
Journal of Power Sources 378 (2018) 311–321 

New Battery Model Considering Thermal Transport and Partial Charge 
Stationary Effects in Photovoltaic off-Grid Applications 

 
Iván Sanz-Gorrachateguia, Carlos Bernala, Estanis Oyarbidea, Erik Garayaldeb, Iosu Aizpurub, 
Jose María Canalesb, Antonio Bono-Nueza 
a Departamento de Ingeniería Electrónica y Comunicaciones, Universidad de Zaragoza, Zaragoza, Spain 
b Departamento de Electrónica, Mondragon Universitatea, Gipuzkoa, Spain 

Abstract: The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that 

assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution 

of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures 

over day-night cycles. 

Much of previous development work has been carried out in order to model the short term evolution of battery variables. 

Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they 

are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental 

conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer’s 

tests, batteries fail to perform as expected.  

This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge 

in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed 

and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at 

higher temperatures than the nominal one.  
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1. Introduction 



Small scale generation systems that use renewable sources are becoming popular in some specific applications, and almost all 

of them require the use of energy storage systems, usually battery packs. On the one hand battery packs are used to store 

energy and power the application during non-generation periods like, for example, night-time in Photovoltaic (PV) 

applications. On the other hand, the other main purpose when including batteries in small-scale generation systems is to 

mitigate the unforeseeable energy production rates that most renewable sources offer, such as cloudy or misty weather (PV 

application) or non-windy periods (wind application). In off-grid systems, these technologies are mainly based on 

electrochemical storage through batteries, using well-known chemistries such as Valve Regulated Lead-Acid (VRLA) 

batteries [1] and usually with stationary features. 

When it comes to designing one of these Energy Storage Systems (ESS), engineers usually consider battery manufacturer’s 

datasheets as their main tool for battery sizing purposes. Manufactures use laboratory experiments to characterize their 

batteries but in very specific conditions, e. g. fixed optimum test temperature, full-charge tests, etc. These controlled tests do 

not usually fit the real performance conditions of renewable energy applications (because of the unstable conditions 

concerning off-grid installations) and so, the results cannot be extrapolated. Moreover, in off-grid system applications these 

uncontrolled parameters have a huge impact on battery performance [2]. As there is almost no information about the 

influence of these variations, from manufacturer’s tests to real applications, electrical engineers are forced to oversize the 

installation designs, as a measure to avoid energy supply disruption. 

This study addresses how to model some of these uncontrolled effects in batteries related to off-grid PV sites. The main 

environmental variables that have an influence on this kind of installation are temperature and insolation. On the one hand, 

while temperature impact is measured by battery manufacturers over many cycles [3], temperature variations within the same 

cycle are not studied. On the other hand, regarding insolation, uncertainty exists regarding over time incomplete charge 

cycles, and the decrease in effective battery capacity that they produce. As a previous work to this paper, these issues have 

been described in [4], and are not usually modeled together. 

Nowadays, there is an increasing interest in the research of battery models (mainly boosted by their use in the Electric 

Vehicle application (EV) and on-grid ESS). These technologies are mainly specialized in cycling capabilities, such as 

batteries based on Lithium-Ion or ultracapacitors [5]–[7]. This fact has caused an increase in battery modelling effort in 

literature, but unfortunately, simulation of off-grid PV ESS applications is not the main aim of these studies. The modelling 

techniques that have been proposed can be mainly classified into on-line estimation algorithms [8] or off-line simulation 

models [9], and are mainly focused in diagnosing performance parameters throughout the battery use, such as estimating 

State-Of-Charge (SOC) [10], [11], or service life (State-Of-Health, SOH) [12], [13]. 



Moreover, most studies are usually addressed in nominal temperature conditions (20ºC or 25ºC) where batteries perform 

best, omitting the huge impact that temperature has on features like capacity or degradation. If considered, temperature is 

mostly addressed as a static variable, omitting temperature changes within the same cycle [14], [15]. Hence there is also 

uncertainty regarding the impact of charge–discharge cycles in non-constant temperature environment [4]. Being deployed in 

remote, isolated locations, off-grid PV ESS applications are greatly affected by this specific kind of thermal cycles, which 

have an important impact on charge estimators and energy management policies. 

Additionally, in off-grid PV applications battery packs suffer from incomplete charge cycles. When testing a battery in a 

laboratory, manufacturers use complete charge processes to measure the battery capacity. During these tests, batteries are 

kept in float stage for several hours, typically 72h [3], [16], [17] and can be considered fully charged prior to the test. Once 

discharged, all the energy is drawn from them. However, in a real ESS with one battery pack in an off-grid PV application, 

batteries cannot remain in that stage so many hours, since batteries are discharged during the night. This incomplete charge 

processes leads to a steady partial charge state, as described in [4] that lowers the effective available charge for non-

generation periods.  

Coming ESS generations will include more than one energy storage packs, and there will be an increasing number of 

publications related to energy management policies, which control the power flow inside the ESS. In order to simulate these 

behaviors and to develop new intelligent policies, a well fitted battery simulation model will be needed. 

This paper proposes a new battery model intended for off-grid PV applications, which is able to make long-term predictions, 

and not only short-term estimations based on past or real-time data. The model introduces a novel thermal transport 

estimation feature that considers charge and discharge processes at different temperatures within the same cycle. It is also 

capable of performing accurate estimations of the remaining charge inside a battery after several incomplete charge cycles 

with progressive temperature changes. The model performs long term predictions and performance simulations of ESS, being 

able to forecast SOC in off-grid PV applications with real world conditions In this paper, SOH is not taken into account, 

since it is not possible to evaluate its impact on battery performance in the short term, and its effects can be ignored in a short 

time window. Future work will deal with this issue, leading to a more complex model. 

2. Methodology 

Typically, batteries work in the Current Regulation Phase (the charger fixes the current through the battery) while charging. 

As the battery charges it voltage rises, until it reaches a value established as the float voltage. When this happens, the battery 

charger switches to Voltage Regulation Phase and the current that the battery draws decreases over time (current tail). 



Furthermore, in this application (off-grid supplied telecom equipment), the load demands a constant current from the battery. 

This will be relevant when choosing inputs or outputs to the model. 

2.1. Model Description 

The aim of the battery model is to: a) replicate the battery charge over time, and b) provide the related voltage. When dealing 

with charge, the most widely used parameter is SOC. Many studies have addressed SOC estimation using different 

approaches [13]. Extended Kalman Filter (EKF) together with circuital modelling [18] is one of the most popular, intended 

for on-line estimation applications. Coulomb Counting (CC) is another approach [19] similar to State-Space (SS) modelling. 

The latter is the modelling approach retained in this paper. 

2.1.1. Basic battery model 

Before proceeding, some definitions are required: 

 Q: represents the stored charge in the battery. This charge is obtained with the CC or SS method, by integrating the 

input current through the battery terminals. 

 CNOM: is the rated capacity of the battery, as specified by the manufacturer. Usually measured at 20ºC or 25ºC, and 

in full charge conditions. 

 ibatt: represents the current that flows through the battery terminals. 

 SOC: is the traditional definition of State-Of-Charge, obtained by comparing the stored charge Q with the rated 

capacity CNOM as displayed in (1). The definition in (2) can be obtained applying the CC method. An alternative 

definition (SOCV) will be used, as explained further [11]. 
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 OCV: is the Open Circuit Voltage of the battery, i.e. its voltage with no current flow through its terminals and once 

the relaxation of the battery is completed. It is related to the SOC by a non-linear relationship. 

 vbatt: represents the voltage measured at the battery terminals, with or without current. OCV and vbatt are related by 

the battery output impedance model and ibatt. 

A first hypothesis is made to formulate the model: Q is supposedly predictable, that is, considering the evolution of external 

variables of the system (current patterns, float voltage and temperature) it is possible to compute the evolution of Q. An 



internal description through a SS model has been retained where the SOC, defined as in (1), represents a tentative State 

Variable, see Fig. 1.a. The basic model estimates SOC through the well-known method of CC (2). Input current integration is 

translated into the remaining charge inside the battery, which acts as a state variable. 

The next step in the model is to establish the battery OCV as a result of the SOC, based on the measured charge-discharge 

curves. This first basic scheme models the electrochemical processes within the battery, which are complex and beyond the 

scope of this work. The basic model is completed with an electrical modelling of the dynamic behavior of the battery [20], 

see Fig. 1.b. 
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Fig. 1. Basic battery model. (a) Electrochemical modelling. (b) Electrical modelling 

Using the impedance model of the battery and knowing the current, it is possible to determine the battery output voltage. 

Some studies introduce a complex impedance model: authors in [21] propose an asymmetric charge-discharge resistance, 

introducing RC tanks [22] and using One Time Constant (OTC) models (Fig. 2.a) or Two Time Constants models (TTC) 

(Fig. 2.b) [23], [24]. In order to model the self-discharge current, some studies add a resistor in parallel with the controlled 

voltage source OCV. This is the case when dealing with VRLA, whereas in lithium-based batteries it is not even considered. 

In this study, the OTC model is retained as a sufficient accuracy vs complexity compromise. 
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Fig. 2. (a) OTC impedance model. (b) TTC impedance model. 

2.1.2. Underestimated effects 

As it has been previously pointed out, there are some non-idealities that are not usually included in battery models but that 

must be considered: 

 Temperature effect in real time performance. It is well-known that temperature influences battery performance, 

decreasing the maximum available capacity and the coulombimetric efficiency. The optimum operation conditions 

are reached around 20ºC. This effect varies with the chemistry technology, displaying different tendencies in Lead-

Acid from Nickel-Cadmium or different types of Lithium [3], [16], [17]. The effects of varying temperature within 

the same charge-discharge cycle are not usually taken into account, but have a non-negligible impact in this 

application.  

 

 Incomplete charge process. In regular laboratory tests, batteries are fully charged and discharged to evaluate their 

capacity, remaining several hours in bulk and float stages to ensure a complete charge. In off-grid PV applications, a 

complete cycle lasts just one day, and charge (insolation) hours may fluctuate considerably (depending on the 

season and latitude). Thus, a full-charge situation can never be assured. Due to this, the battery is always in an 

intermediate charge state. This is a less studied effect, but has proved to be as important as temperature, as it causes 

a further decrease in battery effective capacity. 



Both effects together lead to a major reduction in actual available battery charge. This causes lower than expected charge 

reserve on typical days and can force a full battery discharge on a critically low sunlight day. It is paramount to take into 

account this behavior if an accurate simulation of the SOC evolution is desired. 

It is not a simple task to incorporate these effects into a simulation model. As stated in (1), one of the parameters that define 

the SOC is CNOM. Incorporating instant variations of this term (e.g. due to temperature) leads to instant variations of the SOC 

estimation, and to instant variations of the OCV term, both of which are not possible.  

The typical test to measure this capacity consists in a full charge-discharge cycle, with several hours in floating state under a 

constant temperature. After that, CNOM is established as the amount of Coulombs (or Ah) discharged in the process. In a 

photovoltaic installation, the charge process is limited by sunlight hours/radiation and is performed under variable 

temperatures. Thus, a battery cannot remain in the float stage for several hours, as in a manufacturer’s tests and hence, the 

term CNOM is not useful in modelling this application. Some studies [12], [25] reject the use of CNOM and try to model its 

effects as a circuital non-linear bulk capacitance, but some temperature effects are left unmodelled if this approach is 

followed [13], [26]. 

The work presented here follows another approach based on a non-linear SS modelling and data-driven tests. How to 

incorporate these effects is explained in the following sections. 

2.1.3. Thermal transport modelling 

It is accepted that temperature has a great impact on battery performance. From a functional point of view, it influences in 

two ways:  

 Current integration speed. Some studies [25], [27] support that temperature causes “current inefficiency”, meaning 

that not all current is translated into charge.  

 Maximum storable charge. From the same stored charge starting point, OCV grows faster in a colder battery, so it 

has stored less charge when it reaches float voltage.  

The impact of temperature on battery performance has been traditionally addressed and measured in static exploration 

conditions. In other words, using the same temperature for the whole charge-discharge process. The results of the static 

temperature tests show that different operation temperatures cause a dramatic impact on battery capacity [3]. Example given, 

operating at a temperature 20ºC below the nominal temperature can lead to a 40-50% capacity drop in VRLA technologies. 

On the other hand, temperatures above the nominal one increase the effective capacity but, at the same time, they also 

increase the long term degradation that the battery undergoes. 



When trying to integrate this effect in a model, capacity reduction caused by temperature makes Q, SOC and OCV no longer 

directly related as in the basic model. Q and OCV cannot be connected through simple functions, since colder and warmer 

batteries with the same measured CNOM offer the same range of voltages in spite of their different storage capabilities [28]. 

In order to be able to model these situations it is necessary to modify the basic and accepted model of a fixed capacity. This 

modification is based on the following verified facts:  

 OCV does not vary instantly as the result of a temperature change. It is its time derivative which does so [29] when 

current flows. 

 Voltage rises and drops faster in a colder battery. This affects the maximum storable charge. 

 As well as OCV, stored charge Q, does not vary instantly, but its time derivative does vary with the terminal current 

[11]. 

 Temperature affects the maximum storable charge while the battery is charging. Once it is charged, it has a lower 

impact [4] since practically all the stored charge may be drawn from it. 

Some authors [11] propose dual SOC models in order to deal with capacity reduction issues when considering battery aging. 

To model the capacity reduction caused by temperature, the work presented here proposes a dual SOC model as well. 

In order to differentiate the traditional SOC obtained by CC from that obtained through OCV, some additional definitions are 

required: 

 Definition: SOCV is the State-Of-Charge obtained using the OCV as a measure, instead of the CC method. 

 Definition: CEX represents the expected Capacity a battery shows instantly, when operating at different temperatures 

from the nominal. It is obtained by comparing Q against SOCV, as in (3). 
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 Definition: η1(T) represents the current inefficiency coefficient, which models the impact of temperature on the 

current integration speed. It is a non-linear function that needs to be measured. 

 Definition: η2(T) models the maximum capacity cap caused by temperatures different from the nominal temperature. 

It is also a non-linear function that needs to be measured or trained. 

Thus, SOCV and OCV have a one to one relationship as displayed in Fig. 3 (a) [11]. As happens with OCV, it is not this SOCV 

which varies with temperature, but its time derivative.  



In the basic model described in the previous section, only one state variable, Q, was needed since it was directly related to 

SOC and OCV. Once thermal fluctuations are introduced, there is a clear need to use two state variables, Q and OCV, as 

separate state variables. This is new and allows to model the desired effects. Therefore, a non-linear state-space approach can 

be considered to model this behavior. The equations are described as follows:  
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Equation (4) can be developed using the current efficiency described previously: 
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Equation (5) can also be developed, relating OCV to SOCV as in (7). The term η2(T) which modifies the expected capacity, 

can be introduced in (8): 
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As hypothesized, OCV and SOCV maintain a one-to-one non-linear relationship, so (9) and (10) can be established. 
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Replacing (8), (9), and (10) into (7), the final non-linear state equation for OCV can be achieved: 
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There are four non-linear functions, η1(T), η2(T), f1(OCV) and f2(OCV) which are to be either measured or estimated. Fig. 3.a 

describes the relationship between OCV and SOCV as an injective function, f1(OCV) defined as in (9) can be determined as its 



inverse function and f2(OCV), as its derivative (Fig. 3.b, c). The temperature-dependent functions η1(T), η2(T) and how to 

measure them, will be discussed further on. 

 

Fig. 3. (a) OCV-SOCv Curve. (b) Inverse curve. (c) Derivative curve. 

2.1.4. Partial charge modelling 

In some other battery applications such as EV, or in capacity measuring tests, charge processes may take as long as 

necessary. The battery may remain in floating stage or equalizing stage for several hours, until it can be considered fully 

charged. The batteries under study, for example, must remain in float stage at 2,23V/cell for 72 hours to be considered at full 

charge, according to the manufacturer’s indications. The use of higher float voltages may shorten this period of time, but 

never below 24h in floating phase. 



In a PV installation, charge hours rely only on insolation. Thus, a battery can never remain in float stage for 72h (so it can 

never be considered fully charged). A typical current pattern is shown in Fig. 4.a. Due to this natural limitation during the 

insolation hours, the battery never reaches its full charge state and remains in a partial charge state, decreasing the available 

energy at critical periods of time (Fig. 4.b). 
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Fig. 4. (a) Average PV charge pattern. (b) Partial SOCV reached with this pattern. 

There are two main parameters within the model that define the current tail that appears in the float stage, which are the 

curve that associates SOCV with OCV, and the aggregate electric impedance that the system offers (the addition of the 

internal battery impedance and the installation parasitic resistance). A battery can be modeled as a non-linear capacitance 

[30], [31] with a very high storage capacity. Though its internal voltage varies non-linearly with the charge it stores, this 

effect can be explained using a simple RC equivalent circuit under constant voltage. A higher ESR limits the peak current tail 

in float stage, decreasing the amount of charge stored in this period of time and extending the current tail throughout time. A 

small ESR allows a higher peak current, helping the battery to reach the minimum tail sooner (ideally zero). 

As explained, in order to capture partial charge effects, there is a clear need for battery impedance characterization. Among 

all impedance modelling options found in state of the technique, this study considers the OTC model (Fig. 2 (a)) as an initial 

approach to the impedance modelling.  

This circuital model can be included into the SS model, using equation (12). 
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Hitherto, the equations have described the state variables, but the inputs and the outputs to the system have not been 

discussed. When the battery is working in the current regulation phase, the charger fixes ibatt, and vbatt acts as an output of the 

model (13): 

batt batt S Pv OCV i R V     (13) 

However, when the vbatt reaches the float voltage, the charger changes to Voltage Regulation Phase, and so vbatt is fixed and 

represents an input to the system, and the battery chooses ibatt. The current can be calculated as an output of the SS system 

(14): 
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The method to obtain the parameters RS, RP and CP will be discussed later. 

2.1.5. Complete model 

Taking into account these effects, which are usually not considered, and making use of the SS modelling, this study proposes 

the complete model described by the following state equations (15). The state variables are OCV, Q and VP. 
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 (15) 

For simulation purposes, an external element is required (simulating the battery charger or solar regulator) that models the 

battery charge policy. This element switches between both control modes (Current Regulation Mode, Voltage Regulation 

Mode) e.g. when the desired float voltage is reached, or when insolation hours end and discharge starts. 

3. Results and discussion 

3.1. Model Training 

The usual procedure when sizing battery installations is to consult the manufacturer’s catalogue and datasheet. The 

information they provide, such as aging consequences or the impact of temperature in capacity, comes from normalized 

laboratory tests, in which batteries are subjected to full charge-discharge tests, and thus, capacity is defined. For instance, low 

temperature impact is addressed as a reduction in the battery capacity [3], [16]. A first approach to train the model could be 



to use this data for this purpose. This straightforward approach is not suitable when considering intra-cycle temperature 

variations. 

In order to train the model, battery tests have been performed. These are described in the following sections and the test 

bench used for these measures is displayed in Fig. 5.a. It consists of a climatic chamber (A), where the batteries (B) are kept, 

and an ad hoc designed battery cycler (C), which can act as a power source or a power sink, and controls how the batteries 

are charged or discharged (Fig. 5.b). Both of them can be controlled from a PC (D) using MatLab software and a 

communication protocol. Other elements such as a multimeter (E) or an oscilloscope are also used in the test bench. 
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Fig. 5. (a)Test bench. (b) ad hoc battery cycler scheme 

The test parameters are displayed in Table 1. 

Table 1. Discharge test features 

Battery cell  Exide OPzS Solar 

Nominal Capacity [Ah]  190 

Nominal Voltage [V]  2 

Number of cells  2 

Nominal Temperature [ºC]  25 

Multimeter  BK PRECISION 5491B 

Power supply  PM3006-2 

Oscilloscope  TEKTRONIX TD57104 

Climatic chamber  Prebatem 2000962 

Battery Cycler  Ad-hoc cycler 



3.1.1. Temperature fitting 

As the new model being considered differs from the traditional use of capacity, a new laboratory temperature test must be 

designed. As a result of the analysis of temperature patterns in a Spanish continental climate, where the studied PV 

installations are located, three temperatures have been established as references to conduct laboratory tests. Specifically, 

these test temperatures are: 

 25ºC. Used as nominal temperature, where the battery performs as expected by datasheet. 

 5ºC. Used as a cold reference temperature. 

 35ºC. Used as a hot reference temperature. 

In order to capture the thermal transport effect, cross-temperature charge-discharge cycles will be performed. This means that 

the tests are designed to separate the temperature influence during the charge process, from the influence during the 

discharge process. The tests consist of a charge process with several hours in float stage at the selected charge temperature, 

followed by a full-discharge process at the selected discharge temperature. Following the tests, the previously introduced 

efficiency coefficients η1(T) and η2(T) may be determined. 

The results of the cross-temperature Coulomb efficiency are displayed in Table 2. This efficiency is related to the reference 

cycle (charge at 25ºC, discharge at 25ºC). From these results, η1(T) and η2(T) can be estimated. 

Table 2. Cross-temperature efficiency results 

Charge 
Temperature 

Discharge 
temperature 

Coulomb 
Efficiency 

5ºC 5ºC -34.7% 

25ºC 
5ºC -12% 

35ºC +5% 

35ºC 35ºC +16.4% 

 

The OCV factor, η2(T), is not directly obtainable due to the non-linear functions within the model. It modifies the maximum 

storable charge when charging at different temperatures. However, if the batteries have been charged at the same 

temperatures, the Q term compensates the temperature impact, and it has no effect on the outcome. Thus, the differences in 

the Coulomb Efficiencies in the cycles (charge at 25ºC; discharge at 5ºC) and (charge at 25ºC; discharge at 35ºC) are caused 

by the η1(T) coefficient. These coefficients are linear with the stored charge Q (they directly modify ibatt). Therefore, these 

can be directly extracted from Table 2. 



Once η1(T) coefficients are added to the model, there is a training process, in which the η2(T) function needs to be estimated. 

By using optimization methods in such a way that the coulomb efficiency obtained by the model matches that gathered by 

the tests, the coefficients may be obtained, and the temperature model will be fully accomplished. 

3.1.2. Partial Charge modelling 

As stated, modelling the internal impedance of the battery is necessary, intending to imitate the behavior it features in voltage 

mode, when the charger sets the float voltage to the battery. To achieve this, a more complex impedance model needs 

discussing, and specific tests performing. One time constant (OTC) models feature a good compromise between accuracy and 

complexity. 

Therefore, there are three electrical parameters to be applied to the electrical model, as well as the relationship between SOC 

and OCV, which links the electrochemical model and the electrical model. In order to do so, specific lab tests need to be 

designed. The Hybrid Power Pulse Characterization (HPPC) test as described in IEC 62600-1 is a common test used for this 

purpose. It uses fast discharge pulses and lets the battery evolve, to determine the time constants of its response. In [20], [32], 

a variation of this test is proposed. It applies fast discharge pulses and then the battery is allowed to rest, to measure its OCV. 

This process is repeated until the battery is completely discharged. This test has been followed to measure the electrical 

parameters in Fig. 2. The waveforms of the test are displayed in Fig. 6.a. 

The electrical parameters are measured as follows. First, the battery must be heated up to 25ºC, charged up to its float 

voltage, and must remain in float stage for at least 72h. After that period of time, vbatt and OCV can be assumed to be equal. 
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Fig. 6. (a) Current and voltage test waveforms. (b) Zoom in the same curve. 

The short-term dynamic is modeled by the RC tank. In one of the current pulses, these parameters and the series resistance RS 

can be determined, as shown in Fig. 6.b. The difference between V1 and V2 is the contribution of the resistance RS, and the 

difference between V2 and V3 is the contribution of the resistance RP, once the transient response is stable. Measuring the time 

constant of this transient response, CP can be determined. These parameters may vary with the SOCV [27] but in the operation 

region (60 to 70% of SOCV, Fig. 4.b) they remain steady. Their values are collected in Table 3. 

 

 



Table 3. OTC model measured parameters 

Parameter  Value at 60-70% SOCV 

RS  47 mΩ 

RP  18 mΩ 

CP  1.1x104F 

 

The complete model is now ready for its implementation using software tools. In this case, the forthcoming simulations are to 

be developed using Matlab/Simulink software. To this purpose, an implementation of the formerly described state-space 

model has been implemented, and fed with the data and processes described in this section. 

3.2. Model Validation 

3.2.1. Temperature validation 

In order to validate the model behavior in term of temperature changes throughout the charge and discharge processes, the 

model has been compared with laboratory and experimental tests. To this purpose, real batteries have been charged at 

different temperatures using climate chambers, and then discharged at other temperatures. Fig. 7 shows some of these tests: 

the evolution of the battery voltage and the model voltage in the three different discharge temperatures: 5ºC, 25ºC and 35ºC 

after a full-charge process at 25ºC. 



 

Fig. 7. Voltage waveforms at different temperatures: (a) 5ºC. (b) 25ºC. (c) 35ºC 



As shown, the model performs in good agreement with the measured data, replicating correctly the discharge process at the 

different chosen temperatures. 

3.2.2. Remaining charge after partial cycling process 

The model and a real battery are tested under the same cycling conditions, to check that the model is capable of correctly 

estimating the remaining charge inside the battery. After an exhaustive study of the PV installations being considered, a test 

current pattern has been established. This pattern consists of 100 charge-discharge cycles, with the same features of 100 

complete PV sunny cycles. After the cycles, the real batteries were fully discharged, in order to obtain the available charge in 

the battery (incomplete charge). See Table 4. 

Table 4. Remaining charge after 100 solar-like cycles 

Temperature Real battery Model 

5ºC 16 Ah 53 Ah 

25ºC 75 Ah 76 Ah 

35ºC 93 Ah 89 Ah 

 

As shown, the model presents a good match with the laboratory data, reaching similar charge levels after the 100-cycle test at 

the higher temperatures (25ºC, 35ºC). However, at the lowest temperature, test voltage drops quicker, and the amount of 

extracted charge is minute. This could be caused by an impedance model that varies with temperature.  

3.2.3. Comparison against real off-grid PV patterns 

To extend the model soundness in the PV application, it has been tested with real current and voltage patterns from real PV 

installations. Fig. 8.a, b shows how the discharge voltage is correctly estimated during weekly intervals, using real measured 

patterns of the summer of 2009 in PV installations. Although the discharge voltage is well estimated, some inaccuracies can 

be seen, especially when it comes to estimating voltage during charge hours. 



 

Fig. 8. (a), (b) Voltage, current and temperature waveforms in summer. (c), (d) winter. 



It seems that the model tends to overestimate the voltage when receiving positive current. This may be caused by the single 

impedance model, and strengthens the theory of an asymmetric impedance [21]. 

Besides this effect, the model presents some inaccuracy when trying to estimate discharge voltage at low temperatures e.g. 

winter nights (Fig. 8 (c), (d)). Again, this effect can be modeled using a temperature-dependent impedance model, as 

proposed in [33]. 

4. Conclusions 

Energy Storage Systems used in standalone off-grid PV applications suffer from the specific charge conditions of these 

installations. Their batteries suffer from intra-cycle temperature variations, which are not modelled in typical constant 

temperature researches/datasheets/app notes, and usually remain in an intermediate SOC due to the nature of the incomplete 

charge-discharge cycles in this kind of application. These effects provide an effective decrease in the battery stored charge, 

and in many cases, they are omitted.  

This paper presents a novel simulation model for batteries specifically used in this kind of applications. The model described 

unifies both effects and makes it possible to replicate them, defining the traditionally associated OCV and Q as two different 

state variables. This approach models dynamic capacity reduction caused by temperature changes. An OTC electric model is 

used to capture the differences between the OCV and the voltage at the battery terminals. 

The model performs accurate estimations of the remaining charge inside a battery after the partial charge stationary effect. 

Manufacturers do not give any data on this effect which causes a considerable decrease in the available stored charge at a 

certain moment. The relative error that the model performs is below 2% at nominal temperatures, and below 5% at higher 

temperatures. At lower temperatures, the measurement of error grows. Therefore, as a future improvement, the model will be 

enhanced by adding a temperature-dependent impedance characterization. 

This new methodology has also been tested with real measure data from PV sites. The results show that the model also 

replicates voltage and remaining charge during the discharge process in summer periods, but differs from the actual voltage 

during the charge process, or during winter period. Again, to this purpose, the impedance model can be enhanced, adding a 

temperature-dependent model, or making it asymmetrical with the input current. This will be the scope of future researches. 

Forthcoming generations of ESSs will have the capability of managing energy in many different energy packs, using 

different storage technologies and adapting them to their best use. They will need of accurate available charge prediction in 

order to have successful energy management policies. 
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