Paleoenvironmental and Geoarchaeological Reconstruction from late Holocene Slope Records (Lower Huerva Valley, Ebro Basin, NE Spain)

Pérez-Lambán, Fernando, Peña-Monné, José Luis, Fanlo-Loras, Javier, Picazo-Millán, Jesús V., Badia-Villas, David, Rubio-Fernández, Virginia, García-Giménez, Rosario, Sampietro-Vattuone, María M.

1 Universidad de Zaragoza, Departamento de Ciencias de la Antigüedad, C/ Pedro Cerbuna 12, Zaragoza 50009 (Spain). fperezlamban@gmail.com, javierfanlo@gmail.com, jpicazo@unizar.es

2 Universidad de Zaragoza, Departamento de Geografía y Ordenación del Territorio, C/ Pedro Cerbuna 12, Zaragoza 50009 (Spain). jlpena@unizar.es

3 Universidad de Zaragoza, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior, Huesca 22071 (Spain). badia@unizar.es

4 Universidad Autónoma de Madrid, Departamento de Geografía, Cantoblanco, Madrid, 28049 (Spain) virginia.rubio@uam.es

5 Universidad Autónoma de Madrid, Departamento de Geología y Geoquímica, Cantoblanco, Madrid, 28049 (Spain) rosario.garcia@uam.es

6 CONICET and Universidad Nacional de Tucumán, Laboratorio de Geoarqueología, San Miguel de Tucumán, 4000, (Argentina) sampietro@tucbbs.com.ar

Correspondence author: Pérez-Lambán, Fernando
Universidad de Zaragoza. Facultad de Filosofía y Letras
Dpto. Ciencias de la Antigüedad – Prehistoria
C/ Pedro Cerbuna 12. 50009, Zaragoza (Spain)
Phone: (0034) 654 996 919
Email: fperezlamban@gmail.com
Abstract

Slope deposits, in semiarid regions, are known to be very sensitive environments, especially those that occurred during the minor fluctuations of the late Holocene. In this paper we analyse Holocene colluvium genesis, composition, and paleoenvironmental meaning through the study of slope deposits at Peña Enroque (Ebro Depression, NE Spain). Two cumulative slope stages are described during this period in NE Spain. Both slope accumulations are superimposed and this has enabled an excellent preservation of the aggregative sequence and the paleosols corresponding to stabilisation stages. 14C and TL dating, as well as archaeological remains, provide considerable chronological precision for this sequence. The origin of the accumulation of the lower unit is placed around 4295-4083 cal yr BP/2346-2134 cal yr BC (late Chalcolithic) and it developed until the Iron Age in a cooler and wetter climate (Cold Iron Age). Under favourable conditions, a soil A-horizon was formed on top of this unit. After a long erosive stage (Warm Roman Period, Medieval Climatic Anomaly), a new slope accumulation was formed during the Little Ice Age. Within the slope two morphogenetic periods are distinguished, both ending with A-horizons. Both periods can be related with the two main cold-wet climatic events in NE Spain.

Keywords: Geoarchaeology, slope morpho-dynamic, paleosol, paleoenvironment, late Holocene, Cold Iron Age, Warm Roman Period, Medieval Climatic Anomaly, Little Ice Age, Ebro Depression.
Introduction

Colluviums are an important source of information regarding the Pleistocene and Holocene sequences and this information can help us understand the paleoenvironmental and genetic processes that have favoured a succession of aggradation and incision stages. There are many studies of slopes with talus flatiron morphologies in semiarid environments in North America and the Mediterranean region (Gerson, 1982; Schmidt, 1988, 1989; Arauzo et al., 1996; Schmidt, 1996; Gutiérrez-Elorza et al., 1998a; Gutiérrez-Elorza et al., 2006; Gutiérrez-Elorza et al., 2010; Boroda et al., 2011). These are generally Pleistocene or early Holocene slopes and so information about Holocene stages is very limited. Also, there are studies in mountainous Mediterranean regions where slopes were generated in cold climatic conditions. But these mountainous colluviums are the result of very specific periglacial and cryonival processes (Van Steijn et al., 1995; Nemec and Kazanci, 1999; García-Ruiz et al. 2000), which differ greatly to processes that occurred in lower lands.

Holocene colluviums are normally poorly preserved but can provide information regarding human activities in the landscape together with paleoclimatic data. The first geomorphological studies of the Holocene colluviums in NE Spain were made by Burillo et al. (1981a, b, 1983) in the Teruel Basin and Albarracín Mountains (Iberian Ranges) at heights of over 1000 masl. These early studies established a close relation between the observed slope stages and Holocene climatic fluctuations, as well as the importance of anthropic factors in some geomorphic processes.

Geoarchaeological approaches have since been applied in other areas of NE Spain, at lower altitudes, such as the Ebro Depression (100-400 masl) in the central sector (Peña-Monné et al., 1991), and in the eastern part (Peña-Monné, 1983; Peña-Monné and González-Pérez, 1992; Peña-Monné and Rodanés, 1992; Peña-Monné et al., 1996; Sopena, 1998; Peña-Monné and González-Pérez, 2000; Peña-Monné et al., 2002). There are also some works that synthesise the various stages of the Upper Holocene (Gutiérrez-Elorza and Peña-Monné, 1989, 1992, 1998) and offer a general evolutionary model (Peña-Monné et al., 2005) of the geomorphological sequence of aggradation and incision processes in the slopes and infilled valleys of NE Spain, and describe their importance for the study of the geoarchaeological record.
In this study we analyse the slopes of a rocky spur called Peña Enroque that is located 4 km to the east of the village of Muel and 25 km to the southwest of Zaragoza (Figures 1 and 2). This relief is isolated between open plains formed by Pleistocene pediments and fluvial terraces and secondary valleys filled with sedimentary deposits made during the Holocene (known locally as vales). The base level of these geomorphic features is the river Huerva. This geoarchaeological site is representative of the problems that landscape transformations pose to the study of human occupation in the central sector of the Ebro Depression, especially for the Bronze Age and earlier.

Holocene colluviums, soils, and archaeological remains are well preserved in Peña Enroque. Because of intense erosion, such a complete assemblage of palaeoenvironmental records is exceptional in drylands. Therefore, their detailed analysis is of great interest for the reconstruction of the evolution of the Holocene and the relationship between climatic fluctuations and human intervention in the landscape. In the Mediterranean region, equivalent case studies are not present in the scientific literature.

The main aim of this study is to obtain information about the evolution of the upper Holocene through the description and analysis of sequences of slope stages at Peña Enroque. Aggradation and incision stages have a particular paleoenvironmental meaning that must be considered when studying the Holocene climate and landscape changes, and these can be correlated to global Holocene environmental trends. At the same time, we aim to determine the role that these dynamic environmental fluctuations played in human settlement patterns over the last 4000 years.

Study area

The lower course of the river Huerva is located in the central sector of the Ebro Depression, in NE Spain (Figure 1). Its upper and middle courses cut through the Iberian Ranges. The general direction of the river flow is south-to-north, joining the river Ebro at the city of Zaragoza. In the
Ebro Depression, the river Huerva flows through continental geological formations that were deposited in the Ebro tectonic graben during the Miocene. The main lithologies in the area are lutite, gypsum and limestone – and they maintain their original horizontal arrangement with very few deformations. The resistant upper layers of lacustrine limestone have been modelled into the shape of structural plateaus and mesas (locally called *muelas*), and these are the current outstanding landforms with altitudes over 700 masl (La Muela, La Plana). These high relieves act as the main drainage divides.

The current climate of this area is Mediterranean-Continental with semiarid features: annual average mean precipitations are around 400 mm. The rain regime is very irregular and there is an intense hydrological deficit (in the nearby observatory at Zaragoza annual mean precipitation is 345 mm and annual mean evapotranspiration is 1200.7 mm, (Cuadrat et al., 2007)). In fact, this is the most arid inland region of Europe.

The landscape is characterised by a Mediterranean-Continental halophile and thermophile steppe (*Rosmarinus officinalis, Lygeum spartum, Artemisia herba-alba, Salsola vermiculata, Asphodelus sp.*, *Brachypodium retusum, Limonium*) on the slopes and rainfed crop fields on the flat areas (cereals, wines, olives and almonds). This degraded landscape is the result of three main factors: soft lithology, a semiarid climate, and a continuous human occupation since the Mesolithic (Rodanés and Picazo-Millán, 2009) and early Neolithic (Bea-Martínez et al., 2011; Pérez-Lambán et al., 2011). The deforestation rhythm and periods have been determined through the study of Holocene sedimentary infills in the valley bottoms (Peña-Monné et al., 1993; Peña-Monné et al., 1996; Peña-Monné et al., 2001; Peña-Monné et al., 2004; Sancho-Marcén et al., 2008; Constante and Peña-Monné, 2009; Constante et al., 2010; Constante, 2011; Constante et al., 2011). Deforestation processes reached significant importance after the Bronze Age and become extremely intense in the Roman Age. The landscape degradation caused by this deforestation has been constant until the present.

Methods

The methods used in this work are designed to bring together data from different disciplines. Initially, we have drawn in detail an evolutionary geomorphologic cartography of the analyzed...
area that describes the aggradation and incision stages of the slopes. Several slope profiles were cleared and drawn to scale, with indication of sedimentary units and levels, as well as information regarding sedimentology, stratigraphy, edaphology, palynology, mineralogy, archaeology and chronology. At the same time, a field survey was made to record the archaeological artefact dispersion on the slope and in the profiles. Two of these sections contained archaeological in situ remains and were excavated. Finds have been georeferenced in UTM coordinates (ED 50) and drawn on a geomorphologic map (Figure 1).

To obtain a better control of the chronology of the geomorphological units, we have sampled charcoal findings in four sections for 14C dating in laboratories in Rijksuniversiteit Groningen (Netherland) and Universität Zurich-Irchel (Switzerland). Two pottery shards were also dated by means of TL dating in the Luminescence Laboratory of the Universidad Autónoma de Madrid (Spain).

Furthermore, the sediments in section 6 were sampled using mineralogical and chemical analysis (Geochemistry Laboratory, Universidad Autónoma de Madrid, Spain) and edaphological analysis (Escuela Politécnica de Huesca, Spain). More precisely, soil organic carbon (SOC) was determined in the fine soil fraction using the wet oxidation method (Nelson and Sommers, 1982) and organic matter was estimated using the van Bemmelen factor (SOC x 1.724). Total carbon was measured using a LECO elemental analyser, and inorganic carbon was estimated by the difference between total and organic carbon and expressed as equivalent calcium carbonate. Electrolytic conductivity (EC) was measured in a 1:1 soil-to-water ratio (Rhoades, 1982). Total phosphorus was calculated by inductively coupled plasma/mass spectrometry (ICP/MS) in a Sciex Elan 6000 Perkin-Elmer spectrometer equipped with an AS91 auto-sampler. Palynological analysis was also performed (Instituto Pirenaico de Ecología, C.S.I.C., Spain), but unfortunately the results were negative.

Finally, we have organised the information provided by the different sampling and analysis strategies and we have correlated the results of Peña Enroque with previous studies on the Holocene environmental changes in NE Spain and with paleoclimate events and paleoenvironmental changes in the Mediterranean and North Atlantic regions.
Results

Peña Enroque is a rocky spur (UTM 0655526-4593365; 606 masl) at the extreme of a mesa of Miocene limestone on the western side of the Huerva Valley. It is a long (170 m) and narrow (15 to 70 m) landform pointing to the NE (Figure 2). Pena Enroque is formed by a caprock of lacustrine limestone with a 15 m high vertical free face and a talus slope modelled in the lower lutites and marls. This talus gently descends towards the peripheral plains, almost 60 m below the summit. In general terms, the slopes are typically influenced by their orientation in relation to insolation: northern and north-western slopes are more covered by soil and vegetation while south facing slopes are less protected and therefore more eroded. This dissymmetry is due to the differences in water availability and has important consequences for their Holocene evolution.

FIGURE 2

In this geomorphic area there are two main zones with archaeological material: the top of the spur and the NW slope (Figure 1). The SE slope also provided some material, but less volume. The summit area is almost flat, and the narrow end is easily isolable because it is surrounded by escarpments around much of its perimeter and the general gradient is 66%. Only the SW flank is accessible. It is, therefore, an ideal defensive position for settlement. There are many similar Bronze Age settlements within a distance of 15 km in the Huerva Valley, such as Los Collados (Jaulín) or San Pablo (Villanueva de Huerva) (Pérez-Lambán et al., 2011). Archaeological remains are sparse because of the rocky bedrock surfaces in most of the summit area. Only the central, slightly depressed area preserves a relict of soil with a few handmade pottery shards and several ash patches. This depression in the centre of the spur top has been interpreted as the bottom remains of an artificial moat that isolated the original settlement site (Figure 1). The current surface limited by the moat is too little to hold a settlement, but it must be considered that the dimensions of the spur have diminished as a consequence of the retreat of the limestone escarpment. One of the potteries (P3) recovered in the moat was dated by the TL method (Table 1) and its age is 3657 ± 250 yr (MADN-5995BIN). Despite the wide span of the date, it can be chronologically placed in the Bronze Age. As will be later explained,
pottery shards similar to the ones found at the spur top have been recovered within the slope accumulations in the NW sector.

The other area with archaeological remains is the NW slope. Two significant archaeological contexts were found in this sector: a Bell Beaker pottery accumulation in the basal part of the colluvium (Figure 4, section 4) and a pit excavated in the substratum under the slope (Figure 4, section 5). Both contexts were dated by 14C analysis of charcoal samples (Table 2). Both dates and potteries belong to the Chalcolithic. In the Huerva Valley, there are other examples of archaeological sites that occupy a slope at the foot of a rocky spur – including the Chalcolithic site known as Peña Roya (Jaulín) (Royo-Guillén et al., 1997).

We can assume that occupation began during the Chalcolithic, at least in the NW sector, and continued during the Bronze Age on the summit of the spur. In addition, it must be added that some medieval and modern pottery shards were also recovered in surface findings, but in such small volumes that permanent occupation is not implied.

Two stages of geomorphological slope accumulation were distinguished by means of detailed geomorphological cartography (Figure 1) and field surveys in Peña Enroque. We denominate the older stage lower unit (LwU), which is mainly visible in the NW sector. However, clay quarrying activities have diminished its original extension. In the SE sector, the LwU is also present, but only under the upper unit. The second stage, the upper unit (UpU), is an accumulation that covers most of the remaining slopes. Its gradient is higher and it is affected by the incision of gullies and rills that model the typical talus flatirons landforms. Small alluvial fans are deposited in the surrounding plains at the end of these incisions (Figure 1).

The distinction of these two slope colluvium stages is also evident from the study of seven profiles: five of which are in the NW sector (visible in the clay quarry face), and the other two in the SE slope (exhumed by gully incision). These profiles were cleared and cleaned to improve the observation of their stratigraphy. Profiles in sections 1, 6, and 7 best show the existence of the two superimposed stages. In sections 3, 4 and 5 only the LwU is visible, and in section 2 the
UpU is shown. The distinction between the two units is mainly erosive, with discordance in the stratification angle. However, in sections 1, 6 and 7 the distinction between the units is characterised by the preservation of a fossilised paleosol with a very apparent buried A-horizon.

The internal characteristics of these two stages (LwU and UpU) are best shown in the description of the following sections (Figures 3, 4, 5).

FIGURE 3

Section 1

41°28.666' N, 01°08.226' W; 546 masl. Thickness: 270 cm

This profile shows the two aggradation units superimposed one on top of the other (Figure 3, section 1). They can easily be distinguished by their different colour and texture. The LwU lays on the Miocene bedrock that is composed of lutite and marl. The predepositional morphology of the bedrock is irregular. This lower unit is 110-120 cm thick and is composed of very bioturbated dark clay with angular clasts of limestone and dispersed flint (1). Its dark colour is the result of the remobilization and mixing, by means of solifluction processes, of edaphic remains from the upper part of the slope. No edaphological analysis was attempted here because it was not possible to distinguish clear soil horizons. Two hand-made pottery shards (belonging either to the Chalcolithic or the Bronze Age) were found in this unit. The main transportation processes were produced by means of slow solifluction which implies a continuous moisturising of the slope, probably because of snow fusion and in presence of vegetation.

The UpU has an erosive base that shows an unclear lineal contact with the LwU. This is because materials from the highest part of the LwU have been remobilized in the base of the UpU (2a). The base is 116-154 cm thick and its ochre colour is very homogeneous. It is formed by angular limestone gravel and some dispersed flint fragments (2b, 2e). The relative homometry of these materials points towards a physical weathering origin (gelifraction, decompression, dry and wet weathering). The main transportation processes observable in the profile are local fluxes, ploughing blocks, some rill channels (2c, 2d), and the textures of washed fine materials. No artificial evidence was found.
The processes that formed this unit were very different from those that created the LwU. The UpU formation was a gravity-controlled slope where rock falls from the free face were very active and generated large and small blocks that were transported by gravity and rebound. On a slope with little vegetation, hillside surface water runoff due to occasional but intense rainfalls generated a rill wash of fine materials, while solifluction was of lesser importance. UpU is covered by a thin superficial soil (15 cm) shown in the upper part of the profile.

Section 2

41°28.666' N, 01°08.221' W; 542 masl. Thickness: 214 cm

Only the UpU (1) is visible in this profile (Figure 3 section 2). It reaches a greater thickness than in section 1 because the LwU lays far below and it is not visible. The unit is composed of several sedimentary layers. The first layer (1a) is a level (90 cm) of angular clasts within a fine ochre-coloured sediment, similar to level 2a of section 1. Rock falls, fluxes and runoff processes prevail at this level. Above it, several levels of homometric gravel and channel structures (1b, 1f) alternate with more clayey levels with disperse clasts (1c, 1d, 1e). The intercalation of flat limestone gravels and a few rounded boulders in level 1d is noteworthy. The whole of the UpU has been formed by sediments being dragged through rills and superficial flow processes, with intense fine sediment wash. All this implies a scarce presence of vegetation on the hillside. This genesis is similar to that of the UpU in section 1. This section contains no archaeological remains.

Section 3

41°28.699' N, 01°08.215' W; 518 masl. Thickness: 235 cm

This profile is placed in the lower part of the hillside (Figure 3, section 3) in contact with the bottom of the valley. It presents almost only LwU, except for some 10 cm in the upper part of the profile. The basal substrate consists of compact Miocene lutite and marl. Above it, there is a 220 cm accumulation of clayey sediment with bioturbation structures, little gastropods, and dispersed charcoals. One of these charcoals in the base of level 1b was dated by means of 14C to 4581-4413 cal yr BP / 2632-2464 cal yr BC (GrA-47554) (Table 2). There are also some angular limestone clasts and scattered flint fragments. The presence of some stone lines
separates different levels, although they are very similar in their characteristics (1a, b, c, d).

Above this clayey level there are channels of angular gravels that correspond to the beginning
of the upper unit, and which have almost disappeared because of erosion. Finally, on top, there
is a surface horizon (15 cm), created by the clay quarrying activities.

FIGURE 4

Section 4

41°28.659' N, 01°08.252' W; 548 masl. Thickness: 47 cm

The profile in section 4 is placed in the upper part of the clay quarry (Figure 4). Here the UpU is
absent and the LwU is very shallow (20-50 cm). Its composition does not differ from the
description of this unit in section 1: dark clays with angular clasts of limestone transported by
solifluction processes. In the base there is an erosive channel excavated in the lutite and marl
bedrock. Within this channel there was an accumulation of numerous pottery shards

Corresponding to several vases within an ashen sediment. Some of the pottery shards belong to
the Bell Beaker vases (Figure 4) of the late Chalcolithic. 14C dating of a charcoal resulted in an
age of 4295-4083 cal yr BP / 2346-2134 cal yr BC (GrA-45131) (Table 2), which is consequent
with the typology of the vases. These archaeological remains were recovered almost in situ, as
can be deduced by the very limited erosion and dispersion shown by the shards. This fact and
their position on the substratum, in the basal part of the accumulation, implies that the age of
this archaeological context can be used as terminus post quem for the formation of the slope.

The potteries from the deposit in section 4 are consistent with surface findings in the NW sector
of Peña Enroque. There are clear diagnosis features that coincide with the 14C dating. Some
morpho-technological elements of the potteries are related to the end of the Chalcolithic and the
beginning of the Bronze Age: such as the basal basket impressions (Rovira i Port, 2006);

Peripheral impressions in the outstanding edges of the mouth of the vessels – as is also found
at the site of Peña Roya (Royo-Guillén et al., 1997); or the accentuated shoulders as in the
case of vessels recovered at Los Collados. In addition to these clarifying features, the presence
of several Bell Beaker fragments confirms the chronological dating of the deposit to the late
Chalcolithic.
Section 5

41°28.675' N, 01°08.303' W; 537 masl. Thickness: 336 cm.

This is the thickest section. It is placed in the lower part of the hillside, in contact with the valley bottom. In its profile (Figure 4, section 5), in addition to the LwU and UpU, there is a previous unit (Pre-LwU).

This first unit is formed of three deposits. The first (0a) was deposited on a small stream bed on the substratum of clay and marls. It is formed of small gravel and clay. However, it is only partially visible because it was cut and removed by the artificial excavation of a pit that holds the second deposit (0b). The vertical section of this structure has the shape of a truncated cone, and its horizontal section is oval. The pit was filled with alternated levels of clayey sediment and ashes rich in charcoal. The only archaeological remains recovered in this unit were three flint flakes or chunks. 14C dating of a charcoal sample from the ash levels resulted in 5295-5037 cal yr BP / 3346-3088 cal yr BC (GrA-50207) (Table 2). This second unit seems to have also been cut by a shallow pit or depression that forms the third deposit (0c). This deposit is formed of homometric angular clay fragments (5-10 cm), something that is incompatible with the natural fragmentation, transport, and deposition that would cause erosion and a disaggregation of the blocks. This deposit therefore seems to have an anthropic origin.

The LwU (1) lays above the Pre-LwU unit. There are several intercalated sub-horizontal levels inside. Some of these levels share their features with those described in other sections. However, others have different materials and structures. Thus, level 1b holds a series of large-medium flat angular clasts in a horizontal disposition. Level 1e has a typical channel structure filled with gravel and clay. In addition to this, there are dark layers (1f) that may be related to stages of stabilisation, and therefore with accumulation of organic material resembling an A-horizon paleosol. The UpU lays on the paleosol. In the base of this unit there is a horizontal layer of clasts (2a). Above these clasts, level 2b has been affected by agricultural activities.

FIGURE 5

Section 6
This is one of two sections located in the gully incisions on the SE hillside (Figure 1). The basal part of the visible profile is formed of 1 m of the LwU. However, the incision does not reach the Miocene substratum and so the real thickness of this unit remains unknown. At this point, the LwU is formed of abundant clay and some small gravel (1a). Above the LwU, a 0.25-0.30 m thick A-horizon paleosol has developed (1b, horizon IIa), perfectly distinguishable because its colour is darker than any other level (Figure 5, section 6).

Above this paleosol there is a 1 m accumulation of limestone clasts and large blocks in a clayed matrix corresponding to the upper unit. The contact between it and the upper surface of the paleosol is irregular. The UpU is well stratified and the gradient of its levels is higher than that observed in the LwU. In the higher part of the section, there can be observed two slightly darker layers that are equally interpreted as A-horizons from paleosols (2b and 2d, horizons IIa and IAh, respectively). The upper part is cut by the current slope topography (Figure 6).

No archaeological remains or charcoal samples were recovered in this section. Some charred small roots were found, but these were unsuitable for 14C because their origin was uncertain.

FIGURE 6

Analysis of paleosols from section 6

In this and the following section, the existence of a preserved continuous paleosol is of great relevance. For this reason, it has been analysed using palynological and edaphological methods. Palynological analysis gave negative results because the pollen was too poorly preserved and the pollen count was not statistically representative. Physical and chemical properties of the soil (Table 3) were much more informative.

TABLE 3

In the soil that was sampled (Section 6), successive discontinuities were observed through the presence of stone lines and the heterogeneous distribution of particles, in both gravel (>2 mm of diameter) and fine earth (<2 mm) fractions. The rock fragments are Miocene limestones, mainly
fine and medium gravel (2-60 mm; occasional boulders of 200-600 mm in IIIC2), angular
shaped, and fresh or slightly weathered; the content being higher in the first two profile metres.
For all horizons, the particle size distribution is fine, with a predominance of clay and silt
fractions.
In addition to the sub-current IAh horizon (profile level 2d), two buried horizons (IIA, profile level
2b, 90 to 110 cm deep, and IIIA, profile level 1b, 170 to 200 cm deep) were found. These A-
horizons have an organic matter content of about 4%, a C/N ratio of between 18-30, and
phosphorus content from 200 to 280 mg/kg – in all cases higher values than the underlying B or
C-horizons. Moreover, A-horizons have a lower Munsell value (inversely related to soil organic
matter); as well as lower soluble salt (EC) and calcium carbonate contents than their respective
underlying horizons. These chemical and physical properties show that the soil (and therefore,
the aggradation process) had two periods of stability, when more soluble salts were washed
away and fresh organic matter and some major nutrients such as phosphorus were
accumulated on the A-horizon surfaces.
The sub-current paleosol (IAh-IC) and the intermediate paleosol (IIA-IIIC) are classified as Haplic
Regosol (calcaric, skeletic) for IUSS (2007). The third buried paleosol is also an Haplic Regosol,
but shows a slightly larger development (IIIA-IIIBw-IIIC), which could have evolved to Haplic
Calcisol, according to the soil chronosequences studied in these semiarid environments (Badía-
Villas et al., 2009). There are very weakly developed mineral soils that are deep, well drained,
and derived from unconsolidated materials. Regosols correlate with sols peu évolués
régosoliques d’érosion (Baize and Girard, 2009) or Entisols (Soil Taxonomy Staff, 2010).

Section 7
41°28.534' N, 01°08.193' W; 531 masl. Thickness: 238 cm
This section is similar to the previous section. Some 130 cm of LwU is seen (Figure 5). The
upper part of this unit (1d) is formed of a 25-35 cm thick dark layer (level 1d in section 7) that
corresponds to IIIA-horizon in section 6 and is present in all incisions in the SE sector of Peña
Enroque. Inside this A-horizon there is a small groove (45 cm wide and 12 cm deep) that
contains a considerable amount of organic material, ashes from a hearth, and a few charcoal
fragments. 14C dating of one of these fragments gave the date of 2152-1995 cal yr BP / 203-46
cal yr BC (UZ-5952 / ETH-42556) (Table 2). The upper part of this hearth is covered by a limestone slab severely altered by fire. This paleosol equals that described in section 6, although in this case it can be termed *Technic Calcisol* because of its important anthropic traces. On top of the paleosol, the UpU (2) is 75 cm thick and its characteristics are very similar to those described in section 6. In the upper part of this section three pottery shards were recovered. Their typology belongs to the 17th to 19th centuries. One of them was also dated by means of TL to 387 ± 21 yr (MADN-5998BIN) (Table 1), that is, 17th century.

Discussion

From the information obtained through the study of the seven sections we can establish the series of evolutionary stages at Peña Enroque (Figure 7). This sequence can be related to the different Holocene climate periods and human occupation phases.

FIGURE 7

The pre-lower unit (Pre-LwU)

As stated previously, sections 1 and 4 show a very irregular erosive contact between the substratum and the LwU. This is evidence of the existence of an actively erosive stage previous to the LwU (Pre-LwU). During this stage, the landscape would have been characterised by the presence of widespread gullies and rills, producing extensive badlands on the Miocene clay and marls. Section 5 shows the artificial excavation of a pit in a thin accumulative level (Figure 4, section 5, level 0a) with clayey substratum, that is in a mainly erosive area (Figures 7, 1; and 8). The date (Pre-LwU) can be chronologically placed thanks to the existing 14C dating (5295-5037 cal yr BP / 3346-3088 cal yr BC, GrA-50207) from the artificial pit. This date falls between two chrono-cultural periods: the end of the Neolithic (5500-2700 BC) and the beginning of the Chalcolithic (2700-2100 BC). Moreover, this Pre-LwU must be previous to the important accumulations of the LwU, whose base dates are between 4581-4413 cal yr BP / 2632-2464 cal
yr BC (GrA-47554) (section 3) and 4295-4083 cal yr BP / 2346-2134 cal yr BC (GrA-45131) (section 4) or the late Chalcolithic.

From the paleoenvironmental point of view, Jalut et al. (2000) indicate that the Mediterranean region was experiencing a dry stage in the Pre-LwU phase, coherently with the aridity generated in Southern Europe and the Near East during the 4.2 event (Bond et al., 1997). The RCC (rapid climate change) established by Mayewski et al. (2004) for 4200-3800 BP would also coincide with this dry environment stage (Figure 9). We can deduce a climate with scarce but concentrated precipitations (similar to the current pattern) that would prevent the accumulation and stabilisation of slopes and would favour the incision of gullies and rills. This erosive stage must have been widespread across NE Spain, since slopes of this or previous periods have never been found. The only exceptions are some rarely preserved much older slope formations from the Pleistocene and early Holocene (Arauzo et al., 1996; Gutiérrez-Elorza et al., 1998a; Gutiérrez-Elorza et al., 2006; Gutiérrez-Elorza et al., 2010). At the same time, since the Neolithic (5500-2700 BC) the tributary valleys in the region underwent an aggradation process that evidences an increase in erosion in the slopes of the tributary basins of the river Huerva, and reaching high erosion rates before the Bronze Age (Peña-Monné et al., 1993; Peña-Monné et al., 2001; Peña-Monné et al., 2004; Peña-Monné et al., 2005; Constante et al., 2010; Constante, 2011; Constante et al., 2011).

In NE Spain there are no other descriptions of evidence of this Pre-LwU erosive stage. However, its existence was suggested in Burillo et al. (1981a, b) and Gutiérrez-Elorza and Peña-Monné (1998) as a result of the observation of erosive morphologies previous to the LwU, and termed the Post-Bronze Age Slope. This erosive stage was also taken into account in the Ebro Depression Holocene evolution model established by Peña-Monné et al. (2005).

FIGURE 8

FIGURE 9

The lower unit (LwU)
The study of the slopes of Peña Enroque revealed an abrupt change from the late Chalcolithic.

The new prevailing process is a large aggradation dynamic in the slopes that is visible both in the cartography (Figure 1) and in the profiles of the sections (Figures 3, 4, and 5).

The LwU accumulated on a paleorelief of irregular morphology and generated a complete superficial regularisation by means of a long lasting accumulative process. Pottery shards in the base of this unit (section 4) and the 14C datings of the lower levels in sections 3 and 4 indicate the initial moment of the sedimentation of the slope (Figure 8). It is interesting to highlight that in section 4, the dates belong to pottery and charcoal which were found in situ or just slightly displaced. This circumstance gives great precision to the identification of the beginning of the aggradation (4295-4083 cal yr BP / 2346-2134 cal yr BC, GrA-45131). However, the dating in 4581-4413 cal yr BP / 2632-2464 cal yr BC (GrA-47554) in the base of section 3 must be considered the least precise post-quem date, as it was performed on a charcoal that was much displaced as a result of the slope processes. Therefore, the beginning of this regularising stage must be approximately placed in the late Chalcolithic, around 4295-4083 cal yr BP / 2346-2134 cal yr BC (GrA-45131). This meant that for the first time the starting point of the LwU had been determined with precision. This late Chalcolithic origin of the LwU was first considered after the finding of a Chalcolithic arrow tip and the 4654-4384 cal yr BP / 2705-2435 cal yr BC 14C dating of a charcoal (Picazo-Millán and Perales-García, 1994; Picazo-Millán, 1999-2000) from within a slope at the Alfambra Castle in the Iberian Range (Teruel, Spain). However, unlike the dating in Peña Enroque, the chronology from Alfambra was not obtained from in situ findings, and so the beginning of the accumulation was not so well determined.

In addition to this, in the intermediate levels of section 1 some hand-made pottery shards were found. However their chrono-typology is less clear and they may belong either to late Chalcolithic or to a broad part of the Bronze Age, that is, between 2500 and 1500 BC. As they are not in situ findings, their dating value is post-quem, indicating that the slope formation continues after their chronology. These shards must have been transported from the upper area of the slope or even from the summit of Peña Enroque, where, as already indicated, a settlement with a defensive moat was located.

Except for the abovementioned pottery, in Peña Enroque we lack dating evidence for the upper levels of the LwU. However, in other slopes in NE Spain, the development of this accumulation
stage has been observed during the early, middle, and late Bronze Age (Burillo et al., 1981a, b, 1983; Peña-Monné and González-Pérez, 1992; Peña-Monné et al., 1996; Peña-Monné and González-Pérez, 2000; Peña-Monné et al., 2002) and even during the Iron Age (Picazo-Millán and Perales-García, 1994). The accumulation stage never reaches the Iberian Period (>500 BC), as the archaeological remains of that and later periods are located above these slopes and act as *terminus ante-quem* for the accumulation (Peña-Monné et al., 2005). Some works on slope stages and talus flatiron formations in nearby areas in the Ebro Depression (Arauzo et al., 1996; Gutiérrez-Elorza et al., 1998a; Gutiérrez-Elorza et al., 1998b; Gutiérrez-Elorza et al., 2006; Gutiérrez-Elorza et al., 2010) provide further charcoal 14C dating (2930 ± 60 BP, 2529 ± 52 BP; 2480 ± 80 BP) for Holocene regularisations, and some contain Bronze Age pottery. Therefore, we can conclude that the formation of the LwU spans from the 4295-4083 cal yr BP / 2346-2134 cal yr BC (GrA-45131) to the 700-550 BC, resulting in a generalised morphological regularisation of the established slopes (Figure 7, 2). Their concave profile would have begun in the higher part of the upper escarpment of the hill or platform, as is seen in the NW slope of Peña Enroque, and extend to the basal concavity connected to the nearby valley bottoms.

An important aspect of the evolution of the LwU is the development of an A-horizon, clearly visible in sections 1, 5, 6 and 7, and preserved thanks to the superposition of the later UpU. The date obtained from an *in situ* charcoal of a hearth inside the A-horizon from the paleosol in section 7 is 2152-1995 cal yr BP / 203-46 cal yr BC (UZ-5952 / ETH-42556). This signifies that its edaphic development reaches at least the Ibero-Roman Period. The characteristics of the paleosol in section 6, especially its 1b level (horizon IIIA, Table 3), make it clear that it was formed in a stable stage which was long enough to allow the formation of a B-horizon and achieve a low salt content and a high concentration of organic material and phosphorus. From a physical and chemical point of view, the IIIA horizon has the highest productivity potential of all the analysed edaphic horizons in the profile in section 6. Its organic matter, nitrogen, and phosphorous values are higher than the values of the other two A-horizons (IIA and IAh). Its granulometric composition and well structured thick horizons (Bw) favour a greater water reservoir capacity and it contains evidence of intense biological activity. These hydrologic and biotic characteristics of the IIIA horizon reinforce its interest as a potentially productive soil. However, no evidence of anthropic use was found in this paleosol.
The most frequently used chemical indicators of anthropic intervention on the soils are N, K, P, Ca, Mg, organic matter and pH (Leonardi et al., 1999; Branch et al., 2007). Of these, Ca and Mg are not very significant in dry limestone environments, and there is little doubt that the most important is phosphorous (Eidt, 1977; Schlezinger and Howes, 2000). P levels in horizon IIIA in the profile in section 6, as well as the other indicated parameters, are lower than what is normally registered in human used paleosols in semiarid environments (Roldán et al., 2008; Sampietro et al., 2011). Therefore we must assume that the surface of this paleosol in Peña Enroque was never used for anthropic activities. This circumstance can explain why it was so well preserved and active (as it was protected by undisturbed vegetation) until Roman times. In addition to the lack of evidence of anthropic use of the paleosol in the analysed profile, the fact of its existence is of great importance as it demonstrates the presence of productive soils for agriculture and cattle in this region until the Roman times. Erosion has reduced the extension of favourable pedological components, and these have almost disappeared from the current landscape.

The study of the sections and geomorphologic characteristics of the LwU provide enough features for its paleoenvironmental characterisation. The prevalence of solifluction processes, with an abundance of clay, can be related to humid conditions, as was stated by Gutiérrez-Elorza and Peña-Monné (1998), who argued that the slopes of this stage are the result of a regime of precipitations that were not very intense – so preventing drain concentration while favouring water infiltration. Paleoenvironmental reconstructions of the Upper Holocene comprise cold and humid conditions for the Bronze and Iron Ages on a global scale (Lamb, 1977) and in the Mediterranean region (Bintliff, 1982). This moment coincides with Iron Cold Age (Gribbin and Lamb, 1978), in the transition between the Subboreal and the Subatlantic. Lamb (1977) calculates annual mean temperatures around 2º C below present day values. This could be enough to favour higher rates of winter snowfall and, therefore, the presence of melt water that moisturises the slopes. The relationship of these slopes with a climate which was cooler than today was already determined in the very first geoarchaeological studies of Holocene slopes (Burillo et al., 1981a, b, 1983). This relation has also been used to explain Pleistocene slope accumulations in the N and NE of Spain (Sancho-Marcén et al., 1988; Arauzo et al., 1996;
For the Upper Holocene this stage matches with the 2.8 event of Bond et al. (1997) or the 2.6 event of Van Geel et al. (1996), who place the climax of this cooling stage around 800-600 BC. Moreover, the RCC (rapid climate change) pointed out by Mayewski et al. (2004) between 3500 and 2500 BP on the basis of GISP2 and other indicators covers the chronology of the formation of the LwU slopes in the Huerva Valley (Figure 9). Additionally, the existence of humid conditions for this chronological period in a closer area can be observed in the data regarding paleofloods in Spain provided by Thorndycraft and Benito (2006) and Benito et al. (2008), or in the high lake levels in the central sector of the Ebro Basin (Gutiérrez-Elorza et al., 2012 (in press)) and the Pyrenees (Corella et al., 2011a; Corella et al., 2011b). Moreover, the aggradation in the Holocene infills of the valleys near Peña Enroque evidences an environment that was wetter than today (Peña-Monné et al., 2004; Sancho-Marcén et al., 2008; Constante et al., 2009; Constante et al., 2010; Constante et al., 2011).

Erosive stage between LwU and UpU (Inter LwU-UpU)

Slopes of the LwU were partially removed by an erosive stage after the Bronze and Iron Ages, but before the formation of the UpU, also called *Post-Medieval regularisation* (Figure 7, 3). Possibly, before the removal of the slope, talus flatirons morphologies would have been formed as intermediate gullies separating triangular slope facets. This can be observed in other reliefs in the Ebro Depression.

In previous studies concerning this sector of the Huerva and the Ebro valleys, the beginning of this erosive stage was placed in the Ibero-Roman period. This stage generated important accumulative infills in the nearby valley bottoms (Peña-Monné et al., 2004; Peña-Monné et al., 2005; Constante et al., 2010; Constante, 2011; Constante et al., 2011). The characteristic dynamics inferred from the sediments in these valleys match with climate conditions similar to the present day: short, intense, and frequently stormy precipitations that favoured the formation of gullies. In addition to the climatic cause, it is necessary to consider the action of a major human intervention in the landscape that is characteristic in this region following the Iberian period and especially during the Imperial Roman times (as registered in the valley infills). These
sediments have a prevalence of fine grain materials that come from the washing of the soils of the slopes and they contain continuous charcoal levels as a result of generalised deforestation (Peña-Monné et al., 1993; Peña-Monné et al., 2001; Peña-Monné et al., 2004). Consequently, in the erosive processes of this stage, the lack of vegetation cover due to anthropic deforestation has played an important role. This erosion also led to the re-activation of the escarpment retreat processes by means of basal sapping, lateral decompression of limestone free faces, and rock falls. This would have affected the settlements placed on the hilltops and platforms, as they would lose much of their surface and perimeter. Given the great quantity of material that fed the slopes during their several formational stages and from the escarpment retreat rate – which is quantified at 0.9-1 m/ka in this semiarid region (Arauzo et al., 1996; Gutiérrez-Elorza et al., 1998a; Gutiérrez-Elorza et al., 1998b; Peña-Monné et al., 2005; Constante, 2011) – it can be inferred that the summit in Peña Enroque was much larger and due to the easily erodible lithological components, possibly even double the current surface.

Chronologically, this erosive stage must be placed after the LwU and before the new slope generated during the LIA, that is, in a chronological range that includes the Ibero-Roman period and the Middle Ages, without the possibility of further precision, at least for the moment (Figure 9). Environmental conditions related to this stage are found in the Warm Roman and Medieval Periods and completely described in paleoclimatic literature (Maasch et al., 2005). Jalut et al. (2000) point out two phases of increased aridity in the Western Mediterranean during this temporal lapsus. Moreno et al. (2012) gather information about the influence of the Warm Medieval Period – the Medieval Climate Anomaly – in the evolution of the palynological lake and marine records in the Iberian Peninsula. These records show a prevalence of xerophytic and heliophytic taxas between AD 900 and 1300 in the Mediterranean area – in contrast with the more humid north of Spain. Similarly, in Roberts et al. (2008; 2012) there is contrasting palaeolimnological data concerning the humidity of the western (drier) and the eastern Mediterranean (wetter). Finally, this stage is placed between the RCC 4 and 6 events of Mayewski et al. (2004), with a cooler interruption in RCC 5 (1200-1000 BP).

As a consequence of this erosive stage, the LwU has disappeared almost completely in many areas of the Ebro Depression. The preservation of the LwU is conditioned by the orientations of
the slope. Southern slopes are severely eroded, while northern slopes preserve part of the LwU regularisation. Numerous archaeological sites were altered by the formation of the LwU and were further degraded during this erosive stage, resulting in a significant loss of information about human occupation in late Prehistory. This can explain the almost complete absence of remains for these periods in this region.

The upper unit (UpU)

The previous erosive stage generated a severely degraded and irregular landscape, somewhat similar to the Pre-LwU, but without the complete disappearance of the former slope accumulations. In the general evolutionary model established by Peña-Monné et al. (2005), the normal trend is for new accumulations of the UpU to progressively substitute the LwU. This is the most frequent situation observed in all previous works on Holocene slopes. However, Peña Enroque has a different arrangement of the slopes: the UpU is superimposed on the LwU in many areas (sections 1, 3, 5, 6 and 7). This circumstance has very positive consequences for the study of the evolutionary stages of the slope, because the LwU and its paleosol are preserved almost intact (Figure 8).

This second stage of slope regularisation differs from the LwU. The morphology of the new slopes is steeper (30-35°), begins at the foot of the limestone escarpment, and has a concave profile that connects with nearby valleys. We can observe this stage as an independent landform in the N, S and SE of Peña Enroque (Figure 2).

The composition of the UpU shows a prevalence of thick sediments, even including boulders and cobbles. It is a debris-covered and gravity-controlled slope with rock falls, washing of fine materials, localised fluxes, and ploughing blocks, etc. These materials and processes fit in a dynamic of limestone escarpment retreat and transport by means of surface run-off and generation of debris fans in a steep slope setting. The final result is regularisation, but not as complete as it was the LwU. Now the slopes have two sectors with morphologies that are clearly separated: an almost vertical escarpment and a concave or rectilinear talus (Figure 7, 4).

The basal part of the UpU sometimes has an almost rectilinear contact with the LwU (sections 5, 6 and 7), without large or deep channels separating them. However, in some cases (section...
1) this contact is more irregular because of small fluxes that introduced materials from the paleosol of LwU into the the UpU.

Inside the accumulation of the UpU there are at least two moments of increased stability indicated by the development of two paleosols with A-horizons (IIA and IAh, levels 2b and 2d in Section 6, respectively) that break the accumulative dynamic (Figure 5, section 6, and Figure 8). Horizon IAh is considered a paleosol and not the current active soil because it is being cut by the existing erosive slope profile (Figure 8). These two paleosols were quickly generated without time to develop B horizons and in the case of IAh almost without any washing of salts.

The short time duration of these sub-stages of the UpU is confirmed by the chronology obtained in sections 6 and 7.

The only chronological elements for the UpU are five modern wheel-thrown pottery shards recovered from the upper levels of this unit in section 7, providing a post-quem terminus for the formation of the deposit. Their typology points to the 17th to 19th centuries and TL dating performed on one of them precisely confirms that chronology to AD 1624 ± 21 (MADN-5998BIN). This age for the UpU accumulation fits with the chronology of other slopes in nearby areas of the Ebro Depression, such as the northern escarpment of the river Ebro at El Castellar and Castillo de Miranda (Peña-Monné, 1996; Constante et al., 2010), in the Huesca Depression (Rodríguez-Vidal, 1986), or in the lower courses of the Segre and Cinca Rivers (Peña-Monné et al., 1988; Peña-Monné and González-Pérez, 1992; Peña-Monné et al., 1996; Peña-Monné and González-Pérez, 2000). Therefore, we can assume that it is a generalised slope formation stage in NE Spain. The climatic conditions that were necessary for its genesis imply an abrupt change that contrasts with the previous stage characterised by erosive processes. However, this new regularisation stage represented by the UpU was less important than the LwU.

There is only one climatic phase after the Medieval Climate Anomaly with the specific conditions that could generate the UpU, that is, the LIA with its highly variable precipitation regime (Figure 9). In addition to the UpU, the LIA is also responsible for several aggradation stages in the bottoms of the secondary valleys (Peña-Monné et al., 1993; Peña-Monné et al., 1996; Peña-Monné et al., 2001; Peña-Monné et al., 2005; Constante et al., 2010) and important flood episodes in the main courses of NE Spain (Llasat et al., 2005; Thornycraft and Benito, 2006; Benito et al., 2008) and Europe (Macklin et al., 2006). The wetter conditions of the LIA are also
evidenced by the palaeolimnological records in the western Mediterranean – Estanya and Montcortés lakes (Corella et al., 2011b; Morellón et al., 2011) – in contrast with the eastern Mediterranean that was dryer during this period (Roberts et al., 2008; Roberts et al., 2012). The two sub-stages of the UpU represented by the horizons IAh and IIA show the environmental variability of the LIA, which has been determined for the NE of Spain through dendroclimatic studies (Saz-Sánchez, 2003) and Pyrenean glacial evolution (Chueca and Julián, 1996). These types of paleoclimatic records, as well as other paleoclimatic records (lacustrine and marine sequences, increased runoff, vegetation changes) enable the determination for the Pyrenean region (Morellón et al., 2012) of two stages in the evolution of LIA: the first with fluctuating moist conditions and relatively cold temperatures (ca. AD 1300-1600); and the second with lower temperatures (glaciers advances), greater runoff, and more humidity (ca. AD 1600-1800). This climatic information concurs with the data obtained from the UpU in section 6. The pottery shard dated by means of TL in section 7 was placed slightly above the horizon IIA. Therefore, the first LIA accumulation and later stabilisation took place before the 17th century. During or after this century, the second accumulation arose (Figure 5, section 6 level 2c, Table 3 C1 and C2 horizons) and so the accumulation could be related to the cooler temperatures of the Maunder Minimum (AD 1640-1710). In NE Spain, dendroclimatic data shows a series of dry anomalies (AD 1660-1670, 1680-1690, Saz-Sánchez, 2003) during this second period. It is not until the end of the 19th century that we find a recovery of precipitation (AD 1880-1890, Saz-Sánchez, 2003; Morellón et al., 2012) which can be linked to the development of the IAh horizon. Its short temporal duration and its proximity to present day dry conditions concur with the poor development of this paleosol as evidenced by the edaphological data. These stages during the LIA are concurrent with the successive solar irradiance minimums described by Steinhilber et al. (2012) by means of different proxy data.

Present dynamics

In recent and present times, the prevailing processes in these slopes are mainly incisions in the UpU unit. In those areas where both units are superimposed (sections 1, 5, 6 and 7) the incisions cut through the whole of the accumulation. These gullies have a radial course from the
base line of the limestone escarpment towards the nearby flat fields and they generate talus
flatirons morphologies in the slopes (Figure 7, 5) and alluvial fans in the distal segment.
The upper surface of the UpU suffers an intense washing of fine grain material, leaving a stony
pavement that truncates its original topography, mainly affecting the most superficial paleosol
horizon IAh (Figure 8). In addition, there are small flux processes and ploughing blocks in the
NW slope, which is wetter than the SE side. In the dryer slopes rock falls of large blocks spread
chaotically over the surface of the UpU creating a debris-covered slope (Figure 6).
From the second half of the 19th century, climate conditions favoured the dynamism of the
abovementioned processes. Continental Mediterranean climate has few, but very intense
precipitations, that are especially erosive during the summer. Despite a recent decline in
anthropic land use pressure, the intense degradation of the natural environment caused by
several centuries of overgrazing on the slopes and the soft local lithologies (gypsum, clay and
marl) further promoted erosive processes because they prevented vegetation recovery.
The erosion also affects archaeological sites, even the most recent sites, such as medieval and
modern castles. A great part of the archaeological record is currently interpretable and
understandable through the remains contained in slope accumulations, as is the case of Peña
Enroque. Therefore, it is urgent to study the archaeological materials in these secondary
contexts using geoarchaeological criteria and methods to obtain as much archaeological and
paleoenvironmental information as possible.

Conclusions
The information obtained through the geomorphological and geoarchaeological study of Peña
Enroque enables us to make more precise descriptions of some aspects of the Holocene slope
system in NE Spain. The newly available data places the date of the beginning of the LwU
accumulation in the late Chalcolithic. The paleosol that culminates the long slope stability period
reaches Ibero-Roman times. This implies that the paleoenvironmental conditions of the central
sector of the Ebro Depression allowed the development of soils until that period. Afterwards, an
accelerated degradation of soils began as a result of the intensification of the anthropic
activities, especially from the late Roman period, as revealed by the sedimentary infills in
nearby secondary valleys (Peña-Monné et al., 2004). The resulting erosion is responsible for
the almost complete disappearance of the LwU. However, in Peña Enroque this unit was
fortunately preserved and fossilised under the new slope accumulation (UpU), whose upper
levels are dated to the second half of the LIA (17th-19th century). This second great moment of
slope activity had at least two stabilisation periods that allowed the development of two soils
which have now been eroded. The UpU is important for evaluating the incidence of LIA in lower
areas of the Mediterranean. The LIA caused specific morphologies (quite different to those of
the LwU) that are currently still active.

Finally, in summary we outline the evolutionary stages of the Upper Holocene in the NE of
Spain (Figure 9), according to the new data recovered from the Peña Enroque study and
previous paleoenvironmental works:

1. Pre-lower unit stage (Pre-LwU): chrono-culturally concurs with the Chalcolithic. Its
environmental conditions were arid or semiarid. The landscape was characterised by a
prevalence of badlands. It can be related to the 4.2 event of Bond et al. (Bond et al.,
1997) or the RCC 3 (4200-3800 BP) of Mayewski et al. (2004) and with an aridification
phase identified by Jalut et al. (2000).

2. Lower unit (LwU) slope accumulation stage: began in the late Chalcolithic and
continued during the Bronze and Iron Ages. Soil developed on top and reached at least
the 2nd century BC. Climatic conditions for this stage were cooler and wetter, generating
solifluxion processes. This stage matches event 2.8 of Bond et al. (Bond et al., 1997)
and the RCC 4 (3500-2500 BP) of Mayewski et al. (2004).

3. Intermediate erosive stage (Inter LwU-UpU): spans from the late Roman Period to post-
Medieval times. Most of the LwU was eroded during this stage – caused by an
aridification of the climate and anthropic pressure on the vegetal cover. During this
period, Jalut et al. (2000) indicates two aridification phases that happen in a warm
global context.

4. Upper unit (UpU) slope accumulation stage: concurs with the LIA. New accumulations
regularised the previously eroded slopes. However, it locally covered the remains of the
In this unit there are two cycles of aggradation-stabilisation that correspond with climatic sub-stages of the LIA.

5. Present day incision stage: the consequence of the combination of climate conditions favourable to erosion and recent-present anthropic pressure on the environment. All of the remains of the accumulation units are being eroded and this is severely affecting the archaeological record.

Acknowledgments

This work is a contribution of the Quaternary Paleoenvironments Research Group (PALEOQ) and Primeros Pobladores del Valle del Ebro Research Group (PPVE), both partners of the Institute of Environmental Sciences (IUCA), University of Zaragoza – Aragon Regional Government.

Funding for this study was made available by the Secretaría de Políticas Universitarias del Ministerio de Educación (Argentina) and the I+D+i project Dinámica de la ocupación prehistórica del valle medio Ebro durante el Holoceno Superior (HAR2012-36967, Ministerio de Economía y Competitividad, Spanish Government).

We wish to thank Dr. Penélope González-Sampériz for her collaboration in the palynological analyses, despite the lack of positive results.

We are grateful to the reviewers of this paper for their comments and corrections. However, any mistake or misinterpretation found in the text is authors only responsibility.

References cited

List of tables

Table 1. TL dating of pottery shards from Peña Enroque.

Table 2. 14C dating in slope units from Peña Enroque.

Table 3. Soil main characteristics analysed in Section 6

List of figures
Figure 1. Situation and geomorphologic maps of Peña Enroque, with indication of the seven analysed sections and the location of the archaeological findings.

Figure 2. NE panoramic view of the structural relief called Peña Enroque. Talus flatirons exposed in the photograph correspond to the upper unit of slope regularisation.

Figure 3. Geomorphologic diagram of the northern slope of Peña Enroque that shows the two described units (lower and upper units), the main paleosol A-horizon, and the position of sections 1, 2 and 3. In the lower part of the figure there are three photographs of the sections with indications of their units and levels, dating samples and archaeological artefacts (see the text for further explanation).

Figure 4. Geomorphologic diagram of the northern slope of Peña Enroque showing the two units (lower and upper units), the main paleosol A-horizon and the position of sections 4 and 5. In the lower part of the figure there are two photographs of the sections with indications of their units and levels, dating samples and archaeological artefacts (see the text for further explanation). In the upper part, drawings and photographs show some of the Bell Beaker pottery shards recovered from section 4 and surroundings.

Figure 5. Geomorphologic diagram of the northern slope of Peña Enroque that shows the two described units (lower and upper units), the main paleosol A-horizon and the position of sections 6 and 7. In the lower part of the figure there are two photographs of the sections with indications of their units and levels, dating samples and archaeological artefacts (see the text for further explanation). In the upper part, drawings and photographs represent some of the Modern Age pottery shards recovered from Section 7 and surroundings.

Figure 6. Photograph of the SE side of Peña Enroque showing the Miocene limestone escarpment and the slope of the upper unit. In the cut of the gully, the two superimposed units can be observed. A-horizons of the paleosols are indicated.

Figure 7. Evolutionary diagrams showing the geomorphological state of Peña Enroque during different stages – from the Chalcolithic to the current morphology (2700 BC – AD 2013). The moments of aggradation of the two slope units are evidenced.

Figure 8. Diagram synthesising the data obtained from the seven analysed sections. The arrangement of the two slope units, the paleosols, pottery position and chronological data are shown.
Figure 9. Graph relating the described stability/incision slope stages to the climatic evolution of the late Holocene, the Bond et al. (1997) events, the Mayewski et al. (2004) RCCs, and the historical periods from the late Neolithic to the current time.
Table 1. TL dating of pottery shards from Peña Enroque.

<table>
<thead>
<tr>
<th>References</th>
<th>Area & depth (m)</th>
<th>Material</th>
<th>TL age (yr from 2011)</th>
<th>Dates BC/AD</th>
<th>Cultural period</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADN-5995BIN</td>
<td>Summit (0.02)</td>
<td>Ceramic</td>
<td>3657 ± 250</td>
<td>1646 ± 250 BC</td>
<td>Bronze Age</td>
</tr>
<tr>
<td>MADN-5998BIN</td>
<td>Section 7 (0.15)</td>
<td>Ceramic</td>
<td>387 ± 21</td>
<td>AD 1624 ± 21</td>
<td>Modern Epoch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory Reference</th>
<th>Section number & depth (m)</th>
<th>Material</th>
<th>14C yr BP</th>
<th>cal yr BP (2 σ ranges)</th>
<th>Cal yr BC (2 σ ranges)</th>
<th>Cultural period</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrA-45131</td>
<td>Section 4 (0.85)</td>
<td>Charcoal</td>
<td>3795 ± 35</td>
<td>4346-4334 (0.8%)</td>
<td>2397-2385 (0.8%)</td>
<td>Late Chalcolithic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4295-4083 (97.7%)</td>
<td>2346-2134 (97.6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4029-4010 (1.5%)</td>
<td>2080-2067 (1.5%)</td>
<td></td>
</tr>
<tr>
<td>GrA-47554</td>
<td>Section 3 (2.05)</td>
<td>Charcoal</td>
<td>4015 ± 40</td>
<td>4781-4769 (1.4%)</td>
<td>2832-2820 (1.4%)</td>
<td>Chalcolithic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4607-4592 (0.5%)</td>
<td>2658-2653 (0.5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4581-4413 (98.2%)</td>
<td>2632-2464 (98.2%)</td>
<td></td>
</tr>
<tr>
<td>GrA-50207</td>
<td>Section 5 (3.1)</td>
<td>Charcoal</td>
<td>4485 ± 35</td>
<td>5295-5037 (95.3%)</td>
<td>3346-3088 (95.3%)</td>
<td>Early Chalcolithic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5007-4979 (4.7%)</td>
<td>3058-3030 (4.7%)</td>
<td></td>
</tr>
<tr>
<td>UZ-5952 / ETH-42556</td>
<td>Section 7 (0.95)</td>
<td>Charcoal</td>
<td>2110 ± 30</td>
<td>2152-1995 (100%)</td>
<td>203-46 (100%)</td>
<td>Ibero-roman Epoch</td>
</tr>
</tbody>
</table>

Radiocarbon ages were calibrated to calendar ages by using CALIB 6 (Stuiver and Reimer, 1993) based on Reimer et al. (2009) calibration data set. Some conventional 14C dates have multiple intercepts in the calendar yr BP curve. Two-sigma calibrated age (BP and BC) is provided in ranges with indication of their relative area (in %) under 2 σ distribution. In bold most likely period.
Table 3. Soil main characteristics analysed in Section 6

<table>
<thead>
<tr>
<th>Sample depth (cm)</th>
<th>Geom. Level</th>
<th>Edaf. Horizon</th>
<th>Munsell colour notation (dry; wet)</th>
<th>Gravels (% w/w)</th>
<th>Organic Matter (%)</th>
<th>C/N ratio</th>
<th>Total P (mg/kg)</th>
<th>CE (dS/m)</th>
<th>CaCO₃ eq (%)</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2d</td>
<td>IAH</td>
<td>7.5 YR 6/3; 7.5 YR 5/3</td>
<td>44.3</td>
<td>3.64</td>
<td>30.1</td>
<td>200</td>
<td>0.43</td>
<td>55.3</td>
<td>Clayey-skeletal</td>
</tr>
<tr>
<td>45</td>
<td>2c</td>
<td>IC1</td>
<td>7.5 YR 6.5/3; 5.5 YR 5/3</td>
<td>70.3</td>
<td>1.99</td>
<td>9.6</td>
<td>109</td>
<td>0.92</td>
<td>43.1</td>
<td>Clayey-skeletal</td>
</tr>
<tr>
<td>65</td>
<td>IC2</td>
<td>7.5 YR 6.5/3; 7.5 YR 5/3</td>
<td>57</td>
<td>1.48</td>
<td>4.5</td>
<td>144</td>
<td>2.92</td>
<td>61.3</td>
<td>Clayey-skeletal</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2b</td>
<td>IIA</td>
<td>7.5 YR 6/3; 7.5 YR 5/3</td>
<td>39</td>
<td>4.63</td>
<td>17.9</td>
<td>198</td>
<td>0.75</td>
<td>37.0</td>
<td>Clayey-skeletal</td>
</tr>
<tr>
<td>120</td>
<td>2a</td>
<td>IIC1</td>
<td>7.5 YR 7/3; 7.5 YR 6/3</td>
<td>23</td>
<td>1.84</td>
<td>7.1</td>
<td>165</td>
<td>4.34</td>
<td>49.3</td>
<td>Clayey-skeletal</td>
</tr>
<tr>
<td>160</td>
<td>IIC2</td>
<td>7.5 YR 6.5/3; 7.5 YR 5/3</td>
<td>72*</td>
<td>2.03</td>
<td>9.0</td>
<td>151</td>
<td>nd</td>
<td>43.3</td>
<td>Clayey-skeletal</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>1b</td>
<td>IIIA</td>
<td>7.5 YR 5/2; 7.5 YR 4/2</td>
<td>35</td>
<td>4.00</td>
<td>18.0</td>
<td>279</td>
<td>0.34</td>
<td>34.5</td>
<td>Clayey</td>
</tr>
<tr>
<td>210</td>
<td>1a</td>
<td>IIIBw</td>
<td>7.5 YR 6.5/3; 7.5 YR 5/4</td>
<td>8</td>
<td>2.26</td>
<td>11.9</td>
<td>213</td>
<td>1.03</td>
<td>41.2</td>
<td>Loamy</td>
</tr>
<tr>
<td>270</td>
<td>IIC1</td>
<td>7.5 YR 6.5/3; 7.5 YR 5/4</td>
<td>22</td>
<td>2.27</td>
<td>10.1</td>
<td>212</td>
<td>0.71</td>
<td>41.7</td>
<td>Clayey</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>IIC2</td>
<td>7.5 YR 6.5/3; 7.5 YR 5/4</td>
<td>23</td>
<td>2.26</td>
<td>8.7</td>
<td>222</td>
<td>1.15</td>
<td>41.5</td>
<td>Clayey</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2
Click here to download high resolution image
Figure 7

1. Pre-LwU
2. LwU
3. Ibero-Roman Epoch-Medieval Epoch (500 BC-XVIth century)
4. XVIIth-XIXth centuries
5. Present

Chalcolithic (<2500 BC)
Late Chalcolithic-Bronze Age-Iron Age (2500-500 BC)

Legend:
- Miocene limestones
- Miocene clays and marls
- Lower Unit
- Upper Unit
- Alluvial fans
Figure 9
Click here to download high resolution image