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25 Abstract 
 

26 While prion diseases have been described in numerous species, some, including those of the 
 

27 Canidae family, appear to show resistance or reduced susceptibility. A better understanding of 
 

28 the factors underlying prion susceptibility is crucial for the development of effective treatment 
 

29 and control measures. We recently demonstrated resistance to prion infection in mice 
 

30 overexpressing a mutated prion protein (PrP) carrying a specific amino acid substitution 
 

31 characteristic of canids. Here, we show that co-expression of this mutated PrP and wild type 
 

32 mouse PrP in transgenic mice inoculated with different mouse-adapted prion strains (22L, 
 

33 ME7, RML, and 301C) significantly increases survival times (by 45% to 113%). These data 
 

34 indicate that this amino acid substitution confers a dominant-negative effect on PrP, 
 

35 attenuating the conversion of PrPC to PrPSc and delaying disease onset without altering the 
 

36 neuropathological properties of the prion strains. Taken together, these findings have 
 

37 important implications for the development of new treatment approaches for prion diseases 
 

38 based on dominant-negative proteins. 
 

39 
 

40 Keywords 
 

41 TSE; Prion infection; transgenic mouse models; transmissible spongiform encephalopathies; 
 

42 prion propagation; canine PrP 
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43 Introduction 
 
 

44 Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a group of 
 

45 neurodegenerative diseases of animals and humans that can be sporadic (putatively 
 

46 spontaneous), genetic, or acquired by infection [1]. TSEs are caused by the accumulation of a 
 

47 misfolded   protein,   the   scrapie-associated   prion   protein   (PrPSc),   which   is   produced  by 
 

48 posttranslational conversion of the physiologically expressed cellular prion protein (PrPC) via an 
 

49 unknown mechanism. This abnormal form of the protein is protease resistant and is composed 
 

50 almost entirely of β-sheet structures [2-5]. PrPSc deposition results in spongiosis, vacuolation, 
 

51 neuronal death, and glial reactions in the central nervous system of affected individuals [3,6-8] 
 
 

52 TSEs naturally affect a wide variety of mammalian species, and include Creutzfeldt– 
 

53 Jakob disease (CJD) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy 
 

54 (BSE) in cattle, and chronic wasting disease (CWD) in cervids [9]. Since the emergence of BSE 
 

55 and its association with variant CJD (vCJD) in humans [10,11], transmission of prion diseases 
 

56 between species has become a major public health concern. Spongiform encephalopathies 
 

57 have been identified in numerous ruminant, feline, and primate species, all of which had 
 

58 consumed  cattle  meat  or  feed containing  ruminant meat  and  bone  meal,  or were  in close 
 

59 proximity  to  infected  animals  [12-14].  However,  the  absence  of  prion  diseases  in  other 
 

60 mammals exposed to contaminated food, including rabbits, equids, and canids, suggested the 
 

61 existence of prion-resistant species [15]. This was further supported by unsuccessful attempts 
 

62 to overcome TSE transmission barriers in those species, which contributed to preserve for 
 

63 decades the concept of prion resistant mammals [16]. Of all putative prion-resistant species, 
 

64 rabbits are the most extensively studied. In vitro studies using protein misfolding cyclic 
 

65 amplification (PMCA) and subsequent in vivo experiments have shown that rabbits are not 
 

66 disease-resistant per se, but are poorly susceptible to prion diseases [17]. Equids represent a 
 

67 very interesting group of mammals that, while not completely resistant to TSEs, show a very 
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68 peculiar susceptibility displaying an unusual replicative phenomenon termed nonadaptative 
 

69 prion amplification (NAPA), described in transgenic mice expressing horse PrP [18]. Moreover, 
 

70 the use of recombinant proteins in the presence of chaotropic agents [19] and in vitro prion 
 

71 amplification techniques [20] to study the propensity of prion protein misfolding in different 
 

72 mammalian species suggest that susceptibility to prion diseases is lowest in canids. To identify 
 

73 the specific features of canine PrPC that account for its strong resistance to misfolding, we 
 

74 previously generated a transgenic mouse model expressing a PrP variant (N158D PrP), 
 

75 containing a single specific amino acid substitution, characteristic of the dog PrPC [Fernández- 
 

76 Borges et al. Unraveling the key to the resistance of canids to prion diseases. PLoS Pathogens 
 

77 (second round of review)]. We found that this model was completely resistant to intracerebral 
 

78 infection with several mouse-adapted prion strains, indicating that a single amino acid 
 

79 substitution is sufficient to inhibit the misfolding of the mutated protein. 
 

80 In the present study, we investigated whether this mutant could act as a dominant- 
 

81 negative protein and prevent PrPSc formation when co-expressed with wild type (wt) PrPC. To 
 

82 this end, we created a new mouse model co-expressing wt mouse PrPC and the 
 

83 aforementioned mutant PrP variant carrying the critical dog amino acid substitution. These 
 

84 mice were intracerebrally inoculated with different mouse-adapted prion strains and the 
 

85 results of the in vivo challenge compared with those obtained in mice expressing comparable 
 

86 levels   of  wt   mouse   prion   protein.   Surprisingly,   co-expression  of  the   mutated   protein 
 

87 significantly delayed the onset of disease induced by all prion strains studied. Survival periods 
 

88 were increased by 45% to 113% with respect to mice expressing wt protein alone, thereby 
 

89 demonstrating the dominant-negative effect of the mutant protein. Our findings show that this 
 

90 specific  dog  amino  acid  substitution  confers  the  protein  the  ability  to  interfere  with  the 
 

91 propagation of wt prions in transgenic mice. These findings have important implications for the 
 

92 development of therapeutic strategies against prion diseases. 
 

93 
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94 Materials and methods 
 

95 Generation and inoculation of transgenic mouse models 
 

96 Three different transgenic mouse models were used in the present study: 1) Tga20 x Tga20 
 

97 mice (hereafter referred  to  as Tga20 mice)  expressing  mouse PrPC at  a levels ∼8-fold  higher 
 

98 than those observed in the mouse brain [21]; Tga20 x Prnp0/0 [22] (hereafter referred to as 
 

99 Tga20xKO mice) mice expressing mouse PrPC at a levels ∼4-fold higher than those observed in 
 

100 mouse brain; and 3) Tga20 x TgN158D mice [hereafter referred to as Tga20xN158D: 
 

101 Fernández-Borges et al. (submitted)] expressing mouse PrPC at levels ∼4-fold higher and 
 

102 N158D mouse PrPC at levels ∼2-fold higher than those observed in mouse brain. The murine 
 

103 PRNP promoter was used for N158D mouse PrPC expression. 
 
 

104 PrP expression levels from Tga20, Tga20xKO and Tga20xN158D mice were analyzed by 
 

105 Western blot using SAF83 (1:400) and 5C6 (1:2,000) monoclonal antibodies and compared with 
 

106 those obtained in TgN158DxTgN158D mice (hereafter referred to as TgN158D mice), 
 

107 expressing only N158D mouse PrPC   [Fernández-Borges N, et al. (submitted)]. 5C6 antibody 
 

108 (PRC5  antibody)  was  kindly  provided  by  Dr. Glenn Telling  (Prion  Research Center, Colorado 
 

109 State University). This antibody requires asparagine at mouse PrP residue 158 [23] and 
 

110 therefore does not detect N158D PrP, whereas SAF83 antibody recognizes both wt and N158D 
 

111 mouse PrPs (Supplementary Fig. 1). 
 
 

112 Mice aged 6 to 8 weeks were anesthetized with isoflurane and intracerebrally 
 

113 inoculated (left cerebral hemisphere) with mouse-adapted prion strains 22L, RML, ME7, or 
 

114 301C using 20 μl of a 10% brain homogenate. Injections were administered using a 50-μl 
 

115 syringe and a 25-G needle. Analgesia was achieved by subcutaneous injection of 
 

116 buprenorphine (0.3 mg/kg). Animals were subsequently housed in filtered cages and 
 

117 monitored three times per week for neurologic dysfunction. Mice were euthanized by cervical 

5  



118 dislocation upon detection of clinical signs of terminal disease (severe ataxia, inability to stand, 
 

119 and poor body condition). 
 

120 All experimental procedures were approved by the Ethics Committee for Animal 
 

121 Experiments  of  the  University  of  Zaragoza  (permit  number:  PI32/13)  and  performed  in 
 

122 accordance with the recommendations for the care and use of experimental animals and in 
 

123 agreement with Spanish law (R.D. 1201/05). 
 

124 Sample processing and histopathological evaluation 
 

125 After euthanasia, brains were removed, and transversal sections from the frontal cortex and 
 

126 medulla oblongata were separated and frozen at -80°C for subsequent biochemical analyses. 
 

127 The remaining tissue was fixed in 10% formalin for neuropathological studies. After fixation, 
 

128 brains were cut at four standard levels for the histological evaluation of the following 9 brain 
 

129 regions: frontal cortex (Fc), septal area (Sa), thalamic cortex (Tc), hippocampus (Hc), thalamus 
 

130 (T), hypothalamus (Ht), mesencephalon (Mes), cerebellum (Cbl) and medulla oblongata (Mo) 
 

131 [24]. Tissues were embedded in paraffin, cut into 4-μm-thick sections on a microtome, and 
 

132 mounted on glass slides for staining with hematoxylin and eosin. Sections were examined 
 

133 using an optical microscope (Zeiss Axioskop 40), and the extent of vacuolation and spongiosis 
 

134 in each area was blindly evaluated and semi-quantitatively scored on a scale of 0 (absence of 
 

135 lesions) to 5 (high intensity lesions). 
 

136 Analysis of PrPSc deposition 
 

137 The intensity and distribution of PrPSc deposition was evaluated using the paraffin-embedded 
 

138 tissue  (PET)  blot  method,  as  previously  described  [25].  Sections  from  paraffin-embedded 
 

139 brains (4-μm thick) were collected on a nitrocellulose membrane (0.45-μm pore size; Bio-Rad, 
 

140 Richmond, CA) and dried at 55°C for 24 h. After deparaffination and rehydration, sections were 
 

141 digested for 2 h at 56°C with 250 μg/ml proteinase-K (PK) (Applied Biosystems) in PK digestion 
 

142 buffer containing TBS (Tris-buffered saline) and 0.1% Brij 35P (Sigma-Aldrich). After washing 
 

143 with TBST (Tris buffered saline; 0.05% Tween 20), membrane-attached proteins were 
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144 denatured in 3 M guanidine thiocyanate (Sigma-Aldrich). Sections were then blocked with 1% 
 

145 casein in TBST and incubated with Sha31 primary monoclonal antibody (1:8000; SPI-Bio). After 
 

146 incubation with an alkaline phosphatase-coupled goat anti-mouse antibody (DAKO) 
 

147 immunostaining was visualized using NBT/BCIP (Nitro blue tetrazolium /5-bromo-4-chloro-3- 
 

148 indolyl-phosphate; Sigma-Aldich). PrPSc deposits were evaluated semi-quantitatively, as 
 

149 described for spongiform lesions, using a Zeiss Stemi DV4 stereo microscope. 
 

150 Histological analysis of PrPC distribution 
 

151 The localization and distribution of PrPC in the brains of Tga20xN158D mice was analyzed by 
 

152 immunohistochemistry. Brains from TgN158D mice were used as controls. Serial paraffin- 
 

153 embedded sections were incubated with a peroxidase blocking reagent (Dako) for 20 min 
 

154 followed by hydrated autoclaving at 100°C in citrate buffer for 30 min. Immunodetection was 
 

155 performed overnight at 4°C using SAF32 (1:1,000; SPI-Bio) and 5C6 (1:1,000) anti-PrP 
 

156 monoclonal antibodies. The anti-mouse Envision polymer (Dako) was used as the visualization 
 

157 system and DAB (diaminobenzidine, Dako) as the chromogen. 
 

158 The localization of N158D PrP was analyzed using immunofluorescence and confocal 
 

159 imaging. Immunofluorescence staining was performed as described previously [26], with 
 

160 specific modifications to adapt the protocol to paraffin-embedded samples. Paraffin- 
 

161 embedded tissue sections from TgN158D mice were deparaffinated and rehydrated and then 
 

162 blocked with 1% H2O2 for 30 min. After pretreatment with 0,1% Triton X-100 for 3 h at room 
 

163 temperature, samples were subjected to hydrated autoclaving and incubated with SAF32 
 

164 antibody (1:100) followed by a goat anti-mouse IgG biotin conjugate (1:100; Invitrogen) and 
 

165 an Alexa fluor 594 streptavidin conjugate (1:1000; Invitrogen). Sections were analyzed using a 
 

166 Zeiss laser-scanning confocal microscope LSM 510 (Carl Zeiss MicroImaging). 
 
 

167 Biochemical analysis 
 

168 Frozen brain sections stored for biochemical analysis, as described above, were homogenized 
 

169 in 1% (w/v) in PBS (phosphate buffered saline) using a ribolyzer. The resulting samples were 
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170 digested with Protease K (PK) for 1 h at 42°C, and used for Western blot. Immunodetection 
 

171 was performed using SAF83 primary antibody (SPI-Bio; 1:10,000 400) and 5C6 (1:2,000) 
 

172 primary antibodies. 
 
 

173 Data analysis 
 

174 Survival times were analyzed by Kaplan-Meier survival analysis, and the resulting survival 
 

175 curves were compared using the log rank test (α=0.050). Differences in spongiform lesions 
 

176 (distribution and intensity) and PrPSc deposition profiles between different transgenic mouse 
 

177 models were evaluated using the non-parametric Mann-Whitney U-test, and considered 
 

178 significant at p <0.05. GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA, USA) was 
 

179 used to perform all statistical analyses, generate Kaplan Meier curves, and to graph 
 

180  
 

181  

histopathology results. 

 

182 Results 
 

183 Co-expression of the N158D PrP substitution greatly increases survival time in inoculated 
 

184 mice 
 

185 Three groups of mice expressing different levels of wt protein, either alone or together with 
 

186 N158D PrP [(Tga20 (8x), Tga20xKO (4x+0x) and Tga20xN158D (4x+2x)] (Supplementary Fig. 1) 
 

187 were challenged by intracerebral inoculation with the 22L, RML, 301C, or ME7 mouse-adapted 
 

188 prion strains. Owing to its high levels of PrPC expression in the brain (∼8 fold higher than wt 
 

189 mice), the TSE incubation period in the Tga20 mouse is relatively short, making it a useful 
 

190 model for prion research. Moreover, the histopathological and biochemical features of several 
 

191 mouse-adapted TSE strains, including those used in the present study, are well defined in this 
 

192 transgenic model [21,27]. Tga20xN158D mice were used to achieve co-expression of the wt 
 

193 and N158D PrP. Tga20xKO mice were selected as controls, given that their wt PrPC expression 
 

194 level is identical to that of Tga20xN158D mice. No significant differences were observed in 
 

195 electrophoretic migration patterns between the different mouse lines (Supplementary Fig. 1). 
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196 In addition, both wt and N158D PrPs are present in high amounts, and are distributed normally 
 

197 in the brain of transgenic mice (Supplementary Fig. 2). 
 

198 Tga20xN158D mice inoculated with the 22L, RML, 301C, or ME7 prion strains showed 
 

199 increases in survival times of 113%, 45%, 71%, and 49%, respectively, as compared with 
 

200 Tga20xKO mice, which express the same amount of wt PrPC (Table 1). Significant differences 
 

201 were observed between genotypes for all inocula (Fig. 1). In the case of the 301C strain, 
 

202 survival times in Tga20xN158D mice were not as homogeneous as those observed for the 
 

203 other strains, as evidenced by less steep decline in the Kaplan-Meier curve (Fig. 1). 
 

204 Although survival time was significantly increased in Tga20xN158D mice, the clinical 
 

205 presentation in these mice was indistinguishable from that of mice expressing only the wt 
 

206 protein. Mice developed clinical signs typical of TSEs in rodents, including poor hair coat 
 

207 condition and kyphosis in the early stages of the disease, followed by proprioceptive deficits, 
 

208 head twitching, and progressive ataxia, which became severe in terminal stages. However, 
 

209 certain clinical signs were more evident in animals infected with a given inoculum (e.g., the 
 

210 opisthotonos observed in all three genotypes of mice inoculated with the 22L strain, a sign that 
 

211 may be due to cerebellar lesions). 
 

212 Expression of the dominant-negative protein did not alter the neuropathological features of 
 

213 the disease 
 

214 Despite the substantial prolongation of survival time in mice co-expressing the N158D PrP 
 

215 substitution, an exhaustive comparison of the two models expressing equivalent levels of wt 
 

216 PrPC (Tga20xKO and Tga20xN158D mice) revealed no significant differences in terms of the 
 

217 neuropathological characteristics of the disease. Lesion profiles and prion protein deposition 
 

218 patterns, evaluated semi-quantitatively on a scale of 0 to 5, were very similar between 
 

219 different genotypes inoculated with the same strain (Figs. 2 and 3). Our results are consistent 
 

220 with those of another study in which Tga20 mice were infected with all the same inocula [27], 
 

221 indicating   that   the   mouse-adapted   strains   used   in   the   present   study   retained   their 
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222 characteristic  histopathological  features  and PrPSc deposition  profiles.  All mice infected with 
 

223 the  22L  strain  developed  particularly  severe  spongiform  lesions  and  showed  marked PrPSc 
 

224 deposition in the T, Ht, Mes and Mo (Figs. 2 and 3a). Inoculation with the RML strain resulted 
 

225 in intense histopathological changes and PrPSc deposition predominantly in the T, Mes, and Mo 
 

226 (Figs. 2 and 3a), with low vacuolation scores observed in the Cbl. The spongiform lesions 
 

227 caused by the 301C strain were mainly located in the T, Mes, and Mo (Fig. 2). Compared with 
 

228 the  other  strains  used,  this  mouse-adapted  BSE  strain  produced  slightly  less  intense PrPSc 
 

229 deposition throughout the brain (Fig. 3a), as described previously in wt mice [28]. Finally, 
 

230 inoculation  with  ME7  resulted  in  severe  spongiosis  and  vacuolation  in  the  Sa,  T,  Ht, and 
 

231 brainstem (Fig. 2) and very intense PrPSc deposition in the Hc, T, and Sa in all genotypes, (Fig. 
 

232 3a), indicating that the main features of the ME7 strain, as previously described in Tga20 mice 
 

233 [27], were preserved (Fig. 3b). 
 

234 The results of biochemical analyses were consistent with the histopathological 
 

235 findings. No significant differences in PrP glycosylation and electrophoretic mobility patterns 
 

236 between Tga20, Tga20xKO, and Tga20xN158D mice were observed for any of the strains 
 

237 inoculated (Fig. 4). We further investigated whether the similarities observed between 
 

238 Tga20xKO and Tga20xN158D mice regarding the histopathological and biochemical features of 
 

239 the disease could be related to an exclusive conversion of wt PrPC. Serial dilutions of brain 
 

240 homogenates from 22L infected Tga20xKO and Tga20xN158D mice were analyzed for PrPres 
 

241 using two different antibodies: 5C6, which is unable to detect N158D PrP since it requires the 
 

242 presence of asparagine at codon 158 [23], and SAF83, which detects both wt and N158D PrPs. 
 

243 No differences were observed in the amount of PrPres detected by these antibodies in 
 

244  
 

245  

Tga20xN158D mice, indicating that only wt PrPC was converted (Supplementary Fig. 3). 

 

246 Discussion 
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247 Certain PrP polymorphisms are strongly linked to susceptibility/resistance to prion diseases. 
 

248 This relationship has been well documented in sheep, leading to the establishment of five 
 

249 haplotypic PrP gene variants associated with scrapie susceptibility [29]. Among the three main 
 

250 polymorphisms of ovine PRNP, variations at codon 171 appear to be the principal 
 

251 determinants of resistance to classical scrapie; sheep with arginine at this specific residue are 
 

252 resistant to natural [30] and experimental [31,32] scrapie infection. Heterozygosity at certain 
 

253 PrP positions also exerts protective effects against human prion diseases [33]. 
 

254 The ability of certain variant proteins to interfere with co-expressed wt PrP and block 
 

255 prion replication is known as a dominant-negative effect. This has been experimentally 
 

256 reproduced in cells and in transgenic mice, and may have implications for the development of 
 

257 therapeutic strategies for prion diseases [34-37]. The use of PMCA in in vitro studies has 
 

258 proved an efficient means of testing a wide variety of PrPs with different substitutions in order 
 

259 to identify the most appropriate dominant-negative changes [16]. 
 

260 In the search for PrPs that exert a consistent and potent inhibitory effect on in vivo 
 

261 prion propagation, it seems reasonable to begin with PrPs from species with demonstrated low 
 

262 susceptibility to prion diseases. For the purposes of this study, we selected dog prion protein, 
 

263 in which low susceptibility has been proven [19,20]. Using cell and brain-based PMCA, we 
 

264 previously demonstrated that the substitution of asparagine with aspartic or glutamic acid at 
 

265 codon 163, a distinctive substitution from the Canidae family [38], strongly inhibits prion 
 

266 replication in vitro. Moreover, we found that when transgenic mice overexpressing a PrP 
 

267 variant carrying this substitution were challenged with several mouse-adapted prion strains, 
 

268 they were completely resistant to prion infection [Fernández-Borges N, et al. (submitted)]. 
 

269 Based on these findings, we investigated whether the co-expression of this mutant PrP 
 

270 together with wt mouse PrP could interfere with prion propagation, thereby preventing or 
 

271 delaying the onset of the disease in vivo. 
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272 Co-expression of both proteins dramatically increased survival times after inoculation 
 

273 with any of the four mouse-adapted prion strains tested (22L, RML, 301C and ME7). 
 

274 Furthermore, survival times in Tga20 and Tga20xKO mice differed significantly. This was not 
 

275 unexpected since PrPC expression levels dramatically influence the incubation time in prion 
 

276 diseases, and expression levels of PrPC are inversely proportional to the duration of the survival 
 

277 period [39,40]. However, it is important to note that, in our study, the appropriate comparison 
 

278 of survival period is with that of mice expressing an equivalent amount of wt PrP (i.e., 
 

279 Tga20xKO vs. Tga20xN158D mice; Table 1). 
 

280 The elongation of the survival times produced by the co-expression of an exogenous 
 

281 protein  can  be  the  result of  several  processes.  We observed  that,  when  PrPres levels  from 
 

282 Tga20xKO  and  Tga20xN158D  mice  culled  at  different  days  post  inoculation  (dpi)  were 
 

283 compared, Tga20xKO mice showed higher amounts of PrPres, even at shorter incubation 
 

284 periods than Tga20xN158D mice (Supplementary Fig. 4). Thus, we can suggest that the longer 
 

285 survival times observed in Tga20xN158D mice may be due to a slower rate of misfolding of the 
 

286 wt PrP, therefore producing a delayed accumulation of PrPSc. However, the molecular 
 

287 mechanisms by which N158D PrP delays prion propagation remain unclear. Several theories, 
 

288 most of them developed using scrapie infected cell models, have been proposed to explain 
 

289 how dominant-negative proteins inhibit prion propagation. Although differing only at one 
 

290 position from the wt PrP, dominant-negative proteins could obstruct the interactions between 
 

291 similar PrP monomers [39,41-43] since the difference between mutant and wt PrP could make 
 

292 them structurally incompatible [44]. This dissimilarity could interfere with the rate of 
 

293 formation [37] and the stability of PrPSc polymers [41,45]. In addition, it has been also 
 

294 proposed that dominant-negative proteins may compete with wt PrPC for binding to newly 
 

295 formed PrPSc molecules [45,46]. Thus, the prolongation in survival times observed in the 
 

296 present study might also be the result of a greater affinity of N158D PrP for interacting with 
 

297 PrPSc than that of wt PrP. Due to the apparent resistance of N158D PrP to misfold 
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298 (Supplementary Fig. 3), a competition of this mutant and wt PrP for the same binding site in 
 

299 PrPSc would explain the delay of the disease observed in Tga20xN158D mice, as previously 
 

300 reported [45,46]. 
 

301 Although survival times were significantly increased in Tga20xN158D mice inoculated 
 

302 with all experimental strains, this effect was not homogeneous for all strains. The greatest 
 

303 increase was observed in mice inoculated with the 22L strain: survival time in mice carrying the 
 

304 N158D PrP variant was 113% longer than that of controls. The smallest increase in survival 
 

305 times was observed in RML-inoculated Tga20xN158D mice (45% increase). It is well 
 

306 demonstrated that when propagated in vivo, distinct mouse-adapted prion strains differ in 
 

307 terms of incubation period, as well as their biochemical and neuropathological features [47- 
 

308 50]. Strains can also show biophysical, molecular, and, as in the case of the strains used in the 
 

309 present study, ultrastructural differences [51,52]. These findings could explain that different 
 

310 tertiary and/or quaternary structures were also differentially affected by the blockade of a 
 

311 dominant-negative protein. The molecular mechanisms by which N158D PrP partially blocks 
 

312 prion propagation remain unclear. Our findings suggest that the dominant-negative effect of 
 

313 this mutant protein is stronger with certain strains (22L and 301C) than with others (RML and 
 

314 ME7).  Other  dominant-negative  proteins  have  been  also  reported  to  interfere  with  the 
 

315 generation of PrPSc in a strain-specific manner. As an example, Q218K PrP strongly inhibits the 
 

316 misfolding of co-expressed wt PrP in Chandler-infected cells but produces a much weaker 
 

317 inhibition with 22L strain. This distinct effect was attributed to the structural differences, 
 

318 determined by IR spectroscopy, between Chandler and 22L strains [53]. As aforementioned, 
 

319 we cannot know for certain what precise molecular mechanisms are involved in the partial 
 

320 dominance exerted by N158D PrP. However, if the dominant-negative protein blocks fibril 
 

321 growth, ultrastructural differences between strains could account for the differential effect 
 

322 (45%–113% increase) of the dominant-negative protein on the survival period. 
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323 The dominant-negative effect of certain mutant PrPs on PrPSc formation has been 
 

324 already demonstrated in vivo in transgenic mice co-expressing wt PrP [36]. In that study, mice 
 

325 expressing PrPs containing ovine and human TSE resistance-associated substitutions were not 
 

326 completely resistant to prion formation when mutant and wt mouse PrPs were co-expressed. 
 

327 Our findings are in agreement with those results, and demonstrate that minimal amino acid 
 

328 changes can produce highly efficient dominant-negative variants able to double the survival 
 

329 period when co-expressed with wt mouse PrPC. Extrapolating these findings to humans, in 
 

330 which the incubation period of prion diseases can last for decades, it seems possible that 
 

331 affected individuals may never develop clinical signs. The ability shown by certain PrP 
 

332 molecules with single residue substitutions to interfere with the misfolding of the endogenous 
 

333 PrPC has already been demonstrated. However, most of the approaches have been performed 
 

334 using cell cultures [34,41,53], whereas in vivo studies are limited [36,54]. In addition, the 
 

335 dominant-negative effects described for this type of molecules, albeit potent, have been 
 

336 demonstrated against a limited number of strains [36,41,53]. Herein, we show that N158D PrP 
 

337 produces a dominant-negative inhibition in the propagation of a variety of prion strains, of 
 

338 both scrapie (22L, RML and ME7) and BSE (301C) origins. The delay of the disease was not 
 

339 homogeneous among the strains despite showing inhibition against the propagation of all of 
 

340 them.  When  describing  dominant-negative  PrPs  it  is  important  to  check  their  ability  to 
 

341 interfere with the propagation of prions from different origins and characteristics. Other 
 

342 naturally occurring amino acid variants of PrPC, such as sheep Q171R, have demonstrated a 
 

343 strong dominant-negative inhibition in the propagation of scrapie strains [34-36,45]. However, 
 

344 it has been shown that sheep with Q171R are susceptible to atypical scrapie [55] as well as BSE 
 

345 [56]. Thus, our study suggests that N158D PrP, a substitution found in canids in which no 
 

346 natural prion diseases have been reported, may be a dominant-negative protein with a 
 

347 broader inhibitory effect. 
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348 The prolongation of the incubation period seen in the present study was less dramatic than 
 

349 that reported by Perrier and coworkers in RML-inoculated mice co-expressing equal amounts 
 

350 of wt PrP and dominant-negative PrP. However, wt PrP expression levels in our Tga20xN158D 
 

351 mice are 4 times higher than those of wt mice, making it more difficult to fully block prion 
 

352 formation. It cannot be ruled out that if an equimolecular amount of dominant-negative PrP 
 

353 and wt PrP is required for the complete blockade of prion propagation, we would need to 
 

354 double the amount of N158D PrP. The dose dependent, dominant-negative inhibition by other 
 

355 similar molecules has already been demonstrated [41,45,36], showing that certain dominant- 
 

356 negative proteins need to be present in high amounts to inhibit endogenous PrPC conversion 
 

357 [45,36]. We have observed that N158D PrP, even being expressed at lower levels than wt PrP, 
 

358 is able to significantly extend the survival period in Tga20xN158D mice. 
 

359 The neuropathological changes seen in our Tga20xN158D mice were very similar to 
 

360 those observed in mice expressing only wt PrP, with few significant differences observed in 
 

361 terms of lesion and PrPSc deposition profiles (Figs. 2 and 3). These findings, coupled with the 
 

362 complete resistance to intracerebral challenge seen in mice expressing N158D mutant protein 
 

363 only [Fernández-Borges et al (submitted)], could lead us to think that the pathological form 
 

364 detected and therefore the neuropathological hallmarks observed in Tga20xN158D mice are 
 

365 due only to the conversion of the mouse wt protein. Fortunately, the expression of aspartic 
 

366 acid at 158 residue of mouse N158D PrPC impedes the epitope recognition of 5C6 antibody 
 

367 [23], and therefore it allows discrimination between wt and N158D PrPC. Our results indicate 
 

368 that  only  mouse  wt  PrPC  was   converted  in  Tga20xN158D   mice   (Supplementary   Fig.   3). 
 

369 However,  in  our  Tga20xN158D  model,  in  which  wt  and  mutant  PrP  are  co-expressed, we 
 

370 cannot rule out the possibility that misfolding of the mutated PrP may occur, albeit to a lesser 
 

371 extent. Unfortunately, given that the two forms differ by a single amino acid, we cannot 
 

372 establish whether this occurs. Nonetheless, we found that Accordingly with this suggestion, 
 

373 most of the pathological features previously described in Tga20 mice inoculated with the 
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374 strains used in the present study [27] were reproduced in Tga20xN158D mice. All of the prion 
 

375 strains tested produced marked spongiosis and PrPSc deposition in both the thalamus and 
 

376 brainstem of Tga20xN158D mice (Figs. 2 and 3), regions previously proposed as clinical target 
 

377 areas of these strains in Tga20 mice [27]. In mice co-expressing N158D PrP, these different 
 

378 prion strains retained their specific pathological characteristics, as evidenced by the marked 
 

379 PrPSc deposition in the hippocampus of ME7-inoculated mice (Fig. 3b) [27] and the 
 

380 characteristic affectation of the cerebellum in those inoculated with the 22L strain [57]. 
 

381 Expression of the dominant-negative protein therefore appears not to have affected the 
 

382 characteristic pathological hallmarks of these strains, indicating that the increase in survival 
 

383 times observed in Tga20xN158D mice is not due to strain modifications caused by the amino 
 

384 acid substitution of the dominant-negative protein. 
 

385 Based on our findings, we conclude that N158D PrP acts as a dominant-negative 
 

386 protein to partially block the conversion of PrPC to PrPSc, and is thus a promising candidate for 
 

387  
 

388  

gene therapy strategies for the treatment of TSEs. 
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579 
 

580 

Table 1. Inoculation of Tga20, Tga20xKO, and Tga20xN158D mice with mouse-adapted prion strains. 

 

PrP expression levels 

Inoculum Model wt  Mutant 
(N158D) 

 
Attack ratea Survival time (dpi) 

(mean±SEM)b 

 
Relative increase in 
survival time (%)c 

 
22L 

Tga20xTga20 8x 0x 6/6 (100%) 91±2 - 
Tga20xKO 4x 0x 6/6 (100%) 98±2 - 

Tga20xN158D 4x 2x 11d/11 (100%) 209±3 113% 
 

RML 
Tga20xTga20 8x 0x 6/6 (100%) 70±3 - 

Tga20xKO 4x 0x 6/6 (100%) 88±1 - 
Tga20xN158D 4x 2x 11d/11 (100%) 128±3 45% 

 
301C 

Tga20xTga20 8x 0x 6/6 (100%) 75±1 - 
Tga20xKO 4x 0x 6/6 (100%) 92±4 - 

Tga20xN158D 4x 2x 12/12 (100%) 157±17 71% 
 

ME7 
Tga20xTga20 8x 0x 6/6 (100%) 96±2 - 

Tga20xKO 4x 0x 6/6 (100%) 101±2 - 
Tga20xN158D 4x 2x 10d /10 (100%) 150±3 49% 

581 
 

582 a Data based on PrPres detection. 
583 b Survival times were calculated as the number of days between inoculation and euthanasia, provided that the mouse developed clinical signs consistent with a TSE. Survival 
584 times are expressed as mean (± SEM) number of dpi. 
585 SEM, standard error of the mean; dpi, days post-inoculation. 
586 c Extension of the survival times in Tga20xN158D mice inoculated with each strain was calculated as the difference between the average survival time of Tga20xN158D and 
587 that of Tga20xKO expressed in relative percentages to the average survival times of Tga20xKO. 
588 dAnimals from the 22L (1), RML (1), and ME7 (2) inoculation groups died due to concomitant diseases during the initial stages of the study and were excluded from the 
589 analyses. These animals exhibited no spongiform lesions or PrPSc deposits and were not included in calculations of the SEM or attack rate. 
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590 Legends of figures 
 

591 Fig. 1 Survival curves for Tga20, Tga20xKO, and Tga20xN158D mice challenged with different 
 

592 mouse-adapted prion strains. Comparison of Tga20xN158D curves with Tga20xKO curves using 
 

593 the log rank test (α=0.050) revealed very significant differences for the 22L, RML, and ME7 
 

594 (p<0.0001)   and  the  301C  (p<0.0033)   inoculation  groups.  Survival   curves   for  Tga20 mice 
 

595 inoculated with the corresponding strains are also shown. Tga20xN158D mice infected with 
 

596 the 22L, RML, 301C, or ME7 prion strains showed relative increases in survival times of 113%, 
 

597  
 

598  

45%, 71%, and 49%, respectively when compared with those of Tga20xKO mice. 

 
 

599 Fig.  2  Brain  lesion  profiles  of  Tga20,  Tga20xKO,  and  Tga20xN158D  mice  inoculated  with 
 

600 different    mouse-adapted    prion    strains.    Spongiosis    and    vacuolation    were  evaluated 
 

601 semiquantitatively  on  a scale  of  0  (absence  of  lesions)  to  5  (high  intensity  lesions)  in the 
 

602 following 9 brain areas: frontal cortex (Fc), septal area (Sa), thalamic cortex (Tc), hippocampus 
 

603 (Hc), thalamus (T),  hypothalamus (Ht),  mesencephalon  (Mes),  cerebellum  (Cbl)  and medulla 
 

604 oblongata  (Mo).  Comparison  of  the  lesion  profiles  of  Tga20xKO  and  Tga20xN158D  mice 
 

605 revealed a very similar lesion distribution (*p<0.05, Mann-Whitney U-test). 
 
 

606  
 

607 Fig.  3  (a)  PrPSc  deposition profiles  in the brains of  Tga20, Tga20xKO, and Tga20xN158D mice 
 

608 inoculated  with  22L,  RML,  301C,  or  ME7  prion  strains.  PrPSc  deposition  was  evaluated 
 

609 semiquantitatively on a scale of 0 (absence of deposits) to 5 (high intensity deposition) in the 
 

610 following 9 brain areas: frontal cortex (Fc), septal area (Sa), thalamic cortex (Tc), hippocampus 
 

611 (Hc), thalamus (T), hypothalamus (Ht), mesencephalon (Mes), cerebellum (Cbl) and medulla 
 

612 oblongata (Mo). Comparison of the  PrPSc  deposition profiles of  Tga20xKO  and  Tga20xN158D 
 

613 mice  revealed  almost  identical  PrPSc  profiles  (*p<0.05, Mann-Whitney  U-test).  (b)  PET blot 
 

614 images of coronal sections of the mesencephalon from Tga20xKO and Tga20xN158D mice 
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615 inoculated  with  the  RML  or  ME7   strain.  Note   that   the  PrPSc   deposition  profile  of mice 
 

616 expressing  the  mutant  PrP  is  almost  identical  to  that  of  Tga20xKO  mice.  Moreover,  the 
 

617 characteristic  deposition  patterns  of  the  inoculated  strains  are  retained:  note  the marked 
 

618 deposition in the hippocampus in ME7-inoculated mice (arrows), a feature not observed in 
 

619 RML-inoculated mice. 
 
 

620  
 
 

621 Fig.  4  PrPres  detection  from  22L,  ME7,  301C  and  RML  inoculated  Tga20,  Tga20xKO  and 
 

622 Tga20xN158D  mouse   brains.   10%   brain  homogenates   from  22L,  ME7,   301C   and   RML 
 

623 inoculated Tga20, Tga20xKO and Tga20xN158D mice were digested with 80 µg/ml of Protease- 
 

624 K (PK). Digested samples were analyzed by Western blot using SAF83 (1:400). No significant 
 

625 differences  are  observed  between  any  of  the  Tga20,  Tga20xKO  and  Tga20xN158D  brain 
 

626 homogenates suggesting that N158D PrPC did not alter the major biochemical characteristics 
 

627 of  any  of  the  four  prion  strains.  Control:  Undigested  Tga20xKO  brain  homogenate.  Mw: 
 

628 Molecular weight. 
 
 

629  
 
 

630 Fig. S1 PrP expression levels from Tga20, Tga20xN158D, Tga20xKO and TgN158D mouse brains. 
 

631 10%   brain  homogenates  from  Tga20,  Tga20xN158D,   Tga20xKO   and  TgN158D  mice were 
 

632 diluted 1:40, 1:80, 1:160, 1:320, 1:640 and 1:1280 and were analyzed by Western blot using 
 

633 monoclonal antibodies 5C6 (1:2,000) which does not bind N158D PrP, and SAF83 (1:400) able 
 

634 to bind both types of proteins. The N158D PrP from Tga20xN158D and TgN158D mice is not 
 

635 observed when 5C6 monoclonal antibody is used but the use of SAF83 shows how the PrP 
 

636 expression  levels of  Tga20,  Tga20xN158D, Tga20xKO  and  TgN158D  are  approximately  ~8x, 
 

637 ~4x+~2x, ~4x+0x and ~4x compared to wt mouse PrPC, respectively based on signal intensity. 
 

638 No  significant  differences  are  observed  in  the  electrophoretic  migration  patterns.  Mw: 
 

639 Molecular weight. 
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640  
 
 

641 Fig.  S2  Histological  localization  of PrPC  in  Tga20xTgN158D  and  TgN158D  mouse  brains. (a) 
 

642 Immunohistochemical  detection  of  PrPC   in  neurons  of  the  deep  cerebellar  nuclei  from  a 
 

643 Tga20xN158D  and  a  TgN158D  mouse  using  5C6  and  SAF32  monoclonal  antibodies.  5C6 
 

644 antibody produces intense immunostaining in the Tga20xN158D mouse brain, corresponding 
 

645 to a mouse wt PrP staining, since this antibody does not recognize N158D PrP. Accordingly, no 
 

646 immunostaining is observed in the TgN158D mouse using the same antibody. However,  SAF32 
 

647 produces  a  strong  immunolabeling  in  a  serial  histological  section  from  the  same  animal 
 

648 showing   the   distribution   of   N158D   PrP.   Similar   immunolabeling   is   observed between 
 

649 Tga20xN158D  and  TgN158D  mice  using  SAF32  antibody.  (b)  TgN158D  mouse  brain  serial 
 

650 optical z-sections by confocal microscopy (x40). To more clearly determine the localization of 
 

651 N158D  PrP,  fluorescence  emission  from  a  TgN158D  mouse  brain,  stained  using  SAF32 
 

652 antibody,  was  analyzed  using confocal microscopy.  The  fluorescence emission resulted from 
 

653 excitation with 594-nm laser and was detected using long-pass 615-nm filter. 0,5 µm z-stacks 
 

654 of digital images were captured using Zen 2008 software (Carl Zeiss Microimaging) with 40x 
 

655 (NA 1.3) objective. A very intense neuronal staining of N158D PrP is observed. N158D PrP was 
 

656 detected in the neuronal membrane (arrows). 

657 

658 Fig. S3 PrPres detection from 22L inoculated Tga20xKO and Tga20xN158D mouse brains  using a 
 

659 monoclonal antibody unable to bind N158D PrP. 10% brain homogenates from 22L inoculated 
 

660 Tga20xKO and Tga20xN158D mice were digested with  80 µg/ml  of  Protease-K (PK)  and  then 
 

661 diluted 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64. Digested samples were analyzed by Western blot 
 

662 using two monoclonal antibodies subsequently: first, 5C6 (1:2,000) which does not bind N158D 
 

663 PrP, and later, using the same membrane, SAF83 (1:400) able to bind both types of proteins. 
 

664 No significant differences are observed between both blots indicating that N158D PrP was not 
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665 converted at least at the level to be distinguished by this technique. Control: Undigested 
 

666 Tga20xKO brain homogenate. Mw: Molecular weight. 

667 

668 Fig. S4 PrPres detection from RML inoculated Tga20xKO and Tga20xN158D mouse brains. 10% 
 

669 brain homogenates from RML inoculated Tga20xKO and Tga20xN158D mice, selected with 
 

670 different days post inoculation (dpi) were digested with 80 µg/ml of Protease-K (PK). Digested 
 

671 samples were analyzed by Western blot using SAF83 (1:400) and the signal level of PrPres are 
 

672 compared. Despite the RML inoculated Tga20xKO mice were culled at ~90 dpi, the amounts of 
 

673 PrPres are significant higher than the observed in the RML inoculated Tga20xN158D mice. This 
 

674 result suggests that the elongation of the incubation times in this model is likely due to a 
 

675 slower conversion of the wt PrPC. Control: Undigested Tga20xKO brain homogenate. Mw: 
 

676 Molecular weight. 
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Fig. S1 PrP expression levels from Tga20, Tga20xN158D, Tga20xKO and TgN158D mouse brains. 10% brain 

homogenates from Tga20, Tga20xN158D, Tga20xKO and TgN158D mice were diluted 1:40, 1:80, 1:160, 

1:320, 1:640 and 1:1280 and were analyzed by Western blot using monoclonal antibodies 5C6 (1:2,000) 

which does not bind N158D PrP, and Saf83 (1:400) able to bind both types of proteins. The N158D PrP from 

Tga20xN158D and TgN158DxTgN158D mice is not observed when 5C6 monoclonal antibody is used but the 

use of Saf83 shows how the PrP expression levels of Tga20, Tga20xN158D, Tga20xKO and TgN158D are 

approximately ~8x, ~4x+~2x, ~4x+0x and ~4x compared to wild‐type mouse PrPC, respectively based on 

signal intensity. No significant differences are observed in the electrophoretic migration patterns. Mw: 

Molecular weight. 

 

 

 



Fig. S2 Histological localization of PrPC in Tga20xTgN158D and TgN158D mouse brains. (a) 

Immunohistochemical detection of PrPC in neurons of the deep cerebellar nuclei from a Tga20xN158D and 

a TgN158D mouse using 5C6 and Saf32 monoclonal antibodies. 5C6 antibody produces intense 

immunostaining in the Tga20xN158D mouse brain, corresponding to a mouse wildr‐type PrP staining, since 

this antibody does not recognize N158D PrP. Accordingly, no immunostaining is observed in the TgN158D 

mouse using the same antibody. However, Saf32 produces a strong immunolabeling in a serial histological 

section from the same animal showing the distribution of N158D PrP. Similar immunolabeling is observed 

between Tga20xN158D and TgN158D mice using Saf32 antibody. (b) TgN158D mouse brain serial optical z‐

sections by confocal microscopy. To more clearly determine the localization of N158D PrP, fluorescence 

emission from a TgN158DxTgN158S mouse brain, stained using Saf32 antibody, was analyzed using confocal 

microscopy. Serial 0.5 µm z‐sections of medulla oblongata from this mouse were obtained using a green 

helium/neon (543 nm) laser system. A very intense neuronal staining of N158D PrP is observed. N158D PrP 

was detected in the neuronal membrane (arrows). 

 
 

 



Fig. S3 PrPres detection from 22L inoculated Tga20xKO and Tga20xN158D mouse brains using a monoclonal 

antibody unable to bind N158D PrP. 10% brain homogenates from 22L inoculated Tga20xKO and 

Tga20xN158D mice were digested with 80 µg/ml of Protease‐K (PK) and then diluted 1:2, 1:4, 1:8, 1:16, 1:32 

and 1:64. Digested samples were analyzed by Western blot using two monoclonal antibodies subsequently: 

first, 5C6 (1:2,000) which does not bind N158D PrP, and later, using the same membrane, Saf83 (1:400) able 

to bind both types of proteins. No significant differences are observed between both blots indicating that 

N158D PrP was not converted at least at the level to be distinguished by this technique. Control: Undigested 

Tga20xKO brain homogenate. Mw: Molecular weight. 

 

 

 



Fig. S4 PrPres detection from RML inoculated Tga20xKO and Tga20xN158D mouse brains. 10% brain homogenates from RML 

inoculated Tga20xKO and Tga20xN158D mice, selected with different days post inoculation (dpi) were digested with 80 µg/ml of 

Protease‐K (PK). Digested samples were analyzed by Western blot using Saf83 (1:400) and the signal level of PrPres are compared. 

Despite the RML inoculated Tga20xKO mice were culled at ~90 dpi, the amounts of PrPres are significant higher than the observed 

in the RML inoculated Tga20xN158D mice. This result suggests that the elongation of the incubation times in this model is likely 

due to a slower conversion of the wild‐type PrPC. Control: Undigested Tga20xKO brain homogenate. Mw: Molecular weight. 
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