what causes the estimation 

noise to be absorbed by the residual variances (Varona et al., 1999). 

Considering the model that showed the best goodness of fit to the data (Pedigree 

and markers - M3), genetic correlation between the growth curve parameters was 
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obtained in order to assess whether the traits (a and k) are relevant for a breeding 

program. Direct selection for a high value of "a" parameter will also imply in selection 

for higher value of "k" parameter (as indicated by the high and positive genetic 

correlation, 0.78, between the two parameters), and therefore the selection will result in 

animals more precocious (high maturation rate) and heavier animals. This high and 

positive correlation between the parameters "a" and "k" was also reported in others 

growth curve studies, e.g., Cai et al. (2012) in pigs, which have obtained the same value 

reported here, and Forni et al. (2007) in beef cattle. 

The use of pedigree associated with SNP markers may capture extra sources of 

genetic variance compared with models based only on pedigree (de los Campos et al., 

2009). Similarly, Calus and Veerkamp (2007) working with simulated data, concluded 

that the inclusion of polygenic effects associated with marker information improved the 

variance components estimation. Results similar to those reported by these authors, we 

could see in this study (Table 3), in which the genetic variance was higher in model M3 

(Pedigree and markers) compared with model M1 (Pedigree). 

Small number and sparse distribution of SNP markers in the whole genome 

could be a limitation of the approach used at the present work. However, these markers 

were located in regions where QTLs have been found in previous studies in this same 

population (Silva et al., 2010; Hidalgo et al., 2013), thus generating a SNP marker panel 

that was able to capture the genetic variation on the considered traits (a, b and k 

parameters). Despite the relatively small number of animals evaluated, the population 

was structured with a F2 design, which results in large linkage disequilibrium blocks 

that improve the capture of genetic variance, even in low-density marker panels (Costa 

et al., 2015). 
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QTLs identification  

The list of relevant SNPs based on the joint analysis, that affect the adult weight 

(a) and the maturity rate (k) in pigs, as well as their genome positions and the related 

QTLs (PigQTLdb - National Animal Genomes Research Program, 2016) are shown in a 

Supplementary Material. We considered only the markers that explained at least 0.5% 

of the total genetic variance (Figure 1). A total of 22 SNPs for the "a" parameter, 17 

SNPs for the “b” parameter and 26 SNPs for the "k" parameter, distributed in 

chromosomes (SSC) 1, 4, 7, 8, 17 and X were selected. We opted to show only relevant 

markers that have influenced "a", "k" and both parameters simultaneously. 

The SNPs explaining higher percentage of variance for the "k" parameter were 

associated with average daily gain. Approximately 23% of these SNPs are located in the 

SSC7. These results are in agreement with Ai et al. (2012) who found QTL for growth 

traits in this same chromosome, in a F2 pig population (White Duroc vs Erhualian); and 

Ruckertz and Bennewitz (2010), who reported QTLs in SSC7 for daily weight gain in 

crossbred pigs (European wild boars vs Meishan females).  

The "a" parameter was associated with the weight at slaughter and the weight at 

34 weeks, with the most relevant SNPs located on chromosomes 1, 4 and 8. These 

findings are in agreement with Koning et al. (2001) who found QTLs associated with 

final weight traits in these chromosomes in a F2 population (Meishan vs Large White, 

Dutch Landrace); Ai et al. (2012), who reported QTLs for weight at slaughter on 

chromosomes 4 and 8; and Liu et al. (2007) who detected QTLs for carcass composition 

and average daily gain in the SSC1, suggesting multiple QTLs in this chromosome in 

crossbred pigs (Pietrain vs Duroc). 
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 We identified three relevant SNPs (55840514 bp at SSC17, 55814469 at SSC17 

and 76475804 at SSC X) for "a" and "k" simultaneously, and three SNPs affecting only 

"a" (292758 bp at SSC1, 67319 bp at SSC8 and 50290193 bp at SSC17), that are 

located in genome regions not previously described in the literature (see Supplementary 

Material).  

In summary, whereas the genome association analysis is an impartial scan of the 

entire genome without any assumption about the role of a certain gene, the QTL 

approach allows researchers to investigate the region where a specific marker of the 

gene underlying a complex trait is located. When combining these two approaches in 

the same study, we have the advantage of identifying QTLs from the same population in 

which relevant markers for the traits of interest were identified. In this context, a joint 

genomic association analysis of multiple potentially correlated traits, like growth curve 

parameters, may be advantageous. This approach has increased the power of QTL 

detection as reported by Galesloot et al. (2014), when comparing several multitrait and 

single trait GWAS methods. In addition, these authors suggested that the multitrait 

method may be able to identify genetic variants that are currently not identifiable by 

standard single trait analysis. 

 

Conclusion 

Markers may allow capturing fractions of additive variance that would be lost if 

pedigrees are the only source of genetic information used. The model including marker 

and pedigree information had better goodness-of-fit than pedigree-based or marker-

based models.  
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The heritability estimates for mature weight (“a”) and maturity rate (“k”) 

indicated that these traits is a feasible alternative for breeding programs aiming to 

change the shape of growth curves in pig breeding programs.  

The multitrait GWAS was efficient to report QTLs associated with functions 

related to biological processes of growth in pigs. Relevant SNPs are located in genome 

regions not previously described in the literature. Future studies targeting these areas 

could provide further knowledge to uncover the genetic architecture underlying growth 

curves in pigs. 
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Figures 

 

 

Figure 1. Percentage of total variance explained by each SNP for: (a) parameter “a”, (b) 

parameter “b”, (c) parameter “k”. 

 

Table 1. Deviance Information Criterion (DIC) for models. 

Comparing Models 

Models DIC 

Pedigree (M1)1 10,745.97 

Markers (M2)2 10,792.77 

Pedigree and markers (M3)3 10,572.73 

1Only pedigree information. 

2Only markers information. 

3complete model (pedigree and SNP markers information). 
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Table 2. Correlation coefficient between predicted and observed values from models 

including different sources of genetic information (pedigree, and pedigree and markers) 

and below means of the correlations of the 10 groups of the cross-validation and their 

standard errors (SE). 

Dataset Age Pedigree (M1)1 Markers (M2)2 Pedigree and markers (M3)3 

Full data 

1 0.440 [0.049] 0.415 [0.049] 0.450 [0.048] 

21 0.770 [0.035] 0.767 [0.034] 0.795 [0.033] 

42 0.844 [0.029] 0.850 [0.028] 0.864 [0.027] 

63 0.868 [0.027] 0.869 [0.027] 0.887 [0.025] 

77 0.916 [0.021] 0.917 [0.021] 0.932 [0.019] 

105 0.916 [0.021] 0.917 [0.021] 0.922 [0.021] 

150 0.737 [0.036] 0.769 [0.034] 0.814 [0.031] 

Cross-

validation 

1 0.202 [0.030] 0.123 [0.094] 0.198 [0.031] 

21 0.262 [0.053] 0.205 [0.109] 0.224 [0.052] 

42 0.360 [0.030] 0.275 [0.097]  0.311 [0.032] 

63 0.393 [0.031] 0.302 [0.062] 0.376 [0.025] 

77 0.423 [0.044] 0.343[0.120] 0.408 [0.042] 

105 0.459 [0.022] 0.395 [0.065] 0.393 [0.036] 

150 0.247 [0.023] 0.247 [0.050] 0.245 [0.028] 

1Only pedigree information. 

2Only markers information. 

3complete model (pedigree and SNP markers information). 
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Table 3. Features of the marginal posterior distributions of additive genetic and 

residual variance components and heritability and highest probability density (HPD) of 

growth curve parameters from models including different sources of genetic 

information (pedigree, markers, and pedigree and markers) for each parameter. 

Additive Genetic Variance and HPD 

Traits Pedigree (M1)1 Pedigree and markers (M3)2 

a 23.95 [0.40, 51.43] 30.42 [0.28, 68.10] 

b 0.10 [6x10-6, 1.5x10-1] 0.10 [5x10-2, 2x10-1] 

k 1x10-7 [4x10-8, 2x10-7] 2x10-7 [2x10-8, 3x10-7] 

Residual Variance and HPD 

a 20.18 [0.78, 43.06] 22.35 [0.90, 48.16] 

b 0.02 [5x10-3, 5x10-2] 0.03 [4x10-3, 5x10-2] 

k 9x10-8 [3x10-8, 2x10-7] 1.3x10-7 [2x10-8, 2x10-7] 

Heritability and HPD 

a 0.53 [0.11, 0.95] 0.56 [0.15, 0.94] 

b 0.79 [0.60, 0.97] 0.77 [0.54, 0.97] 

k 0.55 [0.24, 0.84] 0.57 [0.27, 0.87] 
1Only pedigree information. 

2complete model (pedigree and SNP markers information). 

 

Highlights 

 Growth curves with only pedigree data has been analyzed in two distinct steps.  
 Hierarchical Bayesian model was obtained by joint analysis of the curve parameters.  
 Hierarchical Bayesian models for growth curves were used under GWAS. 
 The multitrait GWAS was efficient to report QTLs related to functions of growth. 
 Relevant SNPs are located in genome regions not previously described. 
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