000076050 001__ 76050
000076050 005__ 20190709135452.0
000076050 0247_ $$2doi$$a10.1016/j.enbuild.2017.04.058
000076050 0248_ $$2sideral$$a98959
000076050 037__ $$aART-2017-98959
000076050 041__ $$aeng
000076050 100__ $$0(orcid)0000-0003-3269-023X$$aGuillén-Lambea, S.
000076050 245__ $$aControl strategies for Energy Recovery Ventilators in the South of Europe for residential nZEB. Quantitative analysis of the air conditioning demand
000076050 260__ $$c2017
000076050 5060_ $$aAccess copy available to the general public$$fUnrestricted
000076050 5203_ $$aMechanical ventilation systems are essential for ensuring the indoor quality of air in nZEB (nearly Zero Energy Buildings) with a high level of airtightness. In cold countries, it has already been demonstrated that Heat Recovery Ventilators (HRV) recovering the sensible energy from air ventilation are needed to achieve the energy demand goals for nZEB set by Passivhaus. In tropical areas with hot temperatures and high relative humidity in the ambient air, the necessity of recovering latent and sensible energy with Energy Recovery Ventilators (ERV) has also been demonstrated. However, in warm climates with medium relative humidity levels, for example in cities located on the Mediterranean coast, the evaluation of the effectiveness of an EVR for residential buildings has to be analyzed and optimized. This article establishes the effectiveness of several control strategies for ventilation air systems including ERV with the aim of optimizing the air conditioning energy demand of dwellings located in several cities in the South of Europe. Possible control strategies have been analyzed to minimize the undesirable operation of ERVs which could otherwise increase the air conditioning energy demand for winter and summer seasons. The impact of the latent effectiveness and the effect of free-cooling on the air conditioning energy demand is also studied.
000076050 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000076050 590__ $$a4.457$$b2017
000076050 591__ $$aCONSTRUCTION & BUILDING TECHNOLOGY$$b5 / 62 = 0.081$$c2017$$dQ1$$eT1
000076050 591__ $$aENGINEERING, CIVIL$$b3 / 128 = 0.023$$c2017$$dQ1$$eT1
000076050 591__ $$aENERGY & FUELS$$b22 / 97 = 0.227$$c2017$$dQ1$$eT1
000076050 592__ $$a2.061$$b2017
000076050 593__ $$aBuilding and Construction$$c2017$$dQ1
000076050 593__ $$aMechanical Engineering$$c2017$$dQ1
000076050 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1
000076050 593__ $$aCivil and Structural Engineering$$c2017$$dQ1
000076050 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000076050 700__ $$0(orcid)0000-0001-5215-7112$$aRodríguez-Soria, B.
000076050 700__ $$0(orcid)0000-0002-2463-7271$$aMarín, J.M.$$uUniversidad de Zaragoza
000076050 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000076050 773__ $$g146 (2017), 271-282$$pEnergy build.$$tENERGY AND BUILDINGS$$x0378-7788
000076050 8564_ $$s950658$$uhttps://zaguan.unizar.es/record/76050/files/texto_completo.pdf$$yPostprint
000076050 8564_ $$s69570$$uhttps://zaguan.unizar.es/record/76050/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000076050 909CO $$ooai:zaguan.unizar.es:76050$$particulos$$pdriver
000076050 951__ $$a2019-07-09-11:41:31
000076050 980__ $$aARTICLE