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Abstract 
 
 
This project combines life -i.e., biological- sciences methodologies with physical and 
computational analyses of protein expression for two differentiated microorganisms 
with a completely different lifestyles: E.coli, a well-known bacteria, and M.tuberculosis, 
a deathly human pathogen. In other to do that, we build two folding change multilayer 
networks of protein expression and analyze them. The multilayer networks have six 
layers which are equivalent to six stress conditions: acid, cell damage wall, hypoxia, ion 
deprivation, oxydative stress and starvation. To do the analysis and comparison 
between the networks corresponding to the two bacteria, we employed several tools. 
Regarding bioinformatics: GEO, metasoft; softwares as R-studio, ClueGO; statistical 
measures like strength, overlap and partition coefficient and statistical tests such as the 
Mann-Whitney and Peacock tests. Our results show that the differences in lifestyles are 
captured by the network approach and the proposed metrics. This work could open the 
path to obtain further insights about protein-protein interactions and relevant challenges 
such as protein function determination. 
 
 
 
Keywords 
 
E.coli, M.tuberculosis, lifestyle, network, multilayer, stress, acid, cell damage wall, 
hypoxia, ion deprivation, oxydative stress, starvation, strength, overlap, partition 
coefficient. 
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1.Introduction 
  
One might say: “the eternal mystery of the world is its comprehensibility” (Einstein A. 
Physics and Reality,1936), however, we see how a scientist’s goal is always to try 
getting that comprehensibility. So, what science means is the first issue I would like to 
reflect on. If you just look up the word in the dictionary, you find something like “ the 
intellectual and practical activity encompassing the systematic study of the structure 
and behaviour of the physical and natural world through observation an experiment”[1], 
you can also read  “a branch of such knowledge, e.g. biology, chemistry, physics, 
etc”[2]. The concept of science was has been used for a long time. Etymologically, it 
comes from Latin “scientia” understood as “knowledge, expertness”, from “scire” 
meaning “to know”, probably originally “to separate one thing from another, to 
distinguish” related to “scindere” “to cut, divide” [3]. 
 
Nowadays, science advances quickly.  The growing complexity of scientific studies 
requires ever-increasing cross-disciplinarity when it comes to particular methodologies 
used in the quest to reach the goals of these studies [4]. Interdisciplinarity is 
considered the best way to face practical research topics since synergy between 
traditional disciplines has proved very fruitful [5].  So, remarkable enough, this project 
is a combination of biological life studies and physical and computational analysis. The 
idea is to study two multiplex networks of protein expression for two differentiated 
microorganisms and how those proteins interact in the organism, when it is subject to 
different stresses that are equivalent to life conditions. To this end, several statistical 
methods are employed. 
 
Therefore in this introduction, we first make a short exposition about Escherichia coli 
(E.coli) and Mycobacterium tuberculosis (M.tuberculosis) and compare them to show 
the differences between both lifestyles: from a facultative anaerobic commensal to 
highly adaptation to a specific environmental niche like the case of  M.tuberculosis, 
which has the human as exclusive reservoir. Finally, we also present a brief summary 
of what a network is, as well as, multiplex networks and biological ones.  
 
1.1 Biological microorganisms  
 
In biological taxonomy, according to the Woese system, introduced in 1990, the tree of 
life consists of three domains: Archaea, Bacteria, and Eukarya[6]. Considering the 
organisms of interest, both E.coli and M.tuberculosis belong to Archea domain. A 
comparation of taxonomy classification is assembled in Table_1 to visualize easily how 
different they are.  
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Table_1. Taxonomy E.coli and M.tuberculosis including phylum, class, order, suborder, 
family and genus[37]. 
 

Microorganism E.coli M.tuberculosis 
Phylum Proteobacteria Actinobacteria 
Class Gammaproteobacteria Actinobacteria 
Order Enterobacteriales Actinomycetales 
Suborder - Corynebacterine 
Family Enterobacteriaceae Mycobacteriacea 
Genus Escherichia Mycobacterium 

 
 
1.1.2 E.coli 
 
E.coli  is one of the best characterised organisms and has served as a model to study 
many aspects of bacterial physiology and genetics of fundamentals and applied 
interest [7]. The resulting knowledge and molecular methods for investigating and 
manipulating its biology have since led to E. coli’s prominence in academic and 
commercial genetic engineering, pharmaceutical production, and experimental 
microbial evolution, not to mention the biotechnology industry, which contributed 500 
billion dolars to the global economy in 2011[8]. 
 
The proteobacteria belong to Enterobacteriaceae family and Escherichia genus was 
first isolated by Theodor Escherich from a human stool sample in 1886. It was called 
Bacterium coli commune and some years later Escherichica coli name was 
established[8-10]. There are multiple strains of this kind of enterobacteria that have 
adapted to diverse environmental conditions and lifestyles. While the typical E.coli 
genome constains roughtly 4800 genes, only approximately 2000 are shared by every 
E.coli strain. (See Figure_1) The genomic plasticity of various E.coli isolates provides 
E.coli the ability to proliferate and survive in an array of environments. The major niche 
of E.coli is the lower intestine tract of mammals, birds, and reptiles [11]. It also can be 
found in soil, water and food [12]. Some of them can be pathogenic, associated to 
human enteritis, urinary tract infection and septicaemia or diarrhea in pet and farm 
animals[13]. However, most of the strains are not pathogenic as it is the case of E.coli 
K12, which we focus on.  
 
E.coli K12 strain was first isolated in Stanford in 1922 [11]. It is a Gram-negative, rod-
shared bacteria belonging to the K serogroup of E.coli. It lives as a harmless inhabitant 
on the human large intestine and is widely used in medical and genetic research[8]. 
Physiologically, it is a facultative anaerobe and despite that it can not grow at extremes 
temperature or pH, its metabolic flexibility allows it to adapt to hard external conditions 
[14]. 
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Figure_1. By Jan Dirk et al., 2011. The average E. coli genome is shaped by a 
multitude of evolutionary forces derived from its primary (host) and secondary habitats, 
in which both biotic (predators, competitors, cheaters, host defense mechanisms) and 
abiotic (pH, temperature, UV, mineral depletion and so on) pressures are present. E. 
coli strains possess a core of about 2000 genes, which equip them with a versatile 
metabolism. The E. coli pan genome consists of about 18000 genes, of which 11% 
belong to the core (dark blue), a large portion (62%, blue) is composed of so-called 
‘persistent’ genes, and 26% can be considered as ‘volatile’ genes (pale blue) (Touchon 
et al., 2009). Events of gene acquisition and loss are consistently linked to 
insertion/deletion hotspots (red), and cooperatively shape the E. coli genome with 
selectively maintained core/persistent genes. These events may result in the evolution 
of gene clusters defining specific E. coli phenotypes [15]. 
 
 
1.1.2 M. tuberculosis 
 
We focus now in M.tuberculosis, a microorganism detected by Robert Koch in 1882 
[16]. This actinobacteria belongs to Mycobacteriaceae family and Mycobacterium 
genus (see in Table_1), and, furthermore, it is the causal pathogen of tuberculosis. 
Every minute, 3 people in the world die of this disease. With more than 8 million new 
cases of active disease and nearly 1.5 million deaths annually, tuberculosis is a global 
health emergency [17]. 
 
Regarding its cycle of life, the micobacteria concentrates on its unique reservoir: 
humans. The pathogen is transmitted by inhalation, enters in the alveolar space of the 
lungs and encounters the resident alveolar macrophages. If the defense fails, the 
bacteria invades the lungs interstitial tissue. Either dendritic cells or inflammatory 
monocytes transports M.tuberculosis to pulmonary lymph nodes for T cell priming. This 
event leads to the recruitment of immune cells, including T cells and B cells, and to the 
lung parenchyma to form a granuloma. Until now, the process described is called latent 
infection. Then, it can evolve to active disease. The bacteria replicate within the 
growing  granuloma. If the number of bacteria is too high, the granuloma can not 
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support them and the pathogens disseminate to other organs [16]. At this point, there 
are symptoms such fever, fatigue, hemoptysis, coughing up blood in advanced disease 
[16]. (See in Figure_2). 
 

 
 

Figure_2. Mycobacterium tuberculosis and disease by Madhukar Pai et al. (Nature, 
2016)[16]. a) Infection begins when M.tuberculosis enters in lungs via inhalation, 
reaches the alveolar space and encounters the resident alveolar macrophages. If this 
line of defense fails to eleminate the pathogen, it invades the lung interstitial tissue, 
either by the bacteria directly infecting the alveolar epithelium or the infected alveolar 
macrophages migrating to the lung parenchyma. Subsequently, either dendritic cells or 
inflammatory monocytes transport M.tuberculosis to pulmonary lymph nodes for T cell 
priming. This event leads to the recruitment of immune cells, including T cells and B 
cells, to the lungs parenchyma to form a granuloma. b) The bacteria replicate within the 
growing granuloma. If the bacterial load becomes too great, the granuloma will fail to 
contain the infection and bacteria will disseminate eventually to other organs. At this 
phase, the bacteria can enter the bloodstream or re-enter respiratory tract to released- 
the infected host is now infectious, symptomatic and is said to have active TB disease. 
 
 
1.1.3 Differences between bacterial lifestyles 
 
As we have seen before, both microorganisms are living inside a host and they also 
have a transit period outside the host for finding a new or the next host. On the one 
hand, E.coli is a mutualist and M.tuberculosis is an obligate pathogen. E.coli secures 
food and a comfortable enviroment and benefits its host, for instance, producing 
vitamin K and vitamin B12, both of which are required by mammalian hosts [8]. It lives 
mostly in gut and it can be excreted in fecal matter, but it also stands out for its high 
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survival in several niches. E.coli can also live in soil, manure and water [15]. On the 
other hand, M.tuberculosis has no known environmental reservoir; humans are its only 
known reservoir [16]. Its entire life cycle is determined by the context of human 
infection. It is transmited by aerosol and competes for nutrients with the host, disrupting 
its metabolic pathways and interacting with its immune system [18]. 
 
Therefore, the main difference can be stablished in the fact that E.coli is a generalist, in 
the sense that its metabolism is versatile and adapts to the environment. On the 
contrary,  M.tuberculosis is a specialist as the pathogenic bacteria that it is, which 
means its metabolism causes the human disease. 
 
 
1.2 Structure and function of complex networks 
 
Biological and chemical systems, neural networks, social interacting species, the 
Internet and the World Wide Web, are examples of systems composed by a large 
number of hightly interconnected dynamical units [19]. This project is based on the 
analysis of two networks of two microorganisms. To understand how they work and 
what we have done, in what follows we comment the main networks features and their 
basic concepts. 
 
As regards to the structure of complex networks, some general concepts appear below.   
A network can be represented as a graph, in accordance with Graph theory. A graph 
consists of two sets N, N ≡ {n1, n2,...,nN }, and L, L ≡ {l1, l2,...,lK}. N is the set of nodes 
and L that of the links or edges, which allow the connection between nodes (See 
Figure_3). Then, the features of the graph define which graph we are dealing with: 
undirected/directed, weighted/unweighted depending on the kind of information 
attached to the edges [19]. 
 

    a)    b)   c) 

 
 
Figure_3. Illustrations of a graphic composed by N=4 nodes (black circles) and L=4 
links (light connections). a) Undirected and unweighted.  The set of nodes is 
P={1,2,3,4,5} and the edge or link set is E={{1,3},{2,3},{2,4},{3,4}}. b) Directed and 
unweight (P={1,2,3,4,5}, E={{1,3},{2,3},{2,4},{3,4}}).  
c) Undirected and weight(P={1,2,3,4,5}, E={{1,3},{2,3},{2,4},{3,4}}) 
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Some other interesting concepts are the following: the degree ki of a node is related to 
the number of links to other nodes and the degree distribution, P(k), is the probability 
that a node chosen uniformly at random has degree k or, equivalently, as the fraction of 
nodes in the graph having degree k [19]. Additionally, we note that real networks are 
often correlated in the sense that the probability that a node of degree k is connected to 
another one of degre k’, depends on k’, i.e., P(k’|k) is not only a function of k [19]. 
 
If we focus now in distances, other features of the network can be mentioned as the 
shortest path length, the diameter, the closeness and the betweenness. The closeness 
is the inverse of the average distance from any node to all other nodes, while the 
betweenness measures node centrality, that is, the importance on a particular node in 
a network [19]. 
 
Clustering is also a network property which quantifies the number of triangles, i.e., 
three nodes that are conneted between them. A motif M is a pattern of interconnections 
occurring in a graph G at a number significantly higher than in randomized versions of 
the graph, (i.e. in graphs with the same number of nodes, links and degree distribution 
as the original one, but where the links are distributed at random). In addition, the 
community structure is an interesting concept as it characterizes how likely it is that 
there are groups of nodes that have a high density of edges within them, while having a 
lesser number of edges with other groups [20]. 
 
Regarding the topology of real networks, the development of data analysis tools has 
allowed to study a large variety of systems, reveling the fact that despite the existence 
of different kinds of real networks, they share roughly the same topological properties, 
for instance, relatively small characteristic path lengths, high clustering, fat tailed 
shapes in the degree distributions, degree correlations, and the presence of motifs and 
community structures [19]. 
 
On the other hand, while firstly networks were considered homogeneous, that is, 
topologically equivalent to random graphs or a regular lattice, it has been shown that 
real networks mostly show a scale-free degree distribution P(k)~ Ak-γ, with exponents 
varying in the range 2<γ<3. The average degree <k> in such networks is therefore well 

defined and bounded, while the variance is dominated by the second 
moment of the distribution that diverges with the upper integration limit kmax as  

(1) 
They are scale-free networks because power-laws have the property of having the 
same functional form at all scales [19]. See Figure_4. 
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Figure_4. Adaptation [21]. Degree distribution of a Protein-protein interaction network 
which is Scale-free. The green dotted line shows the Poisson distribution with the same 
k� as the real network, illustrating that the random network model cannot account for 
the observed P(k). 
 
 
1.2.1 Multiplex networks 
 
A particular class of networks are multiplex networks, networks in which each node 
appears in a set of different layers, and each layer describes all the edges of a given 
type [22]. It is a better description of complex systems taking more aspects and 
conditions into consideration. Until now, the most frecuently approach to network 
description of complex systems consists of studying the graphs resulting from the 
aggregation of all the links observed between a certain set of elementary units. 
However, such aggregation procedure might discard important information about the 
structure and function of the original system, since in many cases the basic 
constituents of a system might be connected through a variety of relationships which 
differ for relevance and meaning [22]. That is the reason why in this project this kind of 
network has been used and studied. In particular, we have applied this framework to 
biological networks, which are explained in the next section.  
 
1.2.2 Biological networks 
 
Several elements at multiple scales in biology can be studied: cells, cellular 
components, metabolites, proteins, lipids, genes,... All of them are connected 
functionally in a complex way and complex networks can be used to provide insights 
into those relations [23]. 
 
In recent years, high-throughput experiments such as microarrays or yeast-two hybrids 
screens have produced large amount of information, which can be represented in 
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networks of interacting molecules. Lots of interacting molecules such as proteins and 
genes are treated and give rise to/generate biological networks, that have the main 
network properties commented before. So, most common types of biological networks 
are: protein-protein interaction networks, metabolic networks, genetic interaction 
networks, genes/transcriptional regulatory networks and cell signalling networks [24].  
These networks have been studied since several years go and for instance, Metabolic 
networks are scale free (Jeong et al. Nature 2000; Wagner & Fell Proc. R. Soc. Lond. 
2001) that explains how most metabolic substrates participate in only one or two 
reactions and there are few hubs. Other examples include Genetic regulatory networks 
(Featherstone & Brodie Bioessays 2002; Agrawal Phys. Rev. Lett. 2002), in which 
nodes are genes and links are derived from expression data; and finally Protein domain 
networks (Wuchty Mol. Biol. Evol. 2001; Apic et al. Bioinformatics 2001), where the 
network is constructed based on protein domain interactions.  
 
1.2.2.1 Protein-protein interaction networks 
 
In this work, we focus on protein-protein interaction (PPI) networks. They are based on 
protein-protein interactions which are essetial to almost every process in a cell. Thus,  
understanding PPIs is crucial for understanding cell physiology in different states. It is 
also useful for developing new drugs by targetting specific elements of PPIs. Strictly 
speaking, PPI networks are mathematical representations of the physical contacts 
between proteins in the cell. And these contacts are specific, occur between defined 
binding regions in the proteins and have a particular biological meaning. In addition, 
PPI information can represent both transient and stable interactions and knowledge of 
PPIs can be adopted to assign putative roles to uncharacterised proteins, to add details 
about the steps within a signalling pathway or to characterise the relationships between 
proteins that form multi-molecular complexes [24].  
 
 
2. Hypothesis and Objectives 
 
The radical differences between lifestyles of the two bacteria: Escherichia coli  and 
Mycobacterium tuberculosis should reflect in the way that stress-responding genes 
behave in responses to the different stresses. M.tuberculosis sees everything together, 
always in the phagosome, so, immunogenic proteins should response to many different 
stresses. On the contrary, in E.coli, our expectation is that we should see a richer 
dynamics, with a larger fraction of genes being turned on only upon specific stresses. 
Aimed at confirming this hypothesis, i.e., that the PPIs networks of the two organisms 
should be different thus reflecting their diverse lifestyles, two multilayer networks have 
been built from prior PPI networks. In these networks, each layer is associate to a kind 
of stress.  
 
Thus, our objectives are: 

1. To build the multilayer networks of E. Coli and M. tuberculosis 
2. To compare both networks using network metrics 
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3. To extract orthologous information for both networks and compare them. 
4. To study E. Coli antigens in relation to the network built. 
5. To compare both representations in regard to genes function enrichment. 

 
We next discuss the materials and methods used. In the next schematic figure, we  
summarize the work flow 
 

 
Figure_6. The work flow of the project. Firstly, we build E.coli and M.tuberculosis PPI 
folding change multilayer networks. To do that, we use three datasets: E.coli and 
M.tuberculosis PPI netowrks, sample-wise expression and samples metadata (these 
last two using GEOquery and Biobase). Secondly, metasoft provides multilayer network 
data (p-values, standard deviations…) by stress considering each stress a layer. At this 
point, we can analyse the multiplex measuring overlap and partition coefficient. We run 
also statistical test as Mann-Whitney and Peacock tests and use different sofwares like 
ClueGO. Finally we obtained and discute the results: E.coli and M.tuberculosis folding 
change multiplex network comparison, E.coli and M.tuberculisis orthologous 
comparison, E.coli antigens study and E.coli and M.tuberculosis genes functions 
enrichment.   
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3. MATERIALS 
 
3.1 Multilayer networks: Folding Change based 
 
The main objects of study of this project are both E.coli and M.tuberculosis folding 
change overexpression multilayer networks. They are composed by six layers and 
each layer represents a stress: acid, cell wall damage, hypoxia, ion deprivation and 
oxidative stress and starvation. They supposed to simulate different environmental 
conditions in which a microorganism has to live.  
 
These networks have been built from previous networks, which are described in the 
articles: Global protein-protein interaction network in the human pathogen 
Mycobacterium tuberculosis H37Rv by  Wang Y et al. and Global Functional Atlas of 
Escherichia coli Encompassing Previously Uncharacterized Proteins by Pingzhao Hu et 
al. From these researches, connections between proteins (links) are defined, then, 
coefficients of expression are needed to determine how important links are.  (See the 
explanation of the procedure in 4.1. Network construction: Meta-analysis and GEO). 
 
On the one hand, almost the entire ORFeome of M.tuberculosis was cloned. The 
pathogen’s genome encodes about 4000 ORFs and around one third has unknown 
functions. The protein-protein interaction (PPI) network involves 2907 proteins linked 
via 8042 interactions.  
 
On the other hand, the E.coli genome consists of 4339 protein-coding genes. 2667 of 
them have been purified and overexpressed, out of which 2337 were pairs of proteins 
and 330 were alone. The total number of identified protein-protein interactions were 
16050 and after some filtration 11511.  
 
The last aspect to mention is the fact that they are folding change networks, which 
means that they use Fold Change (FC) calculated as a ratio of averages from control 
and test sample values to select the differentially expressed genes in a microarray 
dataset with these two biological conditions [25]. Then, genes which appear over-
expressed or down-expressed in the networks are those which exceed a threshold or 
cutoff that marks the level of change.  
 
 
3.2. SOFTWARE_1: R-studio 
 
R-studio is a free and open source data analysis software. Our scripts are developed 
using it to analyse the data and graph properties. Several packages have also been 
used, such as ggplot2 and Peacock.test, which can be loaded simply by 

> library (ggplot2) 
> library (Peacock.test) 
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3.3. SOFTWARE_2: Cluego plug-in (Cytoscape) 
 
Cluego is a tool that improves biological interpretation of large lists of genes. It 
integrates Gene Ontology (GO) terms as well as KEGG/BioCarta pathways and 
creates a functionally organized GO/pathway term network. It can analyze one or 
compare two lists of genes and visualizes functionally grouped terms [26].  
 
 
3.4. SET_1: Orthologous pairs M.tuberculosis-E.coli. (Along 
with dictionaries). 
 
The set of genes which sequences have a common ancestor and have split due to 
speciation for M.tb and E.coli. They are collected in Annex Table_1, each column 
represent the id of those expressed genes for both microorganisms. These data come 
from Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks by 
M.Madam Baby, Sarah A.Teichmman and L.Aravind. As part of their analysis, they 
provide predictions of transcriptional regulatory interactions and transcription factors for 
the 175 prokaryotic genomes studied. The initial set is composed by 326 orthologous. 
(See Figure_7).  
 
The work done with these data includes the following steps. Before being employed, 
the initial genes are treated. Firsly, their nomenclature is changed:  Gene IDs are 
translated from GenBank Indentifiers (GI) to Ordered Locus Names (OLN) in both M.tb 
and E.coli. OLN are used to sequentially assign an identifier to each predicted gene or 
a completely sequenced genome or chromosome based on a prefix representing the 
organism followed by a number, which usually represents the sequencial ordering of 
genes on the chromosome (definition by Uniprot, the Universal Protein Resource). See 
a few examples below: 
 
GI M.tb OLN M.tb GI E.coli OLN E.coli 
15607143 Rv0001 16131570 b3702 
15607144 Rv0002 16131569 b3701 
15607145 Rv0003 16131568 b3700 
 
GI-OLN conversion was made by Uniprot's ID mapping tool which is useful for 
converting Uniprot IDs to NCBI Gene IDs and vice-versa [27]. After this step, there 
remain 274 E.coli and 211 M.tuberculosis genes. Out of these, only 85 are present in 
the E.coli folding change overexpression network and 94 in the M.tuberculosis one, in 
turn, 76 have overlap and participation coefficients (see below for the definition of these 
quantities) and 18 have overlap equal to zero and Not Available number (〈NA〉)as 
participation coefficient. These new sets are called pull genes. Finally, by filtering only 
orthologous pairs which share a function, 43 were selected and those are named 
Orthologous pairs or pair set.    
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Figure_7. Procedure of orthologous selection to get final orthologous set used in 
orthologous analyisis (See in 5.2.Compartion E.coli and M.tuberculosis Orthologous 
genes: pull and pairs). 326 orthologous initial set from M.Madam Baby et al. After 
name transformation (from GI to OLN), 274 E.coli and 211 and 274 M.tuberculosis 
orthologous are obtained, of which 85 and 94 (14 of them cero overlap and <NA> 
partition coefficient) are part of E.coli and M.tuberculosis folding change 
overexpression multilayer networks respectively. They are named pull of orthologous. 
In turn, only 43 are pairs between them. These are the pair set.  
 
 
Orthologs are studied in Section 5.2. Comparison E.coli and M.tuberculosis 
Orthologous genes: pull and pairs.  
 
 
3.5. SET_2: Antigens of E.coli. 
 
The set of antigens of E.coli K12 are grouped together in Annex Table_2. Antigens are 
foreign substances that trigger the production of antibodies when introduced into the 
body [28].The initial antigen set was composed of 40, but only 14 have been used 
because not all of them appear in the initial PPI from which the multilayer network was 
built. In the first place, the name was changed to OLN (24 antigens). The conversion 
was made using the PI network data table (S6) in Global Functional Atlas of 
Escherichia coli Encompassing Previously Uncharacterized Proteins by Pingzhao 
Huand  and the suplementary table “Protein-protein interaction data table” reported in 
Large-scale identification of protein–protein interaction of Escherichia coli K-12 by 
M.Arifuzzaman et al. Finally, only 14 are part of the E.coli folding change 
overexpression multilayer network.  (See Figure_8). This set is employed in 5.3. E.coli 
antigen analysis.  
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Figure_8. Procedure of the obtention of antigen set. 40 antigen made up the initial set. 
After name conversion in OLN, there remain 24 antigens, lastly, the final set comprises 
14 antigens. 
 
 
4. METHODS  
 
4.1. Network construction: Meta-analysis and GEO  
 
A meta-analysis is a set of techniques used “to combine the results of a number of 
different reports into one report to create a single, more precise estimate of an effect” 
(Ferrer, 1998). The aims of meta-analysis are “to increase statistical power; to deal with 
controversy when individual studies disagree; to improve estimates of size of effect, 
and to answer new questions not previously posed in component studies” (Hunter and 
Schmidt, 1990). There are several advantages to meta-analysis. It allows investigators 
to pool data from many trials that are too small by themselves to allow for secure 
conclusions [29]. 
 
Therefore, the folding change multilayer networks had been built by a meta-analytical 
process, which is explained some lines below. At the same time, it should be remarked 
that  this work has been done in parallel with another named: “A Multiplex approach to 
study the responses of Mycobacterium tuberculosis to in vitro induced stress, and its 
relation with epitope conservation” by Miguel Baéz Martín. Miguel works with 
M.tuberculosis absolute expression multilayer network, being the main interest 
M.tuberculosis as a pathogen microorganism, while here, both multiplexes (E.coli and 
M.tuberculosis) are compared, focusing on ways of living, behaviours and evolution. 
However, these two researches have various common points such as some statistical 
analysis and the bioinformatic methodology,  which were developed together and 
shared.  They are explained later.   
 
It should also be noted that these two studies are a consequence of a previous one by 
Fernando Cid who wrote “Characterization of context-specific networks of protein-
protein interaction in Mycobacterim tuberculosis”. Nonetheless, the latter had some 
statistical shortcomings and goals were not wide enough. Hence, these two new 
projects have broader objectives and seek to overcome the mentioned shortcomings. 
In what follows, we describe the process that allows building the networks and the way 
of doing the analysis. The procedure was developed in a simple way by Miguel and I, 
and then, corrected by Joaquín Sanz, Yamir Moreno and Sergio Arregui, due to the 
heterogenity of the inputs data and the difficulty of some scripts. (See Annex Code_3). 
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Let’s first introduce the procedure used in Characterization of context-specific networks 
of protein-protien interaction in M.tuberculosis by Cid F. A large-scale meta-analysis of 
NCBI Gene Expression Omnibus (GEO) data was done, with the aim of knowing the 
expression levels for each gene. The GEO serves as a public repository for a wide 
range of high-throughput experimental data. These data include single and dual 
channel microarray-based experiments measuring mRNA, genomic DNA, and protein 
abundance, as well as non-array techniques such as serial analysis of gene expression 
(SAGE), mass spectrometry proteomic data, and high-throughput sequencing data[30].  
 
So, regarding experiment-wise, the data was extracted from GEO. In this database, 
samples (GSMxxx) are hierarchically grouped into arrays and experiments and 
stressors. A GEO serie (GSExxx) normally corresponds to one or more experiments, 
each of which corresponds to more than one sample or array [30]. For each array k of 
a given experiment, two important measures are obtained for gene-pair i-j in 
experiment k: 

(2) 
Then, grouping all gene-pair-wise arrays within an experiment using the LIMMA 
package in R, we built model-based estimates and standard errors (along with the p-
value and false discovery rates (fdrs)) for each link: 

 

(3) 
Finally, links are grouped within experiments corresponding to the same broad stress 
type into a coarse-grained multiplex, see Figure_9. 
 

 
Figure_9. Multilayer per stress. From layers that can be each experiment from GEO, a 
classification of those per stress gives multilayer per stress (six layers, six stresses).  

X
Experimental Layers

(105)
Stress Layers

(6)
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In short, the final pipeline was composed of three input tables: sample-wise expression 
(1) where columns were samples and rows were genes, a metadata table (2) in which 
rows collected samples, named the same way they were in the expression table, and, 
columns were sample attributes such as description, strain, experiment ID and stressor 
ID. The third input table was the PPI network (3) with the gene-pairs to filter. (See 
Figure_10). 
 
 
Finally, the experiment-wise multi-layer network was built by using LIMMA and 
p.adjust. Limma allows to get 〈FC〉i values, sd’s and t and p-values per experiment and 
p.adjust limits the false discovery rates (fdrs): 5% threshold.  
 
The following Figure_10 summarizes how the two multilayer networks (experiment-wise 
multilayer PPI and a stressor-wise multilayer PPI -which depends on the six stresses 
previously mentioned-) were built. 

 
 
Figure_10.  Steps to build multiplex networks. Firstly, expression data are retreived 
from GEO data analysis: both gene-wise expression and samples metadata. Apart 
from that, PPI network interactions are retreived from the bibliography. The gene-wise 
expression and PPI backbone together give link-wise expression summed over 
samples metadata generate both Experiment-wise Multilayer PPI and Stressor-wise 
Multilayer PPI, depending on which layers are represented: experiments or stress, 
respectively. Networks are built by limma and p-adjust which allow to get 〈FC〉i values, 
sd’s and t and p-values.  
 
 
Regarding the stressor-wise network, in which we are interested, we wanted to get a 
global estimate or error that produces a p-value from a series of experiments that are in 
turn characterized by an average and a significance level. In the average-of-averages 
situation, we need a way to treat, in the same way, cases where the within-experiment 
uncertainty is larger or smaller to the one observed between-experiments.  Figure_11 
illustrates two possible scenarios: in one of them the previous approach (Cid. F.) would 
work, but in the other, it would fail. Therefore, we need to find a solution whatever the 
scenario is or, in other words, we need to treat in the same way cases in which the 
within-experiment uncertainty is larger/smaller to the one observed between-
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experiments. To this end, we chose as an alternative the random effects model.  The 
idea is based on the sum of two aspects. Firstly, weight experiments according to 
within-experiment variance, so that less noisy experiments were assigned more weight. 
 

(4&5) 
 

That’s far better than before, but still inter-experiment variance is not accounted for. 
This is done by  

(6) 
 

where  is the so-called DerSimonian-Lard heterogeneity estimator (it is higher the 
larger the inter-experiment variance is):  

If (σk
FC (i⇔j)2 >>  then wk ≈1/(σk

FC (i⇔j)) and then everything gets the same as if 

there no inter-experiment Variance. However, if (σk
FC (i⇔j)2<<   for all experiments, 

then wk ≈ 1/  for all, and 〈FC〉Si⇔j =〈〈〈FC〉ki⇔j 〉〉
k
∈
l
i⇔j and σs

FC (i⇔j)2 =    
 

 
 
Figure_11. In the average of averages situation, when series of experiments has 
associated an estimate and a significance, two cases could be possible: a) The 
uncertainty is mainly driven by within-experiment variance (in this situation Cid.F 
research would work), b) The uncertainty is mainly driven by across-experiment 
variance (previous approach, by Cid.F, would fail).  
 
The previous approach, due to DerSimonian-Lard (5), was however not used here for 
several reasons. Firstly, it was apparently more conservative than it should (one has a 
hard time to retrieve significant hits from it). Secondly, there is a newer and better 
method around: Metasoft.  
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Metasoft is a free, open-source meta-analysis software tool for genome-wide 
association study analysis, designed to perform a range of basic and advanced meta-
analytic methods in an efficient manner [31]. Metasoft provides methods and estimates 
which are gathered in Table_3 and Table_4, such as Fixed Effect model (FE), Random 
Effects model (RE), Binary Effect model (BE) and M-values.  
 
The format of the input file should has test gene-pairs as rows, the first column is gene-
pairs IDs and the second and third columns are effect size (beta) and its standard error 
of experiment 1, the forth and fifth columns are effect size (beta) and its standar error 
of experiment 2, and so on. For missing beta and its standard error we write “NA”. (See 
Table_2). 
 
Table_2. Example format Metasolft input file, M.tuberculosis, layer acid.  
 

Experiment 1 Experiment 2 Gene pairs IDs 
Effect size Standard error Effect size Standard error 

Rv0001_Rv0058 -15538 0.9893248 -0.0775 0.98932482 
Rv0001_Rv0262c 0.2786 0.7638243 -0.2720 0.76382434 
Rv0001_Rv0301 -0.7821 0.7447254 -0.2783 0.74472539 
 
Example Running Command: 
 java -jar Metasoft.jar -input example.txt 
 
Table_3. Metasoft output file methods and estimates.  
 
Column Num. Column name Description 

1 RSID SNP rsID 

2 NUM_STUDY 
Number of studies used in meta-
analysis for the SNP 

3 PVALUE_FE FE P-value 
4 BETA_FE Estimated Beta under FE 
5 STD_FE Standard error of BETA_FE 
6 PVALUE_RE RE P-value 
7 BETA_RE Estimated Beta under RE 
8 STD_RE Standard error of BETA_RE 
9 PVALUE_RE2 RE2 P-value 

10 STAT1_RE2 RE2 statistic mean effect part 
11 STAT2_RE2 RE2 statistic heterogeneity part 

12 PVALUE_BE 
BE P-value (“NA” if -binary_effects 
option is not used) 

13 I_SQUARE I-square heterogeneity statistic 
14 Q Cochran's Q statistic 
15 PVALUE_Q Cochran's Q statistic's p-value 

16 TAU_SQUARE 
Tau-square heterogeneity estimator of 
DerSimonian-Laird 

17 … 
17+NUM_STUDY-1 PVALUES_OF_STUDIES P-values of each single studies 
17+NUM_STUDY … 
17+2*NUM_STUDY-
1 MVALUES_OF_STUDIES 

M-values of each single studies (“NA” if 
-mvalue option is not used) 
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Table_4. . Some rows of outfile in Metasolft for acid stress in M.tuberculosis. Columns 
are: Study, PValue FE, Beta FE, STD FE, PValue RE, Beta RE, STD RE, PValue RE2, 
STAT1 RE2, STAT2 RE2, PValue BE, I Square, Q, PValue Q, TAU Square 

 
 

STD_RE PValue_RE2 STAT1_RE2 STAT2_RE2 PValue_BE I_Square Q 
0.73815 0.270396 135944 0.00000 NA 101830 111337 
0.54010 0.997522 3,73 0.00000 NA 0.00000 0.25981 
0.52660 0.344983 101372 0.00000 NA 0.00000 0.22882 

 

 
At this point, it is worth remarking that a total of 4 multilayer networks were used in this 
work. There were two organisms, E.coli and M.tuberculosis, and each of those were 
studied in two ways getting multiplex per experiment-wise and a multiplex per stress-
wise.   In turn, two multiplexes have been built from each data classification: an 
absolute expression network and a folding change network, that are used to do the 
statistical analyses. In this work, only the folding change networks were analysed.  
 
 
4.2. Analytical methods 
 
4.2.1.Basic properties 
 
For this analysis, we closely follow the work by F. Cid. Three metrics are computed in 
order to describe the topology of the networks: strength, overlap and partition 
coefficient. The strenght of gene i in layer k, sk (i), is the sum of all link weights in which 
that node participates in the layer k:  
 

(7) 
 

RSID Study PValue_FE Beta_FE STD_FE PValue_RE Beta_RE STD_RE 
Rv0001_Rv0058 2 0.243635 -0.81565 0.699558 0.269163 -0.81565 0.73815 
Rv0001_Rv0262c 2 0.995125 0.00330 0.54010 0.995125 0.00330 0.54010 
Rv0001_Rv0301 2 0.314014 -0.53020 0.52660 0.314014 -0.53020 0.52660 

PValue_Q TAU_Square Pvalues_studies 
(Tab delimitered) 

Mvalues_studies 
(Tab_delimitered) 

0.291349 0.110967 0.116283 0.937561 NA NA 
0.610251 0.00000 0.715303 0.721764 NA NA 
0.632400 0.00000 0.293633 0.708631 NA NA 
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where the sum over j’ means that only statistically significant links (here, those with Z-
score greater than 1.96, and therefore, present in the layer) are considered. Layer k is 
associated to a stress multiplex in the reduced consensus multiplex.   
 
So, the strength is a local property of node i in layer k. Instead, the overlap o(i) of a 
node is defined as the sum of all nodes’ strengths over all layers of the multiplex:  
 

(8) 
 
Hence, the overlap defines a global property for each node.  
 
Both parameters quantify the importance of each node in a specific layer or in the 
whole network, repectively. The higher these values are, the more important a gene is 
in this context, because it interacts more intensively with more genes. However, a gene 
could have a high overlap value but its contribution to one specific stress is not 
necessarily important if it does not have a high strength value in that layer as well. The 
dissonance of these two measures remarks the importance of a multiplex approach to 
analyse biological networks. In order to account for this fact, we measure participation 
coefficiente p(i) for each node i. It is define as follows: 

 

(9) 
 
where M is the number of layers in the multiplex. !!This magnitude is equal to 0 when 
the presence of a node in the multiplex is concentrated on a single layer, while it is 1 
when it is homogeneously distributed among all layers. In our context, nodes of low p 
are associated to genes related with specific responses to a particular stress, while 
genes of high p correspond to generic-stress respondent genes, regardless of the 
precise nature of these stresses. 
 
Since the overlap of a node represents its overall importance, the nodes of a multiplex 
could be classified by looking, at the same time, at their multiplex participation 
coefficient and at their overlap. By this analysis, nodes which are hubs on the whole 
network and other ones that are only hubs on a specific layer could be distinguished. 
These second ones are especially important in the sense that thery could serve as 
support of other protein function prediction methods, since if a node is crucial in one 
layer but have non-significant importance in the rest of them, it could be inferred that 
that gene function is related to the stress response that characterizes that layer.  
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4.2.2 Statistical analysis 
 
4.2.2.1. Mann Whitney test 
 
The Mann-Whitney test is used as an alternative to a t test when the data are not 
normally distributed. The test can detect differences in shape and spread as well as 
just differences in medians and differences in population medians are often 
accompanied by equally important differences in shape[36]. 
 
Mann-Whitney test:  
In R studio, Wilcoxon Rank Sum and Signed Rank tests. Wilcox.test performs one- and 
two-sample Wilcoxon tests on vectors of data. The Script is:  
 
setwd("~/Desktop/M.BiotecnologíaCuantitativa/TFM/PPI_MTB_meta_analysis") 
ec_fc_over <- read.table("Inputs/ppi_interaction_pairs.txt", header = TRUE) 
mtb_fc_over <- read.table("Inputs/ppi_interaction_pairs.txt", header = TRUE) 
 
wilcox.test (ec_fc_over$overlap, mtb_fc_over$overlap, alternative="greater") 
wilcox.test (mtb_fc_over$part_coeff, ec_fc_over$part_coeff, alternative="greater")  
 
4.2.2.2 Permutation tests in Hypothesis contrast  
 
Permutation tests are a class of non-parametric methods. They were pioneered by 
Fisher (1935) and Pitman(1938). Fisher demonstrated that the null hypothesis could be 
tested simply by observing, after permuting observations, how often the difference 
between means would exceed the difference found without permutation, and that for 
such test, no normality would be required. Pitman provided the first complete 
mathematical framework for permutation methods, although similar ideas, based on 
actually repeating an experiment many times with the experimental conditions being 
permuted, can be found even earlier.  Permutation methods can provide exact control 
of false positives and allow the use of non-standard statistics, making only weak 
assumptions about the data [32]. 
 
4.2.2.3. Peacock test  
 
This technique is available to test for consistency between the empirical distribution of 
data points on a plane and a hypothetical density law. Two statistical tests are 
available. The first is a two-dimensional version of the Kolmogorov-Smirnov test, for 
which the distribution of the test statistic is investigated using a Monte Carlo method. It 
is found in practice to be very nearly distribution-free, and empirical formulae for the 
confidence levels are given. Secondly, the method of power-spectrum analysis is 
extended to deal with cases in which the null hypothesis is not a uniform distribution. 
These methods are illustrated by application to the distribution of quasar candidates 
found on an objective-prism plate of the Virgo Cluster [33]. 
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This test is applied by using R-studio. There is a package called 〈Peacock test〉 [34]. 
After running it, the function gives the Peacock statistics D. D is a generalization of the 
Kolmogorov-Smirnov statistics, which, in 1D tests, measures the largest difference 
between the cumulative probabiliy distributions being compared, P(X,Y,…) as the 
probability x<X, y<Y,…. However, we applied the 2D Peacock test, where D 
corresponds to recognizing that all four quadrants of the plane defined by (x<X, y<Y), 
(x<X, y>Y), (x>X, y < Y) and (x>X, y >Y) are equally valid areas for the definition of 
the cumulative probability distribution. In this case, the procedure adopted here is to 
consider each in turn, and adopt the largest of the four differences in empirical and 
theoretical cumulative distributions as the final statistic [33]. 
 
Once D is obtained, the next step is to transform it into a Z-score by multipliying by the 
effective sample size: 

(10) 
 
 
Then, Zn is corrected for finite sample size to get Z∞.	
   
 

(11) 
 
Finally, the P-value is obtained as follows: 
 

(12) 
 
Thus, it is possible to get a Z-score following the prevoious steps. We also note that 
our first idea to get a P-value was to run the Peacock test  a high number of times. This 
is possible following a bootstrap algorithm for E.coli and M.tuberculosis overlap and 
partition coefficient data. See the script which was programmed in Annex Code_2. 
Finally, this option was discarded because it was computationally really expensive 
compared with the alternative already explained. 
 
This method is used in Analysis 1 to compare two distributions, both for E.coli and 
M.tuberculosis networks  (the overlap and the participation coefficient data are the two 
dimensions, see 5.1. Comparison E.coli  versus M.tuberculosis). In Analysis 2, the 
Peacock test evaluates orthologous distributions (5.2. Compartion E.coli and 
M.tuberculosis Orthologous genes: pull and pairs).   
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4.2.2.4. Gene ontology enrichments 
 
Gene ontology enrichments analysis (see 5.4. Gene ontology enrichement analysis 
comparing both E.coli and M.tuberculosis)  was done with ClueGO-cytoscape. Firstly, 
input files were created. For each layer, the set of genes which had strenght different to 
zero were selected. In total, for both microorganisms, there were 12 sets: acid, cell wall 
damage, hypoxia, ion deprivation, oxydative stress and starvation of 141 genes each 
one, being selected those of higher overlap.  
 
In order to get coherent results some conditions where stablished in the software: 
pathway Biological Process-EBI-UniProt-GOA (type GO), using GO Term Fusion, 
showing only Pathways with pV  0.05; and GO Tree Interval: 3 min level - 6 max level, 
Go Term/Pathway Selection (%Genes): 5 Min genes - 5% Genes. Regarding statistical 
options, Enrichment (Right-sided hypergeometric test), Benjamine Hochberg and finally 
Selected Ontologies Reference Set.  
 
There was a second analysis only for M.tuberculosis in which some conditions 
changed: no p-value limitation (significance level: pV ≤ 0.05) and Custom reference 
selected (M.tuberculosis background file which is formed by all the M.tuberculosis 
folding change  overexpression multilayer network). 
 
4.2.2.5. Papers data sources.  
 
In this work, the decision to build multilayer M.tuberculosis PPI keeping in mind several 
stress conditions was relatively easy. As alsready noted, the work Global protein-
protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv 
by  Wang Y et al. (2010) was used as a reference. This was also studied in a parallel 
report: Systems Biology of Mycobacterium tuberculosis. Immunogenicity, natural 
selection & gene expression in response to stress by Miguel Báez Martín and 
previously used by Cid. F. 
 
However, choosing papers reporting the PPI network for E.coli K12  was not so easy. 
Three achievable articles were found: Interaction network containing conserved and 
essential protein complexes in Escherichia coli by Gareth Burland et al. (Nature, 2005), 
Large-scale identification of protein-protein interaction of Escherichia coli K-12 by 
Mohammad Arifuzzaman et al. (Genome Research, 2006),  and Global Functional 
Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins by 
Pingzhao Hu. (PLOS Biology, 2009). They had different information related to gene 
protein expression and established interactions between nodes. The first dismissed 
article was the Nature 2015 obe, because it used E.coli as a vehicle to study essential 
protein complexes. Then, two PPI E.coli networks were completed but they did not 
have the same data. Mohammand Arifuzzaman et al. studied a set of 4339 proteins 
and only 2667 proteins were purified and overexpressed. In turn, 2337 were copurified 
with other proteins and 330 without anyone. Lastly, a total of 16050 protein-protein 
interactions were identified. On the other hand, Pingzhao Hu. et al. studied a total of 
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4225 proteins and interactions between 1757 of those (451 were orphans). They 
reported 5993 physical interactions, and 74446 functional interactions. 
 
Finally, we selected the PLOS Biology because it had more methodological details, 
reported a larger number of interactions between nodes and it was a more recent 
publication.   
 
 
5. RESULTS 
 
Results of the folding change network E.coli and M.tuberculosis analysis are showed in 
this section.  Four different analyses were done by the combination of materials and 
methods previously described: analysis 1 is a comparation between two folding change 
microorganisms completed networks, the second analysis shows the comparison of 
orthologous genes of E.coli and M.tuberculosis, the third analysis is focused on E.coli 
antigens and finally, the fourth analysis is based on gene ontolgy enrichment 
comparing E.coli and M.tuberculosis.  
 
5.1. Comparison E.coli  versus M.tuberculosis.  
 
Several analyses were done to compare both microorganisms. Firstly, the proportion of 
genes within each layer was contrasted. Then, the statistical tests (Mann Whitney and 
Peacock test) were runned to see the relation between the overlap and the participation 
coefficient between bacterias. 
 
As far as nodes of the multiplex networks are concerned, the number of genes per 
layer in each network as well as its proportion are shown in Tabla_5. The E.coli folding 
change multilayer network has a total of 1757 genes or nodes and 5993 interactions or 
links, while the M.tuberculosis folding change multilayer network has 2907 genes and 
8042 interactions. So, we see here two networks that do not have the same size, which 
could affect subsequent statistical analyses as disussed later on.  It is also worth 
remarking the value of the genes in the starvation layer. Samples and series of 
experiments found in GEO database for this stress were higher than in the others, this 
fact could also influence the results.  
 
 
 
 
 
 
 
Tabla_5. Number of genes and proportion of them in each layer in both E.coli and 
M.tuberculosis folding change multilayer network for overexpressed and repressed 
situation. Data filtrated using significance level of 0.05 in both cases. 
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Nodes 
Overexpressed Repressed 
E.coli M.tuberculosis E.coli M.tuberculosis 

Layers 

Genes Proportion Genes Prop. Genes Prop. Genes Prop. 
Acid 141 0,08 328 0,112 205 0,116 437 0,044 
Cell wall 
damage 211 0,12 1388 0,477 493 0,28 1458 0,122 
Hypoxia 150 0,085 1834 0,63 233 0,132 2384 0,065 
Ion deprivation 345 0,196 586 0,201 581 0,33 1637 0,214 
Oxydative 
stress 268 0,152 1549 0,532 76 0,043 2095 0,017 
Starvation 1304 0,742 1157 0,398 186 0,105 1621 0,037 

 
To get a better visualization of the components of the networks, some bar diagrams 
were built. On the one hand, there are four histograms which represent the proportion 
of genes in each layer for both networks in cases of overexpression and repression. On 
the other hand, there are other four plots which are the proportion of links in each layer 
for each network in the situation of overexpression and repression. We see that, as it 
was said before, in the overexpression case, the gene proportion shows some 
differences while for the repressed scenario this quantity is more similar. 
 
a)      b) 

 
c)      d) 

 
 
Figure_12. Bar diagrams proportion of genes per layer in both E.coli (red border line: a,c) and 
M.tuberculosis (blue border line: b,d) folding change multilayer network for overexpressed (a,b) 
and repressed (c,d) situations. Data filtered using  a significance level of 0.05 in both cases. 
The layers correspond to six stress: acid, cell wall damage, hypoxia, ion deprivation, oxydative 
stress and starvation.  
 
 
a)      b) 
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c)      d) 
 

 
 
Figure_13. Bar diagrams proportion of links per layer in both E.coli (red border line: a,c) 
and M.tuberculosis (blue border line: b,d) folding change multilayer network for 
overexpressed (a,b) and repressed (c,d) situations.  Data filtered using a significance 
level of 0.05 in both cases. The layers are associated to six stress: acid, cell wall 
damage, hypoxia, ion deprivation, oxydative stress and starvation.  
 
 
The next results concern the analysis of the strenght, overlap and partition coefficient 
calculations. Interesting, we see that E.coli and M.tuberculosis networks do not show 
the same patterns. E.coli presents in general a higher overlap than M.tuberculosis but 
a lower partition coefficient, see the results in Figure_14. The figure shows two graphs 
of overlap versus partition coefficient for both E.coli and M.tuberculosis networks, 
respectively. Most of the genes in E.coli are located in the left part of the first quadrant, 
whereas in M.tuberculosis most nodes are located in the right part.   
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Figure_14. E.coli (a) and M.tuberculosis (b) overexpression overlap versus 
participation folding change multilayer networks. E.coli (c) and M.tuberculosis (d) 
repression overlap versus participation folding change multilayer networks. 
Significance level 0.05.  
 
 
Regarding statistical analysis, first we compared E.coli and M.tuberculosis overlap 
medians using Mann-Whitney test and a p-value less than 2.2*10-16 was obtained. The 
null hypothesis supossed both equal medians and the alternative considers greater 
E.coli overlap median. That p-value was lower than the signicance level, so we rejected 
equality of overlap medians. Secondly, the same statistical method was used to 
compare partition coefficient medians between both M.tuberculosis and E.coli. Here, 
the alternative hypothesis says M.tuberculosis partition coefficient mean is higher than 
E.coli. The p-value obtained is less than 2.2*10-16. So, we rejected the null hypothesis. 
Finally, there is another statistics to compare 2D distributions overlap and partition 
coefficients: Peacock. After runninng it, the value of D is 0.4747 and after 
transformation to get a p-value, it was less than 2.2*10-16. So, we rejected the null 
hypothesis, meaning that we can say that both network distributions are not equal, see 
Figure_15 in which the density plots of overlap and partition coefficient are 
represented.  
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Figure_15. a) Density plot overlap E.coli (red) versus M.tuberculosis (blue) from 
overexpression folding change multilayer networks. b) Density plot partition coefficient  
E.coli (red) versus M.tuberculosis (blue) from overexpression folding change multilayer 
networks. 
 
 
These results are interesting and novel, as they show that the multilayer network 
approach is not only relevant to isolate PPIs according to stresses -that is, working with 
the aggregated network could lead to highly misleading conclusions about which genes 
are active or not under a given stress-, but also relevant because the network metrics 
reflect the lifestyle of the bacterium. This is the case shown in Figure_14 for E.coli, 
which is a generalist organism that adapts to different environments. In fact, the 
average of its genome is shaped by a multitude of evulutionary forces from its primary 
(host) and secondary habitats, in which biotec (predators, competitor, cheaters, host 
defense mechanisms) and abiotic (pH, temperature, UV, depletion and so on) 
pressures are present [15]. Its expression of genes in each layer is different and we 
actually see how genes do not show the highest partition coefficient values. This 
means that they are not present in all layers, and thus, that they are specific stress 
responders. On the other hand, the bacterium has genes that can have high overlap 
values, which means that response to environment stress is also acute. On the 
contrary, M.tuberculosis as obligate pathogen is a specialist microorganism, whose 
entire life cycle is driven in the context of human infection and its metabolism 
necessarily underpins both physiology and pathogenesis [18]. So, this actinobacteria 
seems to respond to all the stresses in the same way (the strenght of the nodes is 
similar between layers). According to  this observation, we see high partition 
coefficients, genes are moved to the right part of panel b of Figure_14.  
 
The previous interpretation is very feasible, but we shoul also note possible 
alternatives. For instance, could the different number of samples used to build the 
network affect the results? We have already seen that the E.coli folding change 
multilayer network is smaller than the  M.tuberculosis network. Thus, it might be that 
the statistical significance could affect the results, due to less statistical power of E.coli. 
If this were true, some samples could not pass the thershold (0.05), because of the 
stricter statistics selection procedure and as a consequence information could have 
been lost.   
 
Although the last suggestion could be possible, however, there are counter arguments 
against this interpretation of the results. Firstly, in the same way that information may 
be lost because of the lower number of samples, n, in E.coli than in M.tuberculosis, the 
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opposite could be possible too. The presence of a higher amount of data for 
M.tuberculosis could add more noise. So, a higher number of samples do not have to 
mean necessarily higher signal. Measurements should be coherent. Secondly, if E.coli 
had low statistical power, neither the partition coefficient nor the overlap would be high. 
As a matter of fact, we have seen that  although the partition coefficient median is 
lower in E.coli than in M.tuberculosis, the overlap values are higher for E. Coli when 
compared to those for M.tuberculosis.  
 
 
5.2. Comparison of E.coli and M.tuberculosis Orthologous 
genes: pull and pairs.   
 
The reseach for this analysis was focused on orthologous, i.e., those genes that have 
diverged due to speciation from an ancestral one and in which biological function is 
supposed to be conserved by different species [35]. We worked with two set of genes 
as detailed in Section 3.4. SET_1: Orthologs pairs M.tb-E.coli: pull orthologous 
collection and pair orthologous collection. Here, we want to see what is their behaviour 
by studying the overlap and the participation coefficients for each microorganism.  
 
On the one hand, pull orthologuos overlap and partition coefficients were calculated 
from E.coli and M.tuberculosis folding change of overexpression networks. In 
Figure_16, we see that these parameters show differences between them. Here again, 
M.tuberculosis genes appear in the right part of the graphic while those for E.coli are 
left to the first quadrant. The interpretation is similar to the one exposed previously for 
the gene-stress-wise networks: in general, a higher overlap in E.coli can be related to 
their overexpression in a few stress layers, thus showing a specific and acute response 
to the corresponding stress. However, the partition coefficient is higher for 
M.tuberculosis, which is could mean that genes are equally overexpressed for almost 
any environmental stress. Interstingly, despite of the conserved function of these 
genes, they have different overexpression, depending on both the microorganism and 
the stress. Some statistical tests were also applied to support this latter result. The 
Mann-Whitney test, assuming as null hypothesis that medians are equal, yielded a p-
value of 4.08*10-7. So, H0 was rejected, being the alternative: “E.coli overlap medians 
are greater than M.tuberculosis overlap median”, which supports our previous 
phenomenological interpretation.  As far as the participation coefficient is concerned, 
for H0 we assume that both microorganisms have equal medians; and the hyphotesis 
H1 would be that M.tuberculosis has a greater median than E.coli. The p-value after 
applying the Mann-Whitney test was 0.0004131, that is, H0 was rejected. Finally, the 
Peacock test gave a  D value of 0.8457523 and after statistical transformation, its p-
value was smaller than  2.2*10-16. Once again, H0 is rejected and thus the distributions 
for both microorganisms are considered to be different for the orthologous as well. The 
density plots showing the different distributions of overlap and partition coefficient are 
shown in Figure_17.  
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Figure_16. E.coli (pink dots)  and M.tuberculosis (blue dots) pull orthologous 
overexpression overlap versus participations folding change multilayer network. 
Thershold/Significance level 0.05.  
 

 
Figure_17. a) Density plot overlap E.coli (red) versus M.tuberculosis (blue) from both 
overexpression pull orthologous folding change multilayer networks. b) Density plot 
partition coefficient  E.coli (red) versus M.tuberculosis (blue) from pull overexpression 
orthologous folding change multilayer networks. 
 
 
On the other hand, the pair orthologous are only 43 (See Figure_18). They were 
treated in a special way. First, we test whether E.coli overlap is smaller than 
M.tuberculosis overlap (Mann-Withney test, p-value 5.007*10-6). In other works, the 
hyphotesis H0, which assumes no difference and thus that medians deviation is equal 
to 0 was rejected, in favour of H1, i.e., that the median of the difference is greater than 
zero, see Figure_18). Secondly, we test whether M.tuberculosis partition coefficient is 
smaller than E.coli partition coefficient. Again H0 considered the difference of the 
medians equal to zero and in the alternative scanario, that it would be greater than 
zero. As the p-value obtained was 1.911*10-7, H0 was rejected.  
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Figure_18. Antigen pair collections versus theirs completed folding changed 
overexpressed network for both microorgamisn a)E.coli (violetred) b)M.tuberculosis 
(turquoise) 
 

 
 
Figure_19 . a) Density plot overlap difference between M.tuberulosis and E.coli values 
from M.tuberculosis and E.coli overexpression folding change multilayer networks. b) 
Density plot partition coefficient difference between M.tuberculosis and E.coli values 
from M.tuberculosis and E.coli overexpression folding change multilayer networks. 
 
 
5.3. E.coli antigen analysis. 
 
Considering the small number of antigens, 40 in the bibliography and only 14 in the 
E.coli overexpression folding change network (see selection process in 4. Methods), 
not so many statistical tests could be done with statistical power. However, here 
antigens are presented as some examples of how genes are behaving in each layer. 
We show in Table_6 the  strength values for each antigen when subject to some 
stresses. Before analyzing these results, we note that in Systems Biology of 
Mycobacterium tuberculosis. Immunogenicity, natural selection & gene expression in 
response to stress by Miguel Báez Martín, the role of antigens in M.tuberculosis is 
studied and in this case they are really important, showing remarkable high ovelap and 
participation coefficient.  
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Table_6. Strenght values of E.coli antigen genes in E.coli overexpression folding 
change multilayer network for stresses (layers): acid, cell wall damage, hypoxia, ion 
deprivation, oxydative stress, starvation. Cell colour depends on strenght value: higher 
strenght value, more intensity blue scale.  
 
STRENGTH Acid Cell wall 

damage Hypoxia Ion 
deprivation 

Oxydative 
stress Starvation 

b3313 1,4405 3,8023 0 3,26717 0,709919 80,913947 
b3314 4,0135 2,731059 0 5,1993 0,323483 163,924788 
b1929 0 0 0 0 0 1,63319 
b2697 0 0 0 0 0 4,6503 
b2443 0 0 0 0 0 3,38055 
b2395 0 0 0 0 0 0 
b3732 0 0 0 3,976265 1,04424 4,960448 
b1731 0 0 0 3,54264 0 6,38248 
b1501 0 0 0 1,04793 0 1,00779 
b3571 0 0 0 0 0 2,04925 
b1048 0 0 0 0 0 0 
b2319 0 0 0 0 0 15,15427 
b1406 0 0 0 2,89066 0 0 
b1606 0 0 0 2,71852 0 1,52553 
 
 
Each gene in each dimension is evaluated independently. Each column in Table_6 is a 
layer representing a stress: acid, cell wall damage, hypoxia, ion deprivation, oxydative 
stress and starvation. As it can be seen, in the hypoxia situation, antigens are not 
overexpressed; in acid, cell wall damage, ion deprivation and oxydative stresses some 
of them are overexpressed, whereas starvation has most of the antigens 
overexpressed and strenght values stand out because they are higher. At this point, 
there are two important things to comment: i) as we have seen until now, all genes are 
not expressed in all stresses, and the same happens for antigens; and ii) the condition 
of stress by starvation has more samples that are used to build the network, thus, the 
higher overexpression leves for antigens in this experimental condition could be 
affected by the fact that there are more samples. This needs further investigation.  
 
 
5.4. Gene ontology enrichement analysis comparing both 
E.coli and M.tuberculosis. 
 
Enrichment of gene functions among the genes present in each layer are analysed by 
using ClueGo-cytoscape. However, we are still working on these results.  Until now, 
both microorgnanisms have been analysed in the same conditions: using an input file 
of 141 genes as target (those with higher overlap), showing only pathways with pV ≤ 
0.05 and choosing selected ontologies reference set. After running GlueGO Functional 
Analysis for studying each stress, both bacteria do not yield the same results: E.coli 
had functions enriched while M.tuberculosis have not. That fact may be because E.coli 
is one of the best characterized organisms and has an important role in genetic 
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engineering or synthetic biology (7 reference).  Hence, a lot of data in relation to 
function, structure and gene information are collected in databases. On the other hand, 
the genome of M.tuberculosis is not as well-known as that of E.coli and many gene 
functions are not established. Regarding E.coli results, we see that several functions 
are enriched depending on the stress layer, see Figure_20 and Figure_21. Here, the 
results could be explained considering E.coli adaptability, which would allow the 
microorganism to vary and adapt its functional response according to the stress 
conditions and the environment. As for M.tuberculosis, we reanalyzed the data so that 
not only pathways with pV ≤ 0.05 were allowed. In this case, some common enriched 
functions do appear, and interestingly enough, their variability was much smaller, see 
Figure_22.  
 
a)    b)    c) 

 
d)    e)    f) 

 
 
Figure_20. E.coli Enrichment of gene functions depending on the layer: a) Acid, b) Cell 
Wall Damage, c) Hypoxia, d) Ion deprivation and e) Starvation. Software Cluego-
cytoscape, studying 141 genes, showing exclusively Pathways with pV ≤ 0.05 and 
choosing selected ontologies reference set.  
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Figure_21. E.coli Enrichment of gene functions in the Acid layer. Software Cluego-
cytoscape, studying 141 genes, showing exclusively Pathways with pV ≤ 0.05 and 
choosing selected ontologies reference set. Those enriched functions are ribosome 
biosynthesis (~38%), postranscriptional regulation of gene expression (~18%), amide 
biosynthetic process (~13%), cellular macromolecule catabolic process (~11%), 
positive regulation of nitrogen compound metabolic process (~7%),  ribonucleoside 
metabolic process (~7%), response to temprature stimulus (~4%) and translational 
elongation (~2%).  
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Figure_22. Mycobacterium tuberculosis Starvation stress gene ontology enrichment 
analysis from sofware ClueGo, being target-gene input file 141 genes. Without 
selecting p-value 0.05 (significance level) and choosing as reference set options 
custum reference set. Those enriched functions are organic cyclic compound 
biosynthetic process (~69%), organonitrogen compound metabolic process (~15%) and 
cellular biosynthetic process (~15%). 
 
 
6. DISCUSSION 
 
The comparison of both folding change networks E.coli and M.tuberculosis is the main 
objective of this work. We have shown that our results could provide new biological 
insights and correlate well with the biology of these two microorganims (see Section 
5.1. Comparison E.coli  versus M.tuberculosis). We observed that differences in life 
styles were translated into different distributions of genes in the plane overlap vs 
participation coefficient. Here, we would further discuss several aspects of the 
metaanalysis done. To better see whether both microorganisms folding change 
overexpression networks have different statistical power, we compare the strenghts 
(gene expression level for each stress). Figure_23 shows density plots for each layer 
(strenght) for each bacteria. As discussed previoulsy, the statistical tests (e.g., Mann-
Whitney test) showed that most of the medians of E.coli when compared to those of 
M.tuberculosis were different. M.tuberculosis strength is greater than E.coli strenght for 
acid (p-value=3.759*10-5), cell wall damage (p-value=2.2*10-16), hypoxia (p-
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value=2.2*10-16) and oxydative stress (p-value=2.2*10-16); whereas for starvation 
E.coli strength is greater than M.tuberculosis strenght. Finally, for ion deprivation, the 
overlap of both medians was not rejected as the p-value is 0.332. The previous results 
appear to be robust, both statistically and biologically, although we mention that E.coli, 
overall, could have lower statistical power than M.tuberculosis. Consequently, even 
thought it is not within the scope of this work, three data treatments to improve the 
statistics are planed for future research. In the first place, increasing the number of 
E.coli samples could be an obvious option if updated databases include a higher 
number of samples with correct nomenclature or a coherent sampling results. In the 
second place, instead of increasing E.coli sampling, a solution could be to reduce 
M.tuberculosis sampling. Lastly, another option would be to be more flexible in the 
E.coli network, that is, choosing a higher threshold or significance level:  0.1 instead of 
0.05 (the limit had been used), although this solution is not recommended from a 
statistical point of view. The same could apply to the network analysis in relation to the  
orthologous.  
 
Finally, the last analysis focused on functions’ enrichment is still in process and it is not 
finished yet. However, the comparison of E.coli and M.tuberculosis results lead to the 
question of how much information about each of them is needed to make a thorough 
comparison. In this regard, our limitation is given by the relative high number of 
unknown functions and unclassified genes of M.tuberculosis with respect to what is 
known for E.coli.  
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Figure_23  Density plot of M.tuberculosis versus E.coli gene strenght for each layer: a) 
Acid b) Cell Wall Damage c) Hypoxia d)Ion deprivation e) Oxydative stress 
f)Starvation.  All strength data coming form E.coli and M.tuberculosis folding change 
overexpression multilayer network.  
 
 
7. CONCLUSIONS 
 
In summary, the conclusions of this work are: 
 
Differences in life styles translate into different distributions of genes in the plane 
overlap versus the participation coefficient. E.coli, as a “generalist” organism, presents 
high overlaps and not so high partipation coefficients, meaning acute and specific gene 
overexpression in response to each environmental stress and high adaptation capacity 
while M.tuberculosis presents high participation coefficients as a “pathogen-specialist” 
organism, which implies the same kind of response to all stresses and only one 
objective: human infection.  
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The overlap-partition coefficient E.coli and M.tuberculosis orthologous genes pattern 
behaves in the same was as the rest of genes in both bacteria, despite of representing 
the same conserved function. In E.coli they are expressed in an acute specific way and 
in M.tuberculosis they are overexpressed in all stresses. 
 
Antigens in E.coli, unlike in M.tuberculosis, do not have a noticeable role in E.coli 
genome and neither show a universal response to all sort of stresses. 
 
In the future, gene function enrichment analyses should be completed. Meanwhile, we 
have obtained that E.coli has different groups of enriched proteins overexpressed per 
layer and that there is variability between them.  
 
Finally, as per the academic and formative objectives of this work, we mention that we 
have learnt about network building, GEO, Biobase, Limma, measures as strength, 
overlap and partition coefficient, Mann-Whitney test, Peacock test, Cluego-cytoscape 
and applied these different stats/computational methods. Improving meta-analisis and 
solving possible statistical inconsistencies are our future goals. 
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Annex 
 
Table_1. E.coli and M.tuberculosis orthologous pairs are rows, columns are overlap 
and parition coefficients measures for both microorganism.  
 
M.tuberculosis Overlap Partition Coefficient E.coli Overlap Partition 

Coefficient 
Rv0001 0,136806 0 b3702 8,489278 0 
Rv0002 0,161188 0 b3701 67,6818573 0,295642614 
Rv0054 1,45838 0 b4059 43,398092 0,39040296 
Rv0189c 0,346829 0 b3091 7,72419 0 
Rv0573c 0,831172 0 b0931 0 0 
Rv0670 5,101826 0,634069995 b2159 7,24013 0,329278699 
Rv0820 1,41939 0,556336961 b3725 78,3541714 0,743890553 
Rv0884c 0,588186 0,671047538 b0907 2,28351 0 
Rv0951 0,0503199 0 b0728 46,867817 0,701423925 
Rv1017c 6,70078 0,575981228 b1207 54,660934 0,217980276 
Rv1079 0,9345479 0,158411762 b3008 2,90733 0 
Rv1098c 0,112152 0 b1611 7,380955 0,621227049 
Rv1213 4,14774 0,676375723 b3430 0 0 
Rv1286 16,611308 0,87749637 b2751 6,21715 0,342388151 
Rv1293 3,8122355 0,477537546 b2838 2,70204 0 
Rv1317c 0,925167 0 b2068 0 0 
Rv1437 1,2147442 0,016801188 b2926 48,878036 0,173849638 
Rv1451 1,016292 0,753161186 b0428 7,421869 0,596059071 
Rv1522c 0,122564 0 b0462 2,6251 0 
Rv1552 5,98064 0,585375631 b4154 2,66893 0 
Rv1613 0,50608 0 b1260 1,72853 0 
Rv1657 2,221192 0,461169199 b3237 8,06224 0,274641468 
Rv1781c 7,717156 0,660430759 b3416 22,78961 0,361155664 
Rv1931c 4,115873 0,761958886 b2916 1,5088751 0,084861294 
Rv2139 0,303774 0 b0945 4,105 0 
Rv2150c 0,8702489 0,314981592 b0095 21,645583 0,415141508 
Rv2215 0,453712 0 b0727 8,19979 0,318431532 
Rv2343c 2,426593 0,489251023 b3066 4,76571 0,440544623 
Rv2428 7,082561 0,596103206 b0605 64,8917033 0,683179742 
Rv2504c 12,493056 0,97500901 b2221 2,98506 0 
Rv2785c 2,0844625 0,373690857 b3165 8,300067 0 
Rv2841c 0,359162 0 b3169 15,381274 0,112556751 
Rv2919c 0,9585003 0,643886833 b2553 0 0 
Rv2986c 3,9233781 0,655101096 b4000 70,881193 0,404114553 
Rv2987c 4,215527 0,684625383 b0071 16,51011 0 
Rv3153 0,554706 0 b2281 0 0 
Rv3215 0,3580571 0,426816161 b0593 12,42492 0,213687569 
Rv3302c 5,0805866 0,633963912 b3426 7,33101 0 
Rv3314c 1,15121 0 b4382 14,324039 0,415564629 
Rv3411c 3,166208 0,584653105 b2508 1,78967 0 
Rv3436c 2,35279 0,780063461 b3729 12,73453 0,240158705 
Rv3534c 0,835702 0 b0352 3,58281 0 
Rv3535c 4,7922834 0,421222871 b0351 6,22645 0 
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Table_2. Final set of antigens and some basic measures: overlap and partition 
coefficient.  
 

Antigens overlap part_coeff 
b3314 81691604 0.981508162214461 
b3313 450768754 0.972440106766251 
b1929 0.000000 0.0000000 
b2697 1292441 0.597448295500777 
b2443 0.904974 0.000000 
b2395 0.000000 0.000000 
b3732 117496984 0.92380902439915 
b1731 0.000000 0.000000 
b1501 0.000000 0.000000 
b3571 0.000000 0.000000 
b1048 0.000000 0.000000 
b2319 145102886 0.893842588931651 
b1406 372848 0.566580978090698 
b1606 197414 0.000000 

 
 
Table_3. E.coli individual series processing in network construction. 
 

 

 
 
 

Individual series processing 
GSE365.R 
GSE1642.R 
GSE5977.R 
GSE6209.R 
GSE6750.R 
GSE8664.R 
GSE8689.R 
GSE8732.R 
GSE8786.R 
GSE8827.R 
GSE8829.R 
GSE8839.R 
GSE9331.R 
GSE10391.R 
GSE13978.R 
GSE14005.R 
GSE14840.R 
GSE15976.R 
GSE16146.R 
GSE21112.R 
GSE21113.R 
GSE35362.R 
GSE50159.R 
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Code_1. Code to get measures: strength, overlap and partition coefficient of E.coli 
fonding change multilplex network. (R-studio). 
 
#################### Folding_Change_Ecoli_Multilayer_Network ################## 
 
# DATA PREPARATION --------------------------------------------------------------- 
#Load data 
 
setwd("~/Desktop/TFM_analisis") 
network <- read.table("Inputs/ppi_interaction_pairs_b.txt", header = FALSE, 
stringsAsFactors=FALSE) 
genes <- unique(c(network[[1]],network[[2]])) 
 
coefficients <- 
read.table("multiplexes_coli/multiplex_stress_wise/fcs/coefficients.txt", header = 
TRUE, stringsAsFactors=FALSE) 
fdrs <- read.table("multiplexes_coli/multiplex_stress_wise/fcs/fdrs.txt", header = TRUE, 
stringsAsFactors=FALSE) 
 
#Filter coefficients 
fdrs_thres <- 0.05 
coefficients_filtered = (coefficients*(coefficients < 0))*(fdrs<fdrs_thres) 
#coefficients_filtered_positive = (coefficients*(coefficients > 0))*(fdrs<fdrs_thres) 
#coefficients_filtered_negative = (coefficients*(coefficients < 0))*(fdrs<fdrs_thres) 
 
stress_set <- c(1, 3, 6, 7, 9, 10)  #Ecoli_1 Acid,3 Cell wall damage, 6 hypoxia, 7 Ion 
deprivation,  
#, 8 Oxydative stress, 9 Starvation 
 
# FUNCTIONS & STRENGTH MATRIX ----------------------------------------------------------
------ 
strength <- function(gene, stress) 
{intervent <- unique(c(which(network[[1]] %in% gene), which(network[[2]] %in% gene))) 
  strength <- sum(coefficients_filtered[intervent, stress], na.rm=TRUE) 
  return(strength) 
} 
 
#Matrix for strength_values, rows = genes, columns = stress 
strength_matrix <- data.frame(matrix(nrow=length(genes), ncol=length(stress_set))) 
#To name correctly the columns in strength_matrix 
stress_names <- colnames(coefficients)[c(1, 3, 6, 7, 9, 10)] 
colnames(strength_matrix) <- stress_names 
rownames(strength_matrix) <- genes 
for (stress in stress_names) 
{ 
  for (gene in genes) 
  {strength_matrix[gene, stress] <- strength(gene, stress)} 
} 
 
overlap <- function(gene) 
{overlap <- sum(strength_matrix[gene, ], na.rm=TRUE) 
  return(overlap) 
} 
overlap_values <- data.frame(sapply(genes, overlap)) 
colnames(overlap_values) <- c("overlap") 
 
part_coeff <- function(gene) 
{ M <- length(stress_set) 
  square_values <- c() 
  for (stress in stress_names) 
  { 
    square_values <- append(square_values, (strength_matrix[gene, 
stress]/overlap_values[gene,])^2) 
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  } 
  squares <- sum(square_values) 
  part_coeff <- (M/(M-1)) * (1-squares)  
  return(part_coeff) 
} 
 
# DATA OUTPUT -------------------------------------------------------- 
#Some genes NaN as result for part_coeff, reason --> overlap = 0 (and strength = 0 in 
every stress) 
part_coeff_values <- data.frame(sapply(genes, part_coeff)) 
colnames(part_coeff_values) <- c("part_coeff") 
 
metrics_ec_fc <- cbind.data.frame(overlap_values, part_coeff_values) 
write.table(metrics_ec_fc, "o_p_ec_fc_neg.txt", sep ="\t") 
 
library(ggplot2) 
plot_o_p_ec_fc <- ggplot(metrics_ec_fc, aes(x = part_coeff, y = overlap)) + geom_point() 
+ 
  scale_y_log10(breaks = c(1, 10, 100, 1000, 10000), limits = c(1, 10000)) 
 
 
Code_2. Bootstrap algorithm for E.coli and M.tuberculosis overlap and partition 
coefficient data to get p-value from Peacok test (D). (R-studio) 
 
fc_ec <- read.table("overlap_partcoef_ec.txt") 
fc_mtb <- read.table("overlap_partcoef_mtb.txt") 
 
## remove NAs of E.coli 
 
set_NAs_overlap=which(is.na(fc_ec$overlap)) 
set_NAs_part_coeff=which(is.na(fc_ec$part_coeff)) 
set_NAs=unique(c(set_NAs_overlap,set_NAs_part_coeff)) 
ec=exp[-set_NAs,] 
 
## remove NAs of M.tuberculosis 
 
set_NAs_overlap=which(is.na(fc_mtb$overlap)) 
set_NAs_part_coeff=which(is.na(fc_mtb$part_coeff)) 
set_NAs=unique(c(set_NAs_overlap,set_NAs_part_coeff)) 
mtb=fc[-set_NAs,] 
 
## Peacock original: 
library(Peacock.test) 
ks2 <- peacock2(ec, mtb) 
 
## 1. declare a loop 
 
iterations=100 
random_peacocks=rep(NA,iterations) 
genes_fc_ec=nrow(ec) 
genes_fc_mtb=nrow(mtb) 
 
for(i in 1:iterations) 
{ 
    print(i) 
    tab_tot <- rbind(ec, mtb) 
    tab_tot=rbind(ec,mtb) 
    tab_tot=tab_tot[sample(c(1:nrow(tab_tot))),] 
    random_fc_ec=tab_tot[1:genes_fc_ec,] 
    random_fc_mtb=tab_tot[(1+genes_fc_ec):nrow(tab_tot),] 
    random_peacocks[i]=peacock2(random_fc_ec, random_fc_mtb) 
} 
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Code_3. Code to get metadata and matrix of FCs per sample in serie name 
GSE15976, E.coli. (R-studio). 
 
library(GEOquery) 
library(Biobase) 
 
dcols=function(x){data.frame(colnames(x))} 
 
########################################################### 
#### PART 1: Get metadata and matrix of FCs per sample #### 
########################################################### 
 
network=read.table("Inputs/ppi_interaction_pairs.txt",header=FALSE) 
 
genes=c(as.character(network$V1),as.character(network$V2)) 
genes=unique(genes) 
genes_up=toupper(genes) 
net_up=network 
net_up$V1=toupper(net_up$V1) 
net_up$V2=toupper(net_up$V2) 
 
### 1. Declare series name 
name="GSE15976" 
 
### 2. Browse series and declare number of experiments. This command often fails for no 
logical reason 
gse <- 
getGEO(GEO=name,GSEMatrix=TRUE,destdir=paste0(getwd(),"/outputs/GEO_files/series")) 
experiments=length(gse) 
experiments 
# 3 
### ### For each experiment, repeat steps 3-4 to declare metadata 
i=1 
 
### 3. select samples useful for the analyses & columns carrying: title source_name_ch1 
source_name_ch2 description platform_id 
metadata=pData(gse[[i]]) 
dcols(metadata) 
intcols=c(1,8,18,31,33) 
metadata=metadata[,intcols] 
metadata[,-4] 
samples=rownames(metadata)[c(1,2,3,8,13,14,15,19,21,31,34,36)] 
 
### 4. select columns (metadata) and rows (samples), declare medium strain stress 
experiment and dyeswap setup. 
###    Declare also metadata of discarded samples. 
 
#Interesting columns: title, source_name_ch1, source_name_ch2, description, platform_id, 
then add: strain, CTL_medium, dye_swap. 
 
metadata_discarded=metadata[which(!(rownames(metadata) %in% samples)),] 
metadata=metadata[which(rownames(metadata) %in% samples),] 
metadata$strain="H37RV" 
metadata$dye_swap=0 
metadata$comment="OK" 
metadata$medium="7H9" 
metadata$stress="Oxydative_stress" 
metadata$stress[c(2,4,5,9:11)]="Cell_wall_damage" 
metadata$experiment=c( 
"5mM_Diamide_60min", 
"0_05pc_SDS_60min", 
"5mM_Diamide_60min", 
"0_05pc_SDS_60min", 
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"0_05pc_SDS_60min", 
"5mM_Diamide_60min", 
"5mM_Diamide_60min", 
"5mM_Diamide_60min", 
"0_05pc_SDS_60min", 
"0_05pc_SDS_60min", 
"0_05pc_SDS_60min", 
"5mM_Diamide_60min" 
) 
metadata$experiment=paste0(metadata$stress,"_",name,"_",metadata$strain,"_",metadata$exp
eriment) 
metadata_1=metadata 
metadata_discarded_1=metadata_discarded 
 
### 6. Get expression matrixes 
exp_1=exprs(gse[[1]]) 
exp_1=exp_1[,which(colnames(exp_1) %in% rownames(metadata))] 
 
### 6. Get feature-data matrixes and check extent of lost genes and reiterative 
expression estimates 
fdata=fData(gse[[1]]) 
head(fdata) 
fdata=fdata[,c(1,7)] 
colnames(fdata)=c("ID","RV") 
fdata=fdata[which(toupper(fdata$RV) %in% toupper(genes)),] 
dim(fdata) 
# 2841    2 
length(unique(fdata$RV)) 
# 2841, to 2907, we need 66 genes more; and there is 2841-2841=0 reiterative entries 
(calculate medians in each of those). 
fdata_1=fdata 
 
### 7. Transform the expression matrixes so the rows are RV IDs present in the network 
(and nothing else) 
 
field_function=function(i){ 
    gene=genes_up[i] 
    set=which(fdata$RV==gene) 
    IDs=fdata$ID[set] 
    set_values=which(rownames(exp) %in% IDs) 
    if(mdata$dye_swap[j]==0){ 
        values=exp[set_values,j]}else{ 
            values=-(exp[set_values,j])} 
        if(length(values)==1){ 
            return(values) 
        }else{ 
            values=values[which(!is.na(values))] 
            if(length(values)==1){ 
                return(values) 
            }else{ 
                return(median(values)) 
            }} 
} 
# Declare fdata,exp,j before calling sapply 
fdata=fdata_1 
exp=exp_1 
mdata=metadata_1 
fdata$RV=toupper(fdata$RV) 
 
genes_exp=data.frame(matrix(NA, ncol = ncol(exp), nrow = length(genes))) 
colnames(genes_exp)=colnames(exp) 
rownames(genes_exp)=genes 
for(j in 1:ncol(exp)) 
{    print(j) 
    genes_exp[,j]=sapply(c(1:length(genes)),field_function)} 
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genes_exp_1=genes_exp 
 
##### 9. Transform the matrixes so rows are links. 
link_field_function=function(i){ 
    index_a=which(genes_up==net_up$V1[i]) 
    index_b=which(genes_up==net_up$V2[i]) 
    value=genes_exp[index_a,j]+genes_exp[index_b,j] 
    return(value)} 
 
links_exp=data.frame(matrix(NA, ncol = ncol(genes_exp), nrow = nrow(network))) 
colnames(links_exp)=colnames(genes_exp) 
rownames(links_exp)=paste0(network$V1,"_",network$V2) 
 
for(j in 1:ncol(links_exp)) 
{   print(j) 
    links_exp[,j]=sapply(c(1:nrow(links_exp)),link_field_function) 
} 
 
 
 
 
 
 


