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Prologue

In this work we introduce a novel evolutionary algorithm for the Multi-Period Incremental Service

Facility Location Problem. A computational study is carried out to showcase the good results produced

by such an heuristic method. The significance is that, to the authors’ knowledge, no research has been

carried out on similar multi-period problems with genetic or evolutionary algorithms.

The structure of the work is as follows:

Chapter 1 introduces the field of Location Science along with examples of Facility Location prob-

lems. This culminates with the Multi-Period Incremental Service Facility Location Problem, a time-

bound model for the incremental coverage of demand of non-essential services.

Chapter 2 deals with genetic and evolutionary algorithms, reviewing the mechanisms available in

the literature for single-period facility location problems.

Chapter 3 presents the evolutionary algorithm developed to solve the Multi-Period Incremental Ser-

vice Facility Location Problem. The operators that make up the algorithm are explained and some

examples given. The pseudocode is also made available.

Chapter 4 summarizes the results from two computational studies, showing the performance of the

algorithm in a wide array of problems. Comparisons to the exact solving and an artificially decoupled

model are also reported.

Appendix A contains the code of the algorithm implemented in R.
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Resumen

En este trabajo se presenta un novedoso algoritmo evolutivo para resolver el Problema Multi-Periodo

de Localización de Instalaciones con Oferta Incremental (Multi-Period Incremental Service Facility Lo-

cation Problem). Tras un estudio computacional detallado, se demuestra que la calidad de los resultados

es suficiente para justificar el uso de este método heurístico. Esto es significativo porque no parece

haber artículos sobre la resolución de problemas multi-periodo similares con algoritmos genéticos o

evolutivos.

La estructura del trabajo se muestra a continuación:

En el capítulo 1 se introduce el campo de la Ciencia de Localización (Location Science) con ejem-

plos de problemas de localización de instalaciones. Esto culmina con el Problema Multi-Periodo de

Localización de Instalaciones con Oferta Incremental, un modelo dependiente del tiempo para cubrir

incrementalmente la demanda de servicios no esenciales.

El capítulo 2 trata sobre los algoritmos genéticos y evolutivos. Se repasan los mecanismos para

problemas de localización de instalaciones de un solo periodo que aparecen en la literatura.

En el capítulo 3 se presenta el algoritmo evolutivo desarrollado para resolver el Problema Multi-

Periodo de Localización de Instalaciones con Oferta Incremental. Se explican los operadores que forman

el algoritmo y se dan algunos ejemplos. También está disponible el pseudocódigo.

En el capítulo 4 se resumen los resultados de dos estudios computacionales, mostrando la eficacia

del algoritmo en un abanico de problemas. También se comparan con la resolución exacta del modelo y

el obtenido al optimizar periodo a periodo.

En el apéndice A está el código del algoritmo implementado en R.
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Chapter 1

Introduction to Facility Location

Problems

Location Science is a discipline concerned with finding the optimal spatial arrangement of facilities

that supply some demand. Facility location problems (FLP) are very much part of this area. In FLP,

facilities have to be located in space. Facility is a generic term that can represent anything from logistic

and distribution centers to hospitals or kindergartens. The point is that a service is provided by the

facility, which is used by some demand nodes. The distribution of the facilities should be optimal in

the sense that a certain goal must be reached. Maybe a certain supply level is needed, or we want to

minimise the sum of the distances between demand nodes and facilities. It is clear how grounded in

reality this problem is, and the many applications in fields such as economics or logistics that it has. We

are concerned with a specific instance of FLP, but will nonetheless introduce the problem progressively,

motivating all the increases in complexity and understanding what has come before. This introduction

will follow that of the book by Nickel and da Gama [21, §11].

1.1. Origins of Location Science

The first Location Science problem as it is known today is that of finding the point in Euclidean

space that minimises the sum of the distances to three other points. This has been attributed to Pierre

de Fermat and thus setting the beginning of Location Science in the 17th Century. Using the modern

terminology, there are three demand nodes and one facility which can be located anywhere on R2 but

must minimise the sum of distances. Fermat’s problem was solved geometrically in [16] for all cases.

A more general approach and indicative of the gradual complexity to come in modern Location

Science was due to Carl Friedrich Launhardt. In [22] he added weights to the demand nodes of the

original problem. With this generalisation, the problem is known as a 3-node Weber problem. Alfred

1



2 Chapter 1. Introduction to Facility Location Problems

Weber would later on study these kind of problems [36] and thus lead to the modern terminology.

1.2. The p-median Problem

The concept started in the Weber problem was generalised in the form of the p-median problem.

Median because the sum of the distances between demand nodes and their respective closest facility

must be minimised. The p-median problem was presented in the paper by Cooper [8]. However, it was

Hakimi in [14] who proved that there exists an optimal location of facilities over the demand nodes.

This reduces the location space from the continuous considered in the Weber problem to a discrete

one. Thanks to the location space being now discrete, a mixed-integer linear programming (MILP)

formulation for the p-median was introduced in [29]. Kariv and Hakimi further proved in [20] that the

p-median problem is NP-hard, that is, there is no known non-deterministic polynomial-time algorithm

that solves the p-median problem.

A formulation for the p-median problem can be as follows. Let I be the set of possible locations of

the facilities and J be the set of demand nodes. Let d j be the demand of customer j, ci j be the unit cost

of satisfying customer j from facility i, p be the number of facilities to be located, xi j be the fraction of

demand that facility i supplies to j and yi be a binary variable with value 1 when the facility i is located.

min ∑
i∈I

∑
j∈J

d jci jxi j (1.1)

subject to ∑
i∈I

xi j = 1, ∀ j ∈ J (1.2)

∑
i∈I

yi = p (1.3)

xi j ≤ yi, ∀i ∈ I, j ∈ J (1.4)

yi ∈ {0,1}, ∀i ∈ I (1.5)

xi j ≥ 0, ∀i ∈ I, j ∈ J (1.6)

There is another kind of FLP where the objective is to locate facilities so as to minimise the max-

imum distance between any demand node and its closest facility. These are called p-center problems

for the instance where p facilities must be located. These kinds of problems are tied to the supply of

emergency services, where the worst case scenario needs to be alleviated. The concept of center was

first introduced in [14]. We will focus on median-based problems.
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1.3. Dynamic Facility Location Problems

The first problem to consider dynamic constraints was by Wesolowsky [37]. This Multi-Period

Weber problem extends the classical Weber so as to encompass changes in the demand distribution

along some time periods. The difference between this model and the previous one is that moving the

facility incurs a relocation cost, and thus cannot be understood as several different Weber problems.

After this problem, an additional constraint is imposed in [7], where at most one new facility can

be located in each time period. This was done for a special case of FLP where the location space is a

graph, but the idea is analogous to the Weber or discrete formulation.

Finally, in [10] a Multi-Period Weber problem where exactly one new facility must be located each

time period was introduced. Notice how, in this case, the p-median problem must assign the facilities

throughout the p time periods. This problem is the predecessor of the incremental service FLP that will

be considered later on.

1.4. Multi-Period Facility Location Problems

The class of Multi-Period Facility Location problems (MPFLP) is a generalisation of the Facility

Location problem where a time dependency is incorporated in the form of a multi-period setting. As it

has been seen in the previous section, considering dynamic FLP changes the problems fundamentally.

The inclusion of time as another dimension for the model affects the structure of the problem, requiring

a global overview to solve it. Time-dependent models appear naturally when considering some dynamic

decisions, such as inventory management, opening and closing of facilities and capacity changes, as well

as other questions arising from budgetary constraints [21].

In FLP, the time frame in which the decisions need to be carried out is the planning horizon. Within

this planning horizon, many strategic and tactical choices have to be carried out, with long-lasting

consequences. The planning horizon can be either finite or infinite, but most of the research is focused

on finite planning horizons and ours will too. Even though the time can be considered as continuous, as

noted in [21], optimal control is a better alternative to solving continuous-time instances. Thus, the time

setting considered in this study will be a finite series of discrete time periods, ranging from the initial

one to the planning horizon. As for the spatial setting where the facilities and customers are allocated,

three distinct approaches appear in the literature. We will give a basic introduction of the first two, and

focus on the third one, which shall be chosen.

Solving for the decoupled model is generally an incorrect approach, as finding the consecutive

best arrangement for the individual time periods misses the larger picture and forces the structure to

mistakes that could have been foreseen. The qualitatively different structures surfacing from these two
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approaches has been studied in [2], concluding that decoupled models tend to give good objectives for

the first periods, with solutions deteriorating quickly as periods pass.

1.4.1. Introducing Multi-periodicity

Some measures of introducing multi-periodicity in a given formulation of FLP have already been

given. Setting relocation costs, not allowing for facilities to close or setting opening costs all transform

an initially decoupled system into a time-bound one. These changes in formulation appear naturally,

and are even a necessity when modeling the operation of large companies.

Extensions on the constraints about opening and closing facilities include opening facilities for a

minimum period of time, opening a minimum number of facilities each period [2] and only allowing

for a subset of facilities to close [30]. Changes in operating capacity can also be implemented, either

by reducing or increasing the capacity, which was done for the MPFLP in [34]. These are usually

accompanied by economies of scale, where bulk discounts are given based on production volume. Other

extensions consider multiple products and multiple stages of production, as shown in [17].

Introducing time dependencies can have a big impact on a problem. An approach for quantifying

the influence of time in any MPFLP model is to measure the difference between the exact solution and

the time-invariant solution from the static model. The static model has to be artificially constructed,

unifying the time-dependent constraints into others that do not depend on time but still yield feasible

solutions for the original model. The specific way to do it depends on the MPFLP formulation, but can

be contructed by averaging demands. The value of the multi-period solution, as defined in [4], is given

by the difference between the time-invariant weak solution and the strong multi-period solution.

1.4.2. Continuous Problems

Continuous problems come from the use of a continuous location space. The following multi-period

extension of the Weber problem was proposed in [37] and allowed for the change in the set of nodes

in every time period, giving a relocation cost for the factory changing position. This problem can be

formulated as follows:

min ∑
t∈T

∑
j∈Jt

ct j(xt ,yt)+
|T |

∑
t=2

ftzt (1.7)

subject to zt = 0 if dt−1,t = 0, t ∈ T \{1} (1.8)

zt ∈ {0,1}, t ∈ T (1.9)

The objective (1.7) minimizes both the allocation and relocation costs, denoted by ct j and ft , respect-

ively. The variables used are (xt ,yt), the euclidean coordinates of a facility in that location in period t;
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zt , a binary variable that indicates whether the facility has changed location; and dt ′,t , the distance by

which it moves. The sets T and Jt are the time periods and demand nodes in that period.

Methods for solving this sort of problems started out as dynamic programming and quickly became

exact ones [35].

Other multi-period, multi-facility approaches are proposed in [11], which considered the optimal

time periods to take as well, the recursive installation of a new facility every period in [33], and an

extension of the planar p-median problem in [10].

1.4.3. Network Problems

Network problems encompass those where the facilities are located on a path or tree, at least one per

period. The first extension of the network p-median problem considers a weighted network that varies

in time with assignment and relocation costs [15]. This paper also studied the 1-center multi-period

problem on a network. Some theoretical results hold, which reduce the location space of these kind of

problems. However, not much research is still being carried out in this topic since these problems can

be reduced to discrete ones [21].

1.4.4. Discrete Problems

Discrete problems are the predominant choice for location space [15]. The p-median problem in a

discrete location space is as follows.

Let ci jt be the allocation cost of demand node j ∈ J to facility i ∈ I in time period t ∈ T and xi jt

be a binary variable equal to 1 if in time period t facility i is allocated to demand node j. Here, it is

considered that facilities must be located on demand nodes, thus I ⊆ J. Also, the demand of a customer

can only be satisfied by one facility.

min ∑
t∈T

∑
i∈I

∑
j∈J

ci jtxi jt (1.10)

subject to ∑
i∈I

xi jt = 1, t ∈ T, j ∈ J (1.11)

∑
j∈J

xi jt ≤ |J|xiit , t ∈ T, i ∈ I (1.12)

∑
i∈I

xiit = p, t ∈ T (1.13)

xi jt ∈ {0,1}, i ∈ I, j ∈ J, t ∈ T (1.14)

The position of demand nodes is fixed, whereas in 1.4.2 the weights change represent physical displace-

ment of the demand nodes. This amounts to a fixed set of locations for the facilities, which are such that
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I ⊆ J. No generality is lost, however, since the cost for allocating demand nodes ci jt from facility i to

node j in period t can be set as some penalized value where the original j was j /∈ Jt .

Since no reallocation costs are considered, the p-median problem can be decoupled. A simple modi-

fication of the objective function introduces the multi-periodicity. In [38], opening and closing costs are

introduced, making the decoupled problem not optimal in general. Further extensions and methods for

solving this problem have been developed, since the original dynamic programming approach is only

usable for small problems.

When no capacity constraints are considered, that is, there is no limit to the amount of demand a

given facility can satisfy, the problem is called uncapacitated. In the Uncapacitated Facility Location

Problem (UFLP), the demand is allowed to be divided among several facilities. Let xi jt be the fraction

of demand supplied to customer j by facility i in period t, and yit be a binary variable that indicates

whether facility i is operating at time t or not. Additionally, let fit be the cost of operating facility i in

period t.

min ∑
t∈T

∑
i∈I

(
fityit +∑

j∈J
ci jtxi jt

)
(1.15)

subject to ∑
i∈I

xi jt = 1, t ∈ T, j ∈ J (1.16)

∑
j∈J

xi jt ≤ |J|yit , t ∈ T, i ∈ I (1.17)

xi jt ≥ 0, i ∈ I, j ∈ J, t ∈ T (1.18)

yi jt ∈ {0,1}, i ∈ I, j ∈ J, t ∈ T (1.19)

Notice how the capacity of a given factory is bounded by |J| when that factory is operative. This

implies that the problem is indeed uncapacitated.

Again, the objective is to minimize the running and assignment costs. The model can be decoupled,

since there are no constraints that make it time-dependent. Introducing a natural relocation cost, or

forcing facilities to stay open takes care of that.

Models based on facilities which cannot be closed have been successfully modeled using step vari-

ables, that indicate whether a new facility opens in a given period. This, along with further supply

restrictions, has been studied in [6].
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1.5. The Multi-Period Incremental Service Facility Location Problem

The Multi-Period Incremental Service Facility Location problem (MISFLP) was first introduced by

Albareda-Sambola et al. in [2] and is concerned with the operation of non-essential services. In most

of the previous literature, the facilities considered supplied an essential service that had to cover the

available demand. If, instead, a private or non-essential service is considered, the supply can be incre-

mentally increased by opening new facilities each period and thus increasing the demand coverage until

its completion in the planning horizon. The examples provided in the original paper include libraries,

nursing homes, kindergartens, parking lots, supermarkets and banks. The MISFLP is the subject of this

work, and is presented in depth below.

Let J be the set of customers, I be the set of possible facility locations and T be the set of periods.

Every period, a minimum of nt customers have to be served and at least pt new facilities must open.

Once opened, facilities cannot close before the end of the planning horizon. Also, customers that have

their demand satisfied on a given period must also receive the supply every period after. Partial coverage

of a customer’s demand is not allowed.

The costs are as follows. Let ct
i j be the allocation cost of assigning customer j to facility i at time

period t and f t
i be the cost for opening facility i in time period t. The cost f t

i includes the initial opening

cost in period t and the maintenance cost until the end of the planning horizon. The facilities that supply

a given customer’s demand may change over time at no extra cost.

Even though full coverage of demand is expected at the end of the planning horizon, partial coverage

can be implemented by introducing a dummy facility with infinite costs in all periods except for the last.

Unsatisfied demand penalties could also be introduced but are not considered in this model.

In [1], several ways of formulating the MISFLP were proposed and compared to find the strongest

one. The mathematical formulation given below is the one with the best results as per [1] and not the one

presented originally in [2]. It will, however, not incorporate the modifications in the problem that [1] has

over [2], namely customer demand in select periods, service costs and penalties for unfulfilled demand.

Let us define

xt
i j =


1 if at period t customer j is assigned to facility i

0 otherwise

ȳt
i =


1 if by period t the facility i has already opened

0 otherwise

With a slight abuse in notation, ȳ−1
i = 0.
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The formulation of the MISFLP is as follows:

min ∑
i∈I

∑
t∈T

(
f t
i (ȳ

t
i− ȳt−1

i )+∑
j∈J

ct
i jx

t
i j

)
(1.20)

subject to ∑
i∈I

∑
j∈J

xt
i j ≥ nt , t ∈ T (1.21)

∑
i∈I

xt
i j ≤ 1, t ∈ T, j ∈ J (1.22)

∑
i∈I

xt
i j ≥∑

i∈I
xt−1

i j , j ∈ J, t ∈ T \{0} (1.23)

∑
i∈I

x|T |i j = 1, ∀ j ∈ J (1.24)

xt
i j ≤ ȳt

i, ∀i ∈ I, j ∈ J, t ∈ T (1.25)

∑
i∈I
(ȳt

i− ȳt−1
i )≥ pt , ∀t ∈ T (1.26)

ȳt−1
i ≤ ȳt

i, ∀i ∈ I, t ∈ T (1.27)

xt
i j, ȳ

t
i ∈ {0,1}, i ∈ I, j ∈ J, t ∈ T (1.28)

The objective function (1.20) minimizes the setup and maintenance costs of the facilities, as well

as the assignment costs. The minimum customers served and facilities opened per period come from

the constraints (1.21) and (1.26), respectively. Each customer is assigned to at most 1 facility in (1.22)

and once fulfilled, keeps on having its demand satisfied by (1.23). The full demand coverage at the

end of the planning horizon is ensured by (1.24). Customers are assigned to open facilities by (1.25).

Constraint (1.27) forces opened facilities to stay open until the end of the planning horizon.

One absence from these constraints is any kind of capacity constraints. For all it matters, the model

could assign all production to a given facility while opening and not using the others, as long as it is

economically viable. The issue with constraints in production capacity is that they greatly increase the

difficulty of the problem, and are only considered if required.

For |T | = 1, the MISFLP is equivalent to the p-median problem, which was proven in [20] to be

NP-hard. This means that the MISFLP is NP-hard as well, and heuristic methods are required to solve

large instances of the problem.



Chapter 2

Evolutionary Algorithms

2.1. Introduction to Evolutionary Algorithms

Evolutionary Algorithms (EA) are a kind of metaheuristic that takes inspiration from nature to

achieve near-optimal solutions relatively quickly on a wide variety of problems. The resemblance to

natural evolution comes in the form of an evolving population of solutions to the studied problem. Each

solution is encoded in such a way that it corresponds to an individual with some activated genes. The

individuals of the population have their quality measured by a fitness function, the objective being to

optimize the fitness so as to find the best possible individual. The population will be subject to several

crossover and mutation operators and their results will be selected to be part of the population again

based on a selection procedure. This is carried out until a stop criterion is met.

Evolutionary processes were described for the first time in the articles by Friedberg in 1958 [12].

The precursors of Evolutionary Algorithms, Genetic Algorithms (GA), were initially developed by Hol-

land in the 1960s as seen in [18]. They were applied for the first time to the p-median problem in the

paper by Hosage [19]. Up until then, p-median problems had been mainly solved by exact methods.

However, as the complexity of the studied instances increases, exact methods have an exponentially

harder time solving them. This is a direct consequence of the p-median problem being NP-hard [20].

An heuristic for such problems is then desirable, because it might obtain good enough solutions

much more quickly. With heuristics, the tradeoff is the loss of certainty of optimality. No longer we

know that the obtained solution is the best one. However, for many purposes, the time requirements of

exact methods are prohibitive and a close enough solution suffices. Common variants of operators used

in evolutionary algorithms applied to the p-median problem are presented in this section

For a review on metaheuristic procedures for the p-median problem, the reader is pointed to the

paper by Mladenovic [27].

9
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2.2. Encoding

The individuals in GA are traditionally represented by a fixed-length binary string. This is the

encoding chosen in [19]. However, this first application didn’t achieve very good results in the p-

median problem, as noted by Alp et al. [3]. The issue is that, with the binary representation, most of

the possible configurations are unfeasible since more or less than p facilities are located. Because of

this, the search space of the algorithm is huge and not representative of the problem. GA with binary

encoding must constantly fight this tendency to unfeasibility and requires methods such as restricted

search [31]. There are some instances where specifically choosing a binary encoding can be helpful,

such as in [26], but most of the research in GA for p-median problems uses the encoding proposed by

Alp et al. [3] and we will too.

This encoding assumes that the facilities are assigned to some index, so that {1, . . . ,m} represents

all the facilities. Out of the possible m facilities, p have to be chosen. The natural expression of which

are chosen is a tuple of length p with increasing elements in {1, . . . ,m}. The strength of this encoding

is that all possible assignments of facilities have a one-to-one relation with all such possible encodings.

No longer we have to worry about unfeasibility, and operations can follow much more quickly. This

also reduces the space of all possible individuals from 2m to
(m

p

)
.

2.3. Initialization

The starting population has to be constructed before the algorithm can proceed. A common method

is by random generation. An individual would be created by selecting a random subset of p element

from the indices. Since the random distribution used is uniform, for sufficiently large population sizes,

this would be a quick way of ensuring population diversity.

A more comprehensive approach proposed by Alp et al. [3] is sequential initialization. The indi-

viduals will be constructed initially by going over the indices in increments of 1 until they run out and

continuing in increments of 2 until all indices are chosen. This continues until the increments are some

pre-specified k < m. This list is then separated in strings of consecutive p facilities. The example given

in [3] is (m, p,k) = (12,4,2), which yields the population

(1,2,3,4),(5,6,7,8),(9,10,11,12),(1,3,5,7),(2,4,9,11),(6,8,10,12).

Another option is to find some good solutions via local search methods or other quick heuristics

and start the population with those. The issue here is that diversity is not enforced. To circumvent this,

in [23] the initial good solutions are added to a greedy-generated population which is diversified. This

seeding of good solutions does require additional heuristics, but speeds up computation times.
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2.4. Crossover

The crossover emulates the reproduction process in nature and the exchange of genetic information.

This operator has been adapted to the p-median problem in several ways. All of them have to deal

with the fact that feasibility should be preserved. Otherwise, operators may result in individuals with

less facilities than necessary or repeated facilities. Operators that work with these situations are called

messy, but are not commonly used [13].

One intuitive crossover operator is the one proposed by Correa et al. in [9]. After individuals have

been chosen for the crossover phase, two exchange vectors are constructed so that they contain the

distinct facilities of the individuals. A random number k between 1 and the length of the exchange

vectors minus 1 is chosen. After randomly choosing k facilities from each exchange vector, those

facilities are swapped in the individuals. Notice how feasibility is preserved, since the length is kept

at p and no repeated facilities are present in an individual. The idea of exchange vectors motivated

the mechanic of permuting facilities, the process by which facilities opened on different periods switch

places in the individual.

Another operator that is computationally more expensive but gains some sense of optimality direc-

tion via greediness is the one presented in [3]. This merge-drop algorithm is more closely related to

greedy heuristics than classical GA crossover. The facilities in the chosen parents are all considered.

The result is in general not feasible, since the union will likely be greater than p. Facilities are excluded

one by one and the fitness evaluated. The subset with one less facility that has the lowest fitness is

chosen, and the omitted facility is dropped. This is repeated until enough facilities have been removed

and the individual is feasible. The cost is that many evaluations of fitness have to be done. Moreover,

the fitness function must allow for the evaluation of non-feasible solutions. Good results are reported

using this method, and it is recommended for inexpensive fitness functions.

A crossover operator where the parents have different roles is presented in [28]. The operator takes

into account the closeness of the facilities in the individuals and substitutes the selected facilities in the

first one by the nearest facility from the other one. Assigning different roles to the parents was also used

in the final version of the EA.

Three more classical crossover operators are presented in [5]. An interesting case of operators being

dynamically chosen based on population diversity to avoid local optima is sketched in [24]. This paper

also extends on the greedy crossover of [3] by presenting a modified increasing vector where the distinct

facilities that increase the fitness the least are progressively added. In [25], a dynamic crossover based

on the diversity of the population is proposed, which allows for the increasing or decreasing of the

population size throughout the iterations.
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2.5. Parent Selection

Now the measures to select parents subject to the crossover operator will be discussed. On many

occasions they are just chosen randomly and that produces good results, but other procedures exist. For

instance, a simple elitist selection was studied in [5]. Parents that had better fitness were more likely to

be chosen, but the choice was still probabilistic. This skewness was formulated in two different versions.

The first one accounted for the fitness function, and a normalized value was assigned as weights for the

skewed random selection. The other one took the fitness into account only indirectly, since it was the

ranking that formed the weights. The population was ranked by fitness, and higher-ranking individuals

were more likely to be chosen. The issue with this approach was that similarly-fit individuals may have

very different rankings. It might help distinguish between very flat fitness functions, but better results

were observed with the first approach, as noted in [5]. This fitness-based elitist selection was also used

in the paper which proposes the first GA for solving the p-median problem [19].

A slightly more complex version of this kind of parent selection is the one presented in [32]. The

fitness function values were stretched so as to emphasize the difference between similar individuals but

without going all-out on a ranking system. After this, the individuals were grouped by fitness. Individual

in the same group were equally likely to be selected.

Partially due to the unique encoding chosen for the bionomic algorithm in [26], a unique parent

selection technique was chosen. It is more deterministic than the other random-based approaches that

we have seen. The idea is to select pairs of parents that are as different from each other as possible. This

is measured by maximal independent sets. Essentially, it supercharges exploration of the search space

and avoids many local optima traps. Some local search is necessary on the later stages of GA and the

authors solved this problem with an additional maturation operator based on greedy heuristics.

From the wide variety of methods available in the literature, it is clear that there is no catch-all

approach and that a thorough study of the problems to solve is necessary when dealing with GA [3, §3].

2.6. Mutation

As for the mutation, the usual procedure is to remove some facilities and substitute them for unused

ones. A hypermutation is introduced in [9], which is equivalent to a partial maturation. A maturation is a

local search on the solution space and has been used in [26] too. Maturation stages are computationally

expensive, and are not applied on each iteration. It was also proposed that a maturation stage based on

the Interchange Heuristic could be more beneficial to the quality of the solutions in [27].

Another way to introduce diversity is through invasion, a procedure that introduces new indivi-

duals in the population. As presented in [5] or [32], invaders are added to keep the diversity high and
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strengthen the capabilities of the other operators. Higher invasion rates were found to be more effective.

2.7. Selection

As for the selection of which individuals will go on the next iteration of the GA, most papers apply an

elitist selection, which consists on keeping the individuals with the best fitness. An interesting addition

to the plain selection comes from [28]. The procedure is called fight and every newly created child

goes through the fight stage, in which it is pitted against the individual with the worst fitness. However,

where an elitist procedure would solve the fight as a win for the child if it had better fitness, fight also

takes into account the diversity change in the population when including the new children. This way,

if a child is better than the worst individual but very similar or even equal to other existing individuals,

it will not win the fight. As noted by Perez at al [28], this process can supply a useful local-minima-

avoiding technique similar to the parent selection in the bionomic algorithm but without slowing down

the algorithm or hindering fine searching. This technique inspired the selection procedure based on the

Hamming distance that will be used for the EA proposed in this work. A weaker version of the fight

procedure is an elitist one that does not allow repeated individuals.

2.8. Fitness

Most GA opt for a fitness function that corresponds exactly with the objective function of the original

optimization problem. In the paper by Salhi and Gamal [32], the fitness function is monotonically

distorted to distinguish between more fine increments of fitness. For the p-median problem particularly,

the objective function is the cost of allocating the demand nodes to the facilities and their operating

costs. Other costs may appear, such as maintenance or relocation costs.

It is also possible to not consider the fitness as the objective function. In [28] the diversity that the

individual brings into the population is also considered as part of its fitness, yielding a population-based

fitness.

It is important to keep the evaluation of the fitness as quick as possible, since it is the basis for much

of the computing overhead in GA for p-median problems. A faster way of preserving diversity, an the

one inspiring part of the proposed algorithm, comes from the fight selection.

When choosing a fitness different from the objective function, some precision is lost and any heur-

istic chosen to substitute it must be as realistic as possible while being much quicker to evaluate. Such

a fitness is introduced in [25], considering two separate fitness functions in what is called a bi-objective

fitness.





Chapter 3

An Evolutionary Algorithm for Solving

the MISFLP

In this section we detail the specific procedures by which the proposed EA for the MISFLP solves

such problems. The inner structure of the EA is that of a messy evolutionary algorithm. The encoding

is index-based and clearly distinguishes between periods. Since the representation is in variable length

strings, the algorithm is messy and the encoding is not binary, so the algorithm is evolutionary. The

fitness is computed after finding the optimal allocation of customers to the open facilities, which implies

that the EA is technically a hybrid EA. All in all, the developed algorithm is a messy hybrid EA. The

crossover exchanges facilities between periods and moves the rest to others, favoring the parent with

the better fitness in the child creation. The mutation also has some random exchanges of facilities

between periods, and includes outright removal of facilities. The children are selected with a protected

procedure, so that the diversity is not decreased too sharply.

3.1. Encoding and Fitness

The population of the EA is formed by individuals, each one representing the facilities that open for

the first time on that period. Thus, the encoding is as follows. Each individual has |T | disjoint sets of

indices in I, the set of facility locations. The indices in the t-th set represent the indices of the facilities

which are opened for the first time in time period t. The novelty here is that there can be more than the

minimum of facilities being allocated each period, so a variable-length encoding is required.

Given an individual, the facilities that open on each period are given. In order to construct the final

solution of the MISFLP it is still required to find the optimal assignment between demand nodes and

facilities that minimises the allocation costs.

Let dt
j = ∑

|T |
k=t

(
mini∈Ik ck

i j

)
, Ik be the open facilities at time k and zt

j be a binary variable of value 1
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if customer j is newly allocated in period t. Then, the following is the allocation subproblem:

min ∑
t∈T

∑
j∈J

dt
jz

t
j (3.1)

subject to ∑
t∈T

zt
j = 1, ∀ j ∈ J (3.2)

∑
j∈J

zt
j = nt −nt−1, ∀t ∈ T (3.3)

zt
j ≥ 0, ∀ j ∈ J,∀t ∈ T (3.4)

The encoded individual, together with the optimum of this subproblem, becomes a feasible solution

of the MISFLP. The customer allocation subproblem has the same constraints for all possible individuals

and those constraints are preloaded in a CPLEX model to speed up the algorithm. The fitness requires

solving an optimization problem, so the EA is actually a hybrid EA.

The MISFLP is uncapacitated, and the optimal allocation of customers to facilities is that which

assigns the lowest customer-facility pairs every period.

The assignment cost of customer j that has demand coverage starting from period t is dt
j, since

is is allocated to the cheapest available facility on each time period following period t and demand

cannot stop. The global cost is the sum of all assignment costs, which means that the objective function

takes the sum over customers and starting time periods. Further constraints will take care that enough

customers are allocated demand each time period, that there is only one starting period where demand

is received for each customer and that at the planning horizon all demand is covered.

The fitness function, coinciding with the optimum in Equation (1.20), requires solving the allocation

subproblem each time that it has to be computed. The facility opening and maintenance costs are added

to the optimum of this subproblem, resulting in the fitness for the individual. The objective is to find the

individual with the lowest possible fitness.

To achieve this, several basic operations are carried out: crossover of two parents, mutation of one

parent and selection of children.

An element of the individual denoting the initial opening of some facility in some period will be

called a gene. The set of all genes, and thus, all encoded information for a certain individual will be

the genome for that individual. The multi-periodicity could be included in this biological notation by

denoting the different sets as chromosomes.

3.2. Initialization

The initialization is done in a random manner, meaning that, for each chromosome, the number of

facilities that open each period and which ones are chosen is carried out randomly. The only diversity
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that comes from this initialization is in the uniform distribution of the random process used. The sequen-

tial distribution [3] and population seeding [23], as explained in Section 2.3, cannot be readily applied

here. The issue is that since more than the minimum of facilities could open on a given period, in order

to ensure the appropriate coverage, the population size should be really high. To give an idea of why

this is so, we analyse the search space of a problem with |T |= 12 periods and |I|= 30 facility locations.

The search space of the EA is the space of all possible individuals and its cardinal is computed for the

MISFLP with the following formula.

(|I|)!
|I|−S1−P1

∑
s1=p1

1
s1!

|I|−S2−P2

∑
s2=p2

1
s2!
· · ·
|I|−S|T |−P|T |

∑
s|T |=p|T |

1
s|T |!(|I|− s1−·· ·− s|T |)!

(3.5)

In the formula, p = (p1, . . . , p|T |) is the vector with minimum facilities that can open each period.

In order to simplify the expression, we use the notation S1 = 0 and Si = ∑
i−1
j=1 s j, ∀i = 2, . . . , |T |, and

Pi = ∑
|T |
j=i+1 p j, ∀i = 1, . . . , |T |−1 and P|T | = 0.

For p = (1,1,1,2,1,1,1,1,1,1,1,1), the cardinal of the search space is of the order 1032. If we

compare that to the problem without multi-periodicity, the possible individuals become
(30

13

)
, which is

of the order 108. For this specific example, an individual using the minimum possible facilities could be

({12},{8},{26},{10,27},{4},{20},{2},{18},{15},{22},{1},{6})

Notice that every individual initialized is a point in the search space, ensuring its feasibility. This

means that there are no individuals with periods where the number of opened facilities is lower than the

required by p.

The specific construction of initialized individuals is as follows. First, choose a random number of

facilities to open between ∑
|T |
t=1 pt and |I|. This is the step that ensures feasibility. After that, assign

to periods all available excess slots, that is, those over ∑
|T |
t=1 pt . Then, unused facilities are randomly

chosen to fill all unassigned genes, updating the used facilities in the process to avoid repetitions. This

creates a new, feasible individual, and the procedure can be carried out as many times as necessary to

generate the whole population.

In pilot runs, it was observed that the optimal individuals had no excess facilities, that is, the number

of facilities opening each period corresponded exactly with the minimum allowed. Because of this, a

second computational study was carried out where half of the initial population was generated with

a left-skewed Beta(1,5) distribution in the excess facilities. Individuals initialized by this procedure

were more likely to have less opening facilities thus reducing computational time without sacrificing

too much diversification. Everything else was kept the same.

Each individual in the generated population is evaluated for fitness as explained previously. After

this, the main loop of the algorithm begins. It will continue until the stop criteria is met. In our case, a

running time criterion is used.
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3.3. Crossover

In every iteration of the loop, there is one crossover and sometimes one mutation, according to

some probability of mutation. This is unusual for EA, since usually many children are generated on

each iteration. However, the selection operator from the paper by Perez et al. [28] motivated the current

selection operator. The significance of it is that premature convergence to local minima, a long-time

crux of GA and EA can be significantly overcome through this method. Since it compares the child

with the main individual that generated it, multiple children generation is not easily implemented. The

crossover works as follows.

First, two random distinct parents are chosen among those in the current population. These two

parents are recombinated by the crossover operator. The parents are ordered by fitness, and the one with

the lower fitness is called parent α while the other one is parent β . The child is initialized as parent α ,

to try to retain some of the good properties of α while enriching the gene pool with the genome from

β . Once initialized the child, a random period t is selected.

The information from period t in β is translated to α in the following manner. Only the genes

that are different in the period t between α (α t) and β (β t) are used for the crossover. We consider

α t \ (α t ∪β t) and β t \ (α t ∪β t). If both of these sets are nonempty, random i ∈ α t \ (α t ∪β t) and

i′ ∈ β t \ (α t ∪β t) are selected. Then, i is substituted by i′ in the child and the other position (if it exists)

i′ is substituted by i. If only i was substituted this time, the genome of the child could contain two

instances of the same facility i′, which is an unfeasible individual.

Facilities can be exchanged as in the process above, which will be denoted as facility permutation.

After the substitution, the choices for facility permutation are updated and the procedure repeated until

one of the sets is empty. If it is β t \ (α t ∪β t) which empties first, that is, |α t \ (α t ∪β t) | > |β t \

(α t ∪β t) |, the remaining facilities are removed from the period t of the child and appended to other

random periods. Note that all operations preserve feasibility.

Hence, if parent α is ({9,1},{2},{7,3,12},{4}), parent β is ({4,6,10},{11},{9,7},{5}) and

p = (2,1,1,1) a possible crossover could be as follows. Initially, the child is the same as parent α .

After randomly selecting period t = 3 to carry out the crossover, the exchange vectors α t \ (α t ∪β t)

and β t \ (α t ∪β t) are computed. They are (3,12) and (9), respectively. We randomly select i = 12

and i′ = 9. The child, which started as ({9,1},{2},{7,3,12},{4}) is now ({12,1},{2},{7,3,9},{4}).

Notice that if i′ had been an unused facility in α , for instance i′ = 1, the result would have been

({9,1},{2},{7,3,11},{4}). After this, the exchange vector of α is still nonempty, so the remaining

facility (3) moves to another random period t̃ = 2. Finally, the child is ({12,1},{2,3},{7,9},{4}). The

pseudocode of the procedure can be seen in Algorithm 1.
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Data: dataFrame, parents, |T |
Result: child
order parents;
initialize child as parent alpha;
randomly choose period t to do crossover;
find out exchange vectors parAlphaDist, parBetaDist;
set lenA as ex. vector of alpha, lenB respectively;
if min(lenA,lenB)>0 then

for k in 1:min(lenA,lenB) do
i← random facility in parAlphaDist;
j← random facility in parBetaDist;
child’s i← j;
for all other periods t̃ do

if j in child’s t̃ period then
child’s j in t̃ ← i ;

end
end
update exchange vectors

end
end
if length(parAlphaDist)>0 then

for k in parAlphaDist do
remove facility k from child’s period t;
randomly choose period t̃;
append k to child’s period t̃;

end
end

Algorithm 1: Pseudocode for the Crossover operator

3.4. Selection

After the crossover, the fitness of the child is evaluated and goes through the selection procedure. In

the selection, the child is pitted against parent α . Only if the fitness of the child is better than that of the

parent will it be placed in the population. The individual that it will substitute depends on the Hamming

distance between the parent and child (set-wise by periods). This distance is the sum per periods of the

largest amount of facilities opened between the child and the parent minus the amount of the common

facilities. For example, the Hamming distance of (1,2,3) and (3,4) is 3−1 = 2.

This avoids premature convergence at local minima. If the obtained distance is lower than a bound

minDistance, the child substitutes the parent in the population. If the obtained distance is higher, the

child substitutes the individual with worst fitness in the population. In the end, the population is re-

ordered by fitness.



20 Chapter 3. An Evolutionary Algorithm for Solving the MISFLP

3.5. Mutation

The mutation is carried out in each iteration with a fixed probability of prMutate. Again, it receives

a randomly-selected parent from the current population which will be mutated. This current population

includes the result of the selection after the crossover, so it could be possible to choose the selected

crossover child as the individual to mutate. The individual to mutate is started as equal to this parent,

and will have some number of genes changed. This number is randomly chosen between a lower

and an upper bound. The lower bound is the maximum of 1 and mutRate− 1, mutRate being a fixed

parameter. This ensures that some mutation is carried out. The upper bound is the minimum of ∑
|T |
t=1 pt

and mutRate+1. Since feasible individuals can have as little as ∑
|T |
t=1 pt genes, it is necessary to set the

bound so as to avoid redundant operations.

For each gene changed, we first set the permutation as impossible if there is only one period in

which facilities open. This is an implementation issue and really has no effect on the usefulness of

the algorithm, since we are focusing on the multi-period instances. Then, a random period t with open

facilities is chosen, as well as a facility i in the set mt of facilities newly opened at period t of individual

m.

With probability pt

|mt | , a permutation of facilities is carried out. The permutation is with respect to

a random unused facility with a probability of 1
|T | , meaning that a new facility will substitute i. This

is the only way that facilities not present in the original population can be introduced. If there are no

unused facilities, the procedure is repeated for the next gene to mutate. Otherwise, the permutation is

with respect to another randomly-chosen period t̃ and i′ ∈ mt̃ . In this case, i is substituted by i′ and

vice versa. If the facilities opening in that period are close to the minimum, it is more likely that this

permutation is carried out.

When there is no permutation, a random i∈mt is removed from that period. With probability 1− 1
|T | ,

i is appended to another random period. This accounts for the facility being removed from the individual

completely. Notice that the probabilities are set up in such a way that no matter the random outcome,

the mutated individual will be feasible.

Another mechanic introduced is that which allows facilities to be completely removed from a period,

without permutation. The removal, combined with the moving of excess facilities, takes advantage of the

structure of the problem, allowing for more rich exploration of the search space than simple permutation.

After this, the periods with facilities are updated and the loop is repeated for the remaining number

of genes to mutate.

The mutated individual is compared to its respective parent and goes through the selection operator,

as after the crossover. The pseudocode of the mutation procedure can be seen in Algorithm 2.
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Data: parent, mutRate, p, facilities, |T |
Result: mutated
initialize mutated individual as parent;
mutRate← random between (max(mutRate-1,1) and min(mutRate+1,sum(p)));
mutRate← min(mutRate, number of facilities opened in excess of p);
for k in 1:mutRate do

t ← random period in which to mutate a gene;
i← facility in period t;
if U (1)<minimum facilities to open in t/facilities open in t then

if U (1)<1/|T | then
i← random unused facility;

else
t̃ ← other random period;
j← random facility in period t̃;
i←→ j (permutation in respective periods);

end
else

remove i from original period;
if U (1)>1/|T | then

t̃ ← other random period;
append i to t̃;

end
end

end
Algorithm 2: Pseudocode for the Mutation operator





Chapter 4

Computational Study

The algorithm presented in Chapter 3 has been subject to a thorough computational study. On this

section, these results will be presented and put in context.

4.1. Methodology

The algorithm has been implemented in RStudio 1.1.456 with R 3.4.2 and the package cplexAPI

1.3.3 to interface with ILOG CPLEX Callable Library 12.8.0. CPLEX uses all four available cores

for the computation whereas RStudio only uses one processor core. When calling CPLEX through the

package cplexAPI, the amount of cores used is one as well. The discrepancy in number of cores used

has not been accounted for in the results presented since downgrading the execution of the optimizer to

one core would be illogical and the implementation of the algorithm does not allow for parallelization in

an obvious fashion. The programming language used is good enough for a proof-of-concept algorithm,

and it is assumed that, had it been programmed in a compiled language such as C, running times and

result quality would have increased accordingly.

Two main computational studies have been carried out on an Intel Core i7-870 processor with 2.93

GHz of base clock speed and 8GB of 1066 MHz DDR3 RAM. The pilot tests for the setting of para-

meters and graph generation were carried out on a Mac running an Intel Core i5-6267U Processor at 3.1

GHz clock speed and 16 GB of 2133 MHz LPDDR3 RAM. The RAM capacity was not a bottleneck for

either configuration, since the test instances took up much less than that.

The set of instances considered is the same as the one used in [2], and they are used for the sake

of comparison. The set consists of 195 instances with parameters ranging in |T | ∈ {4,5,6,7,8,10,12},

|I| = {8,10,12,15,20,30} and |J| = {50,100,150,200,500}. The first instances generated in such a

manner are the ones chosen. For more details on the random distributions used to generate the instances,

check [2]. The optimal solution of the MISFLP instances was calculated with CPLEX, keeping track of

23
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the running time. The quality of the results from the EA was then based on these exact solutions.

4.2. Parameter Choice

The experiments are carried out as follows. A pilot study is responsible for fine tuning the parame-

ters used in the whole computational study. For the size of the population to initialize, it is determined

that 100 is enough to reach sufficient convergence both in big and small instances. Lower values resulted

in the EA being stuck in local minima at small instances. Higher populations took too long to compute

without achieving significantly better results. It was observed that the crossover operator struggled to

bring out the good individuals, and the reliance was too much on mutation.

The probability of mutation is set at 30% and has been corrected afterwards to 60%. Such high

probabilities of mutation are not very common at all in the EA research, but because of the unique

choice of the selection operator, the proposed EA has an order of magnitude higher mutation. The

reason is because the selection protects the mutation, discarding the mutated individual if its fitness is

not appropriate. In this way, it behaves like a maturation or local search. The amount of mutation, upon

which the amount of genes to mutate is chosen, is set at 1.

The minimum Hamming distance between two individuals is 3, so individuals with distance 3 or

lower to their respective parent α substitute the parent and not the one with the worst fitness.

The first computational study used the EA with only random initialization of the population. This

means that the whole 100 individuals initialized were random both in the amount of opened facilities

and which ones were chosen.

Two sets of experiments were carried out. On both, the 195 chosen instances are solved 5 times each

with set seeds for the random variables. The termination criteria are different depending on the size of

the instances. For the smallest instances (|T |= 4, |I| ≤ 20 and |J| ≤ 150), the algorithm is stopped after

3∗103 iterations without a new individual with best fitness. For instances such that |T | ≤ 7, |I| ≤ 12 and

|J| ≤ 150 , the algorithm is stopped after 104 iterations without a new individual with best fitness. On

the remaining instances, the algorithm is allowed to run for 10 minutes.

The ordering by size of the instances first considers the periods, then the facilities available and then

the customers. So an instance with |T | = 5, |I| = 10 and |J| = 150 is considered bigger than one with

|T |= 4, |I|= 30 and |J|= 500.

These criteria were set after comparing the obtained solutions with the optimal solution in pilot

studies. However, it is not necessary to solve the optimisation problem, and similar results can be

obtained by studying the evolution graphs of instances, such as the ones in Figures 4.1 and 4.2.
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Figure 4.1: Evolution graphs of the fitness function in small, medium and big instances, respectively
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Figure 4.2: Evolution graphs with respect to running time of the fitness function in small, medium and
big instances, respectively

4.3. Improving the Decoupled Model

The computational study in [2] includes the solution of the instances with CPLEX in a decoupled

manner, i.e. period by period. The optimal location of facilities considering the information from just

the first period is found. Then, given these facilities, the optimal location for the following period is

obtained. Proceeding in this manner until all periods are considered results in a solution of the MISFLP

that is not optimal. However, this decoupled problem is much faster to solve than the original MISFLP,

a speed increase of the order of 102. For instances of average size, it is likely faster to solve than with the

proposed EA as well. The shortfall of the method is that the non-optimal solution cannot be improved

further and its structure is usually not desirable. In fact, this procedure yields better optima in the initial

periods but worsens as unforeseen costs crop up. The final cost obtained with this artificial decoupling

is higher than the actual minimum cost. For the studied instances in [2], the average percent deviation

is 2.6%. It is important, then, to set proper termination criteria for the EA such that the GAP reached

is lower than the artificially decoupled optimum. Otherwise, the decoupled problem is much faster than

the EA and the benefits of using the heuristic decrease.



26 Chapter 4. Computational Study

4.4. First Experiment

The first experiment has a randomly initialized population of size 100, 30% probability of mutation,

1 as the amount of mutation and minimum Hamming distance 3.

The quality of the results from the first experiment is shown in Table 4.1. Specifically, the average

percent GAP and the maximum GAP of the 5 iterations is shown. The GAP is a measure of the quality

of the achieved solution, calculated as follows:

bestEA−opt
opt

∗100

The percentage GAP is where opt is the optimum value of the objective function, as calculated by

CPLEX and bestEA the best individual in the population at the termination of the evolutionary algorithm.

Lower GAPs are better, and GAPs equal to 0 mean that the optimum is reached. These cases are marked

with an asterisk.

Since heuristic methods should produce quick solutions, the computational times between the EA

and the CPLEX optimisation are compared. Specifically, tEA, the time in seconds that it takes the EA to

obtain the individual with the best fitness before termination of the EA is compared to timeopt , the time

to reach the optimum by CPLEX.

The ratio fast shown in Table 4.2 is calculated as follows:

topt

tEA

Values of fast close to 1 mean that no discernible speed difference exists between the EA and CPLEX

for solving a given instance. Values higher than 1 correspond to instances where the EA is faster than

CPLEX. These cases have been prepended with a dot to help distinguish them. In Table 4.2, the average

tEA are also shown.

A quick summary of the results obtained from the first experiment is the following. In 88% of the

cases, the optimal solution is reached. Overall, the solution quality is quite good, with an average GAP

of 1.03 ∗ 10−4. The worst instance has GAP 3.60 ∗ 10−3, which is more than an order of magnitude

lower than the expected GAP from a decoupled model. This validates the used termination criteria.

In terms of speed, on average the EA is half the speed of CPLEX. However, this is due to the

instances not being big enough. Large instances cannot be easily optimised and thus are the goal of

heuristic methods. If we only consider the instances where the EA is faster, we find that for 29 of the

bigger instances, the EA is 7.9 times faster on average. As for the biggest instance available (|T |= 12,

|I|= 30 and |J|= 500), the EA is up to 39 times faster.

Out of the 195 attempted instances, only in 8 of them none of the 5 attempts reach the optimum.

For these instances, the average GAP is 10−3 and the average minimum GAP, 5 ∗ 10−4. They are also

solved efficiently, with the EA being 5.3 times faster on average.
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|I|
8 10 12 15 20 30

|T | |J| av. max av. max av. max av. max av. max av. max
4 50 * * * * * * * * 0.1 0.4 0.12 0.34

100 * * * * * * * * * * 0.02 0.04
150 * * * * * * * * * * 0.04 0.12
200 * * * * * * * * * * 0.01 0.02
500 * * * * * * * * * * * *

5 50 * * * * * * * * * * 0.13 0.36
100 * * * * * * * * * * * *
150 * * * * * * * * 0.9 0.15 0.01 0.03
200 * * * * * * * * * * 0.02 0.07
500 * * * * * * * * * * 0.05 0.22

6 50 * * * * * * * * * * 0.10 0.17
100 * * * * * * * * * * 0.03 0.17
150 * * * * * * * * * * 0.12 0.23
200 * * * * * * * * * * 0.01 0.05
500 * * * * * * * * * * 0.05 0.13

7 50 * * * * * * * * * * * *
100 * * * * * * * * * * 0.01 0.01
150 * * * * * * * * 0.01 0.02 * *
200 * * * * * * * * * 0.02 0.02 0.07
500 * * * * * * * * * * * *

8 50 * * * * * * * * * * 0.05 0.06
100 * * * * * * * * * * * *
150 * * * * * * * * * * 0.06 0.16
200 * * * * * * * * * * 0.02 0.05
500 * * * * * * * * * * 0.01 0.02

10 50 * * * * * * 0.01 0.07 0.09 0.19
100 * * * * * * * * 0.02 0.02
150 * * * * * * * * 0.01 0.06
200 * * * * * * * * 0.03 0.13
500 * * * * * * 0.14 0.21 0.21 0.28

12 50 * * 0.02 0.05 * * * 0.01
100 * * * * * * 0.04 0.05
150 * * * * 0.04 0.10 0.02 0.07
200 * * 0.01 0.04 * * 0.02 0.04
500 0.01 0.07 0.06 0.17 0.07 0.18 0.20 0.32

Table 4.1: Average and maximum GAP
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|I|
8 10 12 15 20 30

|T | |J| tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast
4 50 1.28 0.18 7.69 0.03 2.62 0.07 8.52 0.03 15.66 0.01 51.23 0.01

100 1.12 •1.03 3.84 0.26 6.33 0.08 9.25 0.04 19.55 0.02 55.77 0.01
150 2.74 0.13 17.00 0.11 6.80 0.11 10.50 0.10 14.21 0.15 40.96 0.04
200 4.82 0.15 7.03 0.13 16.90 0.10 12.78 0.23 52.56 0.14 27.56 0.11
500 17.36 0.26 28.37 •1.07 13.39 0.17 57.73 0.29 70.66 0.09 90.48 0.33

5 50 4.06 0.05 2.07 0.12 7.46 0.04 15.27 0.01 19.81 0.01 50.36 0.01
100 4.89 0.33 8.60 0.14 12.21 0.05 8.39 0.08 37.47 0.03 34.09 0.11
150 17.29 0.05 33.45 0.09 35.75 0.04 31.17 0.10 63.72 0.04 52.63 0.03
200 9.19 0.09 32.57 0.05 54.57 0.03 44.74 0.33 27.21 •1.01 88.86 0.05
500 97.86 0.15 70.75 0.24 84.49 0.09 151.99 0.21 141.58 0.76 242.42 0.05

6 50 3.43 0.20 5.23 0.11 15.41 0.06 12.27 0.10 41.46 0.05 59.90 0.01
100 10.07 0.12 10.37 0.13 10.70 0.06 25.13 0.29 39.02 0.02 50.40 0.43
150 10.88 0.43 38.62 0.04 24.80 0.26 13.35 0.10 36.86 0.67 106.83 0.02
200 32.90 0.13 26.55 0.24 46.99 0.06 21.33 0.11 69.37 0.17 74.43 0.87
500 27.68 0.35 57.60 0.10 65.74 0.12 124.43 0.17 261.79 0.07 333.93 0.07

7 50 5.28 0.12 8.47 0.17 12.86 0.04 191.58 0.01 38.56 0.02 75.26 0.03
100 16.77 0.09 23.68 0.35 21.11 0.46 45.80 0.49 146.78 0.15 253.10 0.02
150 15.20 0.15 47.18 0.36 15.17 0.06 196.22 0.56 55.04 0.06 104.88 0.84
200 38.07 0.26 52.37 0.10 90.54 0.16 100.45 0.50 102.04 0.07 142.47 0.05
500 53.20 •1.48 97.12 0.46 68.04 0.34 107.40 0.43 275.63 0.41 281.56 •6.28

8 50 12.61 0.04 51.50 0.02 20.34 0.04 28.62 0.02 76.28 0.02 256.10 0.01
100 15.77 0.14 65.29 0.12 152.78 0.12 50.33 0.09 241.05 0.01 149.30 0.60
150 116.14 0.04 94.34 0.09 71.43 0.72 234.35 0.15 213.84 0.78 306.26 0.06
200 242.97 0.02 278.68 0.02 165.77 0.13 303.25 0.18 203.47 0.19 371.19 0.64
500 34.64 •1.69 90.08 •1.45 274.49 0.65 280.44 0.72 367.50 0.07 529.49 0.29

10 50 24.14 0.09 42.24 0.15 97.70 0.10 251.48 0.02 332.29 0.01
100 120.29 0.02 29.60 0.53 193.74 0.27 283.23 0.48 227.68 0.02
150 123.75 0.23 322.71 0.18 73.44 0.60 343.99 0.49 304.13 0.38
200 80.26 0.22 54.92 0.37 145.60 0.78 105.95 0.12 261.61 0.39
500 141.68 •1.02 191.44 •1.65 402.21 0.33 533.68 •3.07 550.80 0.65

12 50 50.23 0.21 155.95 0.14 219.74 0.20 327.33 0.05
100 147.34 0.06 69.52 0.29 234.09 0.45 289.90 0.16
150 92.27 0.26 245.08 0.83 189.86 0.25 308.20 0.53
200 165.79 0.50 115.42 •2.26 295.07 0.96 318.30 0.25
500 316.58 •1.66 448.89 •1.29 564.10 •2.16 491.38 •34.84

Table 4.2: Average times of EA and comparison with CPLEX optimum
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4.5. Second Experiment

An additional experiment has been carried out with mixed population initialization and higher muta-

tion probability at 60%. The mixed strategy for initializing the population consists of a random initiali-

zation of half of the population and a skewed initialization of the other half. With the chosen parameters,

50 individuals are random and the next 50 are skewed towards opening less facilities. As noted in Sec-

tion 3.2, the skewed distribution used is a left-skewed Beta(1,5) scaled so that the bounds for minimum

and maximum possible facilities match those of the instance. The probability of mutation was also

adjusted, since pilot studies showed good results with this mutation rate.

As before, the quality of the solutions achieved is shown in Table 4.3 and the time performance in

Table 4.4. This experiment shows lower GAP with more optima being reached and at slightly faster

speed.

A more in-depth summary is the following. More optima are reached, with 90% of the cases achiev-

ing the optimum. The solution quality is better, with an average GAP of 8.86∗10−5. The worst instance

also has lower GAP, at 3.44∗10−3.

In terms of speed, the EA is again half the speed of CPLEX on average. The restriction to the 27

instances where the EA is faster results in improvements of speeds as well, with the EA being 8.5 times

faster on average. For the biggest instance available, the EA is up to 44 times faster.

Only 6 instances are not solved optimally in any of the 5 attempts, for which the average GAP is

1.3 ∗ 10−3 and the average minimum GAP, 6.3 ∗ 10−4. Since there are 2 fewer instances not solved

optimally, now the EA is 6.7 times faster on average.
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|I|
8 10 12 15 20 30

|T | |J| av. max av. max av. max av. max av. max av. max
4 50 * * * * * * * * * * 0.14 0.21

100 * * * * * * * * * * 0.01 0.04
150 * * * * * * * * * * 0.02 0.04
200 * * * * * * * * * * 0.01 0.03
500 * * * * * * * * * * * *

5 50 * * * * * * * * * * 0.05 0.1
100 * * * * * * * * * * * *
150 * * * * * * * * * * * *
200 * * * * * * * * * * 0.02 0.07
500 * * * * * * * * * * 0.01 0.02

6 50 * * * * * * * * * * 0.13 0.33
100 * * * * * * * * * * 0.01 0.04
150 * * * * * * * * * * 0.03 0.17
200 * * * * * * * * * * 0.03 0.15
500 * * * * * * * * 0.03 0.16 * *

7 50 * * * * * * * * * * * *
100 * * * * * * * * * * 0.01 0.01
150 * * * * * * * * * 0.02 * *
200 * * * * * * * * * * 0.01 0.03
500 * * * * * * * * * * * *

8 50 * * * * * * * * 0.04 0.18 0.01 0.05
100 * * * * * * * * * * * *
150 * * * * * * * * * * 0.07 0.21
200 * * * * * * * * * * 0.03 0.05
500 * * * * * * * * * * * 0.01

10 50 * * * * * * 0.01 0.07 0.13 0.19
100 * * * * * * * * 0.02 0.05
150 * * * * * * 0.01 0.04 * *
200 * * * * * * * * 0.02 0.12
500 * * * * * * 0.22 0.28 0.1 0.2

12 50 * 0.01 0.01 0.05 * * 0.01 0.03
100 * * * * * * 0.02 0.05
150 * * * 0.02 0.05 0.09 0.02 0.07
200 * * 0.01 0.04 * * 0.03 0.07
500 0.03 0.05 * * 0.12 0.28 0.25 0.34

Table 4.3: Average and maximum GAP



A Multi-Period Facility Location Problem - Carlos Sández García 31

|I|
8 10 12 15 20 30

|T | |J| tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast tEA (s) fast
4 50 1.79 0.26 7.53 0.07 2.11 0.17 9.23 0.05 16.75 0.02 55.09 0.01

100 1.28 0.22 3.38 0.36 9.12 0.07 8.64 0.06 21.45 0.04 39.33 0.02
150 2.78 0.16 13.16 0.51 7.13 0.16 16.43 0.12 13.65 0.18 42.92 0.04
200 6.13 0.09 8.22 0.15 16.74 0.22 16.05 0.25 35.93 0.21 56.36 0.10
500 22.48 0.44 23.98 •1.72 13.36 0.21 35.98 0.91 65.89 0.10 54.09 0.79

5 50 5.04 0.03 3.22 0.07 6.43 0.06 19.08 0.02 20.13 0.02 55.31 0.01
100 5.84 0.67 12.45 0.16 25.91 0.06 13.2 0.07 48.4 0.04 26.53 0.26
150 21.15 0.05 16.19 0.16 43.96 0.04 28.84 0.16 49.52 0.11 77.68 0.03
200 13.27 0.11 38.17 0.06 58.75 0.04 29.97 0.48 24.82 •1.25 112.58 0.07
500 132.18 0.31 108.01 0.26 87.68 0.09 173.88 0.46 149.5 0.89 259.39 0.07

6 50 4.35 0.21 4.61 0.14 11.31 0.12 11.1 0.14 31.34 0.09 71.56 0.01
100 15.07 0.21 10.12 0.17 13.09 0.06 25.17 0.43 27.02 0.05 61.64 0.62
150 14.74 0.37 44.59 0.08 51.94 0.54 16.87 0.10 41.54 0.64 122.56 0.02
200 28.84 0.21 35.88 0.28 38.57 0.12 22.41 0.15 110.81 0.25 102.22 0.88
500 16.41 0.75 44.46 0.19 74.31 0.15 75.53 0.95 213.78 0.11 297.41 0.09

7 50 4.17 0.21 7.17 0.37 15.36 0.06 10.8 0.05 33.1 0.03 85.83 0.04
100 59.19 0.02 14.3 0.85 22.77 0.50 24.75 •1.21 99.17 0.29 176.11 0.04
150 25.96 0.19 53.38 0.39 14.77 0.09 269.44 0.65 51.95 0.08 79.55 •1.71
200 69.44 0.27 78.34 0.10 166.85 0.16 249.16 0.65 91.58 0.08 129.89 0.08
500 46.49 •2.36 96.44 0.79 72.65 0.57 98.97 0.50 333.44 0.51 197.15 •12.64

8 50 9.78 0.13 68.26 0.02 18.79 0.06 31.54 0.02 136.27 0.02 280.74 0.01
100 19.35 0.18 237.4 0.19 191.6 0.20 27.56 0.11 100.54 0.04 82.17 •1.59
150 77.07 0.09 144.51 0.17 72.47 0.80 99.85 0.68 171.55 0.81 245.79 0.19
200 264.85 0.04 268.56 0.13 336.02 0.52 230.44 0.62 239.32 0.29 333.32 0.82
500 51.43 •1.28 64.26 •2.41 228.65 0.93 199.04 •1.66 349.66 0.09 494.19 0.39

10 50 26.17 0.12 47.24 0.18 49.33 0.14 175.17 0.03 216.13 0.02
100 196.71 0.02 38.59 0.49 102.88 0.69 284.2 0.73 250.9 0.04
150 97.12 0.36 223.27 0.27 91.04 •1.20 222.49 0.75 296.85 0.62
200 100.26 0.23 63.52 0.38 130.67 •1.01 105.34 0.13 348.25 0.38
500 124.64 •1.41 246.87 •1.48 333.17 0.43 561.1 •3.40 537.98 0.92

12 50 43.69 0.24 87.8 0.34 139.42 0.23 267.39 0.08
100 116.8 0.12 97.07 0.25 244.42 0.52 391.5 0.16
150 128.59 0.40 192.57 •1.09 241.66 0.45 342.36 0.61
200 331.34 0.67 183.25 •2.46 270.61 •1.47 427.5 0.31
500 315.78 •2.80 473.88 •1.75 512.07 •2.90 512.66 •45.25

Table 4.4: Average times of EA and comparison with CPLEX optimum
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Conclusions

In this work, an evolutionary algorithm for the Multi-Period Facility Location Problem is proposed.

The objective is to achieve good results quickly for instances where the linear solver fails to achieve

optimality in a reasonable time. The initial part of this work focuses on introducing the MISFLP and

the existing available research on evolutionary algorithms applied to the p-median problem. We develop

an evolutionary algorithm that is able to solve a multi-period problem. The computational study shows

enticing results that validate the proof-of-concept implementation in R. Both the quality and the speed

of the algorithm are satisfactory and justify the use of this heuristic over the decoupled model or the

MISFLP model stated in Section 1.5 for bigger instances.

To the authors’ knowledge, this is the first case of an evolutionary algorithm applied to a Multi-

Period FLP. The developed operators and successful results encourage further research into these kinds

of problems by means of evolutionary-based heuristics.

Many extensions of the base algorithm were considered, but they exceeded the scope of the project.

The running time termination criteria could be modeled so as to be dynamic and depend on the size of

the studied problem. A more detailed computational study focusing on the benefits of different popula-

tion sizes and strategies for choosing the proper amount is also warranted. As for the specific algorithm,

several extensions that show promise and may be considered in the future are the following: adding a

proper maturation stage with a Local Interchange heuristic, dynamically adjusting the algorithm para-

meters based on the diversity of the population and finding a faster fitness, since it takes up most of

the computation time. Similarly, a refactoring of the code or a translation to C would likely improve

the efficiency. The MISFLP decoupled model could also be programmed and solved for the analysed

instances, in order to compare the GAP instance by instance.
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Appendix A

Code of the Evolutionary Algorithm

Code/main.R

1 #Main f i l e
2

3 l i b r a r y ( ’ cp lexAPI ’ ) #Used f o r s o l v i n g t h e a l l o c a t i o n
subp rob l ems

4 l i b r a r y ( ’ g t o o l s ’ ) #Used f o r t h e n a t u r a l s o r t i n g o f
f i l e n a m e s

5

6 source ( ’ p a r s e . R ’ )
7 source ( ’ g e n e t i c . R ’ )
8 source ( ’ i n i t . R ’ )
9 source ( ’ a l l o c a t e . R ’ )

10 source ( ’ c r o s s o v e r . R ’ )
11 source ( ’ m u t a t i o n . R ’ )
12 source ( ’ s e l e c t i o n . R ’ )
13

14

15 # P a r a m e t e r s :
16

17 d a t a S e e d <− 45004
18 s o l v e S e e d s <− c (61420 , 45498 , 47284 , 86094 , 44162 , 11854 ,

82696 , 78401 , 74861 , 82818 , 42284 , 44249 , 94029 , 22427 ,
19 57635 , 57043 , 69665 , 58334 , 11994 , 36237 ,

27954 , 96102 , 22073 , 13746 , 27740 , 83262 ,
31764 , 50826 ,

20 79943 , 76675)
21 f i l e p a t h s <− l i s t . f i l e s ( path = ’ . . / datosMISFLP / ’ ) [−1]
22 f i l e p a t h s <− p a s t e ( ’ . . / datosMISFLP / ’ , f i l e p a t h s , sep = ’ ’ )
23 f i l e p a t h s <− m i x e d s o r t ( f i l e p a t h s )
24 n u m I t e r <− 5 # Less t h a n 30
25 chosenProb lems <− f i l e p a t h s [ c ( 1 : 1 9 5 ) *10−9] # Only s o l v i n g t h e

f i r s t i n s t a n c e o f each problem
26 bigWithGap <− chosenProb lems [ c

( 1 1 3 , 1 1 7 , 1 1 9 , 1 4 1 , 1 4 6 , 1 4 8 , 1 4 9 , 1 5 0 , 1 6 6 , 1 6 7 , 1 6 8 , 1 7 1 , 1 7 2 , 1 7 4 , 1 7 5 ,

35
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27 1 8 0 , 1 8 1 , 1 8 4 , 1 8 8 , 1 9 0 , 1 9 1 , 1 9 2 , 1 9 3 , 1 9 4 , 1 9 5 )
]

28

29 s i z e P o p u l a t i o n <− 100 #Number o f i n d i v i d u a l s
30 p r M u t a t e <− 0 . 6 # P r o b a b i l i t y t o e n t e r t h e m u t a t i o n

s t a g e each i t e r a t i o n
31 mutRate <− 1 #Amount o f genes t o mu t a t e
32 maxNoBes t I t e r <− 3000 #Maximum i t e r a t i o n s a l l o w e d

w i t h o u t a new b e s t f i t n e s s
33 maxTime <− 600 #Maximum t ime a l l o w e d
34 minDi f f <− 3 #Minimum d i f f e r e n c e between k e p t

f a t h e r and c h i l d
35 au to Max No Bes t I t e r<− TRUE # A u t o m a t i c a l l y s e l e c t

maxNoBes t I t e r based on p r e s e t
36

37 r e s u l t s <− ’ r e s u l t s . t x t ’
38

39 f o r ( problem i n chosenProb lems ) {
40 c a t ( s p r i n t f ( ’ C r e a t i n g problem from f i l e . . . \ n ’ ) )
41

42 data <− parse ( problem )
43

44 s i z e P e r i o d s <− data $ s i z e P e r i o d s [ 1 ]
45 s i z e F a c A v a i l a b l e <− data $ s i z e F a c A v a i l a b l e [ 1 ]
46 s i z e C u s t o m e r s <− data $ s i z e C u s t o m e r s [ 1 ]
47 n <− data $n # D i f f e r e n c e i n minimum number o f

c u s t o m e r s t o s t a r t r e c e i v i n g p r o d u c t from p e r i o d t o p e r i o d
48 p <− data $p # Ve c t o r wi th minimum of f a c i l i t i e s

t o open p e r p e r i o d
49 c <− data $ c # Ass ignment c o s t o f c u s t o m e r s t o

f a c i l i t i e s by p e r i o d [ [ t ] ] [ [ j ] ] [ [ i ] ]
50 f <− data $ f # Cos t o f r u n n i n g f a c i l i t y from

p e r i o d [ [ t ] ] [ [ i ] ]
51

52 i f ( sum ( p ) > s i z e F a c A v a i l a b l e ) {
53 p r i n t ( ’ I n s u f f i c i e n t F a c i l i t i e s ’ )
54 next ( )
55 }
56

57 i f ( sum ( p ) < mutRate ) {
58 p r i n t ( ’ A t t e m p t i n g t o mu ta t e more f a c i l i t i e s t h a n p o s s i b l e ’ )
59 next ( )
60 }
61

62 i f ( l e n g t h ( p [ p ! = 0 ] ) < 2) {
63 p r i n t ( ’ Near−empty i n d i v i d u a l s c a u s e prob lems wi th m u t a t i o n ’ )
64 next ( )
65 }
66

67 i f ( s i z e P e r i o d s < 3) {
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68 p r i n t ( ’ P e r i o d s t o o smal l , can c a u s e prob lems wi th sample
g e n e r a t i o n ’ )

69 next ( )
70 }
71

72 i f ( au toM ax NoB es t I t e r ) {
73 i f ( problem %i n% chosenProb lems [ 1 : 2 3 ] ) { maxNoBes t I t e r <− 3000}
74 i f ( problem %i n% chosenProb lems [ 2 4 : 1 0 3 ] ) { maxNoBes t I t e r <− 10000}
75 i f ( problem %i n% chosenProb lems [ 1 0 4 : 1 9 5 ] ) { maxNoBes t I t e r <−

10000000}
76 }
77

78 c a t ( s p r i n t f ( ’ Problem c o n s t r u c t i o n f i n i s h e d \ n ’ ) )
79

80 f o r ( i i n 1 : n u m I t e r ) {
81 c a t ( s p r i n t f ( ’ E v o l v i n g new p o p u l a t i o n . . . \ n \ n ’ ) )
82 t ime <− system . t ime ( l s t <− g e n e t i c ( s o l v e S e e d s [ i ] ,

s i z e P o p u l a t i o n , p , n , s i z e F a c A v a i l a b l e ,
83 c , f , p rMuta te , mutRate ,

maxNoBes t I te r , minDif f ,
maxTime ) )

84 e l a p s e d <− unname ( t ime [ 3 ] )
85

86 df <− l s t [ [ 1 ] ]
87 bes tT ime <− l s t [ [ 2 ] ]
88

89 f i l e C o n n <− f i l e ( r e s u l t s , open=" a t " )
90 w r i t e L i n e s ( s p r i n t f ( ’%s \ t%s \ t%s \ t%s \ t%s \ t%6f \ t%2f \ t%2f ’ , da taSeed ,

s o l v e S e e d s [ i ] , maxNoBes t I te r , s i z e P o p u l a t i o n ,
91 problem , df $ f i t [ [ 1 ] ] , bes tT ime [ [ 1 ] ] , e l a p s e d ) ,

f i l e C o n n )
92 c l o s e ( f i l e C o n n )
93 rm ( df )
94 }
95 }

Code/genetic.R

1 # Th i s i s t h e main g e n e t i c f u n c t i o n , wh i th c a l l s t o t h e d i f f e r e n t
f u n c t i o n s .

2 #The a l g o r i t h m i n i t i a l i z e s t h e p o p u l a t i o n and does c r o s s o v e r and
m u t a t i o n i n each i t e r a t i o n .

3 # I t s t o p s a f t e r t h e r e q u i r e d s t o p c r i t e r i a a r e met .
4

5 #The p a r a m e t e r s a r e :
6 # chosenSeed : Seed f o r t h e random c a l l s i n t h i s

problem
7 # s i z e P o p u l a t i o n : S i z e o f t h e p o p u l a t i o n t o i n i t i a l i z e
8 # p : Ve c t o r wi th minimum of f a c i l i t i e s t o

open p e r p e r i o d
9 # n : D i f f e r e n c e i n minimum number o f

c u s t o m e r s t o s t a r t r e c e i v i n g p r o d u c t from p e r i o d t o p e r i o d
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10 # s i z e F a c A v a i l a b l e : Number o f a v a i l a b l e f a c i l i t i e s by i n d e x
11 # c : Ass ignment c o s t o f c u s t o m e r s t o

f a c i l i t i e s by p e r i o d [ [ t ] ] [ [ j ] ] [ [ i ] ]
12 # f : Cos t o f r u n n i n g f a c i l i t y from p e r i o d [ [ t

] ] [ [ i ] ]
13 # p r M u t a t e : P r o b a b i l i t y o f m u t a t i o n
14 # mutRate : Amount o f genes t o mu ta t e
15 # maxNoBes t I t e r : Maximum i t e r a t i o n s a l l o w e d w i t h o u t a new

b e s t f i t n e s s
16 # minDi f f : Minimum d i f f e r e n c e between k e p t f a t h e r

and c h i l d
17

18 g e n e t i c <− f u n c t i o n ( chosenSeed , s i z e P o p u l a t i o n , p , n ,
s i z e F a c A v a i l a b l e , c , f , p r M u t a t e = 0 . 1 , mutRate = 1 ,

19 maxNoBes t I t e r = 10000 , minDi f f = 3 , maxTime =
120)

20 {
21 s e t . s e ed ( chosenSeed )
22

23 s i z e P e r i o d s <− l e n g t h ( p )
24 s i z e C u s t o m e r s <− sum ( n )
25

26 c a t ( s p r i n t f ( ’ The chosen seed i s %5d \ n ’ , chosenSeed ) )
27 c a t ( s p r i n t f ( ’ The p o p u l a t i o n s i z e i s %s \ n ’ , s i z e P o p u l a t i o n ) )
28 c a t ( s p r i n t f ( ’ The number o f p e r i o d s i s %s \ n ’ , s i z e P e r i o d s ) )
29 c a t ( s p r i n t f ( ’ The number o f f a c i l i t i e s i s %s \ n ’ , s i z e F a c A v a i l a b l e ) )
30 c a t ( s p r i n t f ( ’ The number o f c u s t o m e r s i s %s \ n ’ , s i z e C u s t o m e r s ) )
31

32 # S e t up a l l o c a t i o n subprob lem wi th CPLEX
33

34 env <− openEnvCPLEX ( ) #Open CPLEX
e n v i r o n m e n t

35 prob <− ini tProbCPLEX ( env ) # Ass ign problem
36 nc <− s i z e P e r i o d s * s i z e C u s t o m e r s #Number o f

v a r i a b l e s
37 nr <− s i z e P e r i o d s + s i z e C u s t o m e r s #Number o f

c o n s t r a i n t s
38 r h s <− c ( rep ( 1 , s i z e C u s t o m e r s ) , n ) # A l l o c a t i o n

subprob lem r e s t r i c t i o n r h s
39 s e n s e <− rep ( ’E ’ , n r ) # A l l r e s t r i c t i o n s

a r e e q u a l i t i e s
40 l b <− rep ( 0 , nc ) # Nonnega t i ve

v a r i a b l e s
41 ub <− rep (CPX_INFBOUND, nc ) # V a r i a b l e s a r e n o t

bounded on t h e upper s i d e
42 beg <− 2* c ( 0 : ( nc−1) ) # Begin i n d i c e s o f

rows
43 c n t <− rep ( 2 , nc ) #Number o f non−

z e r o e l e m e n t s p e r row
44 v a l <− rep ( 1 , 2* nc ) #Non−z e r o e l e m e n t s
45 i n d <− c ( ) # I n i t i a l i z e column
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i n d i c e s
46 f o r ( i i n c ( 0 : ( nc−1) ) ) {
47 i n d <− append ( ind , i%%s i z e C u s t o m e r s )
48 i n d <− append ( ind , s i z e C u s t o m e r s + f l o o r ( i / s i z e C u s t o m e r s ) )
49 }
50 o b j <− rep ( 0 , nc ) # I n i t i a l i z e empty

o b j e c t i v e f u n c t i o n
51

52 copyLpCPLEX ( env , prob , nc , nr , CPX_MIN, obj , rhs , sense , beg , cn t ,
ind , va l , lb , ub , NULL)

53 presolveCPLEX ( env , prob , CPX_ALG_AUTOMATIC) # P r e s o l v e
o b j e c t i v e− l e s s problem

54

55 # S t a r t problem
56

57 p o p u l a t i o n <− i n i t ( s i z e P o p u l a t i o n , p , f , s i z e F a c A v a i l a b l e ,
s i z e P e r i o d s )

58 a l l o 1 <− a l l o c a t e ( env , prob , p o p u l a t i o n , c , f , s i z e C u s t o m e r s ,
s i z e P e r i o d s )

59 f i t n e s s <− a l l o 1 [ [ 1 ] ]
60 # a l l o c a t e E l a p s e d <− a l l o 1 [ [ 2 ] ]
61

62 df <− data . frame ( popu= p o p u l a t i o n , f i t = f i t n e s s ) #Load i n i t i a l i z e d
and e v a l u a t e d p o p u l a t i o n

63 df <− df [ order ( u n l i s t ( df $ f i t ) ) , ] # Order p o p u l a t i o n
i n a s c e n d i n g f i t n e s s

64 d f c h i l d <− d f m u t a t e d <− df [ 1 , ] #Load dummy
i n d i v i d u a l s f o r c h i l d r e n and m u t a t i o n s

65

66 i t e r <− 0
67 n o B e s t I t e r <− 0
68 b e s t F i t <− df $ f i t [ 1 ] [ [ 1 ] ]
69 s t a r t <− Sys . t ime ( )
70

71 whi le ( ( d i f f t i m e ( Sys . t ime ( ) , s t a r t , u n i t s = " s e c s " ) < maxTime ) && (
n o B e s t I t e r < maxNoBes t I t e r ) ) {

72

73 # C r o s s o v e r s e c t i o n
74

75 p a r e n t s I n d e x <− sample ( 1 : s i z e P o p u l a t i o n , 2 ) #
Randomly s e l e c t p a r e n t s

76 c h i l d <− c r o s s o v e r ( df , p a r e n t s I n d e x , s i z e P e r i o d s ) #
C r e a t e c h i l d by c r o s s o v e r o f t h e p a r e n t s

77 a l l o 2 <− a l l o c a t e ( env , prob , c h i l d , c , f , s i z e C u s t o m e r s ,
78 s i z e P e r i o d s , a l l o c a t e E l a p s e d ) #

E v a l u a t e c h i l d r e n f i t n e s s
79 c h i l d F i t <− a l l o 2 [ [ 1 ] ]
80 # a l l o c a t e E l a p s e d <− a l l o 2 [ [ 2 ] ]
81 d f c h i l d <− data . frame ( popu= c h i l d , f i t = c h i l d F i t )
82 df <− s e l e c t i o n ( df , d f c h i l d , p a r e n t I n d e x = p a r e n t s I n d e x [ order (

u n l i s t ( df $ f i t [ p a r e n t s I n d e x ] ) ) [ 1 ] ] ,
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83 minDif f , s i z e P e r i o d s , s i z e P o p u l a t i o n ) #
Proceed wi th s e l e c t i o n o f c h i l d

84

85 # M u t a t i o n s e c t i o n
86

87 i f ( r u n i f ( 1 ) < p r M u t a t e ) {
88 p a r e n t I n d e x <− sample ( 1 : s i z e P o p u l a t i o n , 1 ) #

Randomly s e l e c t i n d i v i d u a l t o m u t a t e
89 muta t ed <− m u t a t i o n ( df [ p a r e n t I n d e x , 1 ] [ [ 1 ] ] , mutRate , p ,
90 c ( 1 : s i z e F a c A v a i l a b l e ) , s i z e P e r i o d s ) #

C r e a t e c h i l d by m u t a t i o n o f s e l e c t e d
i n d i v i d u a l

91 a l l o 3 <− a l l o c a t e ( env , prob , muta ted , c , f , s i z e C u s t o m e r s ,
92 s i z e P e r i o d s , a l l o c a t e E l a p s e d ) #

E v a l u a t e f i t n e s s o f muta t ed c h i l d
93 m u t a t e d F i t <− a l l o 3 [ [ 1 ] ]
94 # a l l o c a t e E l a p s e d <− a l l o 3 [ [ 2 ] ]
95 d f m u t a t e d <− data . frame ( popu= muta ted , f i t = m u t a t e d F i t )
96 df <− s e l e c t i o n ( df , d fmu ta t ed , p a r e n t I n d e x , minDif f ,
97 s i z e P e r i o d s , s i z e P o p u l a t i o n ) #

Proceed wi th s e l e c t i o n o f muta t ed c h i l d
98 }
99

100 #Check i f new b e s t f i t n e s s a c h i e v e d
101

102 i f ( b e s t F i t > df $ f i t [ [ 1 ] ] ) {
103 b e s t F i t <− df $ f i t [ [ 1 ] ]
104 n o B e s t I t e r <− 0
105 bes tT ime <− d i f f t i m e ( Sys . t ime ( ) , s t a r t , u n i t s = " s e c s " )
106 c a t ( s p r i n t f ( ’ In i t e r a t i o n %5d a new o p t i m a l minimum of %2f was

a c h i e v e d i n %2f s e c o n d s \ n ’ ,
107 i t e r , b e s t F i t , bes tT ime [ [ 1 ] ] ) )
108 # p r i n t ( ’ a l l o c a t e ’ )
109 # p r i n t ( a l l o c a t e E l a p s e d )
110 # p r i n t ( ’ c r o s s o v e r ’ )
111 # p r i n t ( c r o s s o v e r E l a p s e d )
112 # p r i n t ( ’ muta te ’ )
113 # p r i n t ( m u t a t e E l a p s e d )
114 # p r i n t ( ’ s e l e c t ’ )
115 # p r i n t ( s e l e c t E l a p s e d )
116 # a l l o c a t e E l a p s e d <− 0
117 # s t a r t <− Sys . t ime ( )
118 }
119 e l s e {
120 n o B e s t I t e r <− n o B e s t I t e r + 1
121 }
122 i t e r <− i t e r + 1
123 }
124 c a t ( s p r i n t f ( ’ S top c i t e r i a r e a c h e d i n %s i t e r a t i o n s \ n \ n ’ , i t e r ) )
125 re turn ( l i s t ( df , bes tT ime ) )
126 }
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Code/init.R

1 # Th i s f u n c t i o n i n i t i a l i z e s t h e p o p u l a t i o n .
2 #The t o t a l number o f f a c i l i t i e s t o open i s randomly chosen between

t h e min and max p o s s i b l e .
3

4 #The p a r a m e t e r s a r e :
5 # s i z e P o p u l a t i o n : S i z e o f t h e p o p u l a t i o n t o i n i t i a l i z e
6 # p : Ve c t o r wi th minimum of f a c i l i t i e s t o

open p e r p e r i o d
7 # f : Cos t o f r u n n i n g f a c i l i t y from p e r i o d [ [ t

] ] [ [ i ] ]
8 # s i z e F a c A v a i l a b l e : Number o f a v a i l a b l e f a c i l i t i e s by i n d e x
9 # s i z e P e r i o d s : Number o f p e r i o d s

10

11 i n i t <− f u n c t i o n ( s i z e P o p u l a t i o n , p , f , s i z e F a c A v a i l a b l e , s i z e P e r i o d s
) {

12

13 p o p u l a t i o n <− I ( v e c t o r ( " l i s t " , s i z e P o p u l a t i o n ) )
14

15 f o r ( i i n 1 : s i z e P o p u l a t i o n ) {
16

17 p o p u l a t i o n [ [ i ] ] <− I ( v e c t o r ( " l i s t " , s i z e P e r i o d s ) )
18

19 i f ( i < s i z e P o p u l a t i o n / 2) {
# T o t a l number o f

f a c i l i t i e s t h a t open
20 t o t a l F a c O p e n <− sample ( c ( sum ( p ) : s i z e F a c A v a i l a b l e ) , 1 )
21 }
22 e l s e {
23 t o t a l F a c O p e n <− f l o o r ( sum ( p ) +( s i z e F a c A v a i l a b l e−sum ( p ) ) *

rbeta ( 1 , 1 , 5 ) )
24 }
25 facOpenPer <− p

# F a c i l i t i e s t h a t
open each p e r i o d

26 facNotUsed <− c ( 1 : s i z e F a c A v a i l a b l e )
27

28 i f ( t o t a l F a c O p e n > sum ( p ) ) {
29 f o r ( k i n 1 : ( t o t a l F a c O p e n−sum ( p ) ) ) {
30 moreFacInPer <− sample ( 1 : s i z e P e r i o d s , 1 )
31 facOpenPer [ moreFacInPer ] <− facOpenPer [ moreFacInPer ] + 1

#Randomly choose p e r i o d s i n which t o open
32 }

#more t h a n t h e minimum of f a c i l i t i e s
33 }
34 f o r ( t i n 1 : s i z e P e r i o d s ) {
35 i f ( l e n g t h ( facNotUsed ) == 1) {

# Catch n e c e s s a r y b e c a u s e
sample ( c ( 3 ) , 1 ) c o u l d be 2

36 c h o s e n F a c I n P e r <− facNotUsed
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37 }
38 e l s e {
39 c h o s e n F a c I n P e r <− sample ( facNotUsed , facOpenPer [ t ] )

#Randomly choose unused f a c i l i t y t o open i n
p e r i o d t

40 }
41 p o p u l a t i o n [ [ i ] ] [ [ t ] ] <− c h o s e n F a c I n P e r
42 facNotUsed <− facNotUsed [ ! facNotUsed %i n% c h o s e n F a c I n P e r ]

# Update used f a c i l i t i e s
43 }
44 }
45

46 re turn ( p o p u l a t i o n )
47 }

Code/allocate.R

1 # Th i s g i v e s t h e o p t i m a l a l l o c a t i o n s o f demand of t h e s e t s o f
f a c i l i t i e s i n t h e p a r t i c i p a n t s

2

3 #The p a r a m e t e r s a r e :
4 # env : CPLEX e n v i r o n m e n t
5 # prob : CPLEX problem p r e l o a d e d wi th d a t a
6 # p a r t i c i p a n t s : I n d i v i d u a l s t o be a l l o c a t e d ( assumed

same d i m e n s i o n s )
7 # c : Ass ignment c o s t o f c u s t o m e r s t o

f a c i l i t i e s by p e r i o d [ [ t ] ] [ [ j ] ] [ [ i ] ]
8 # f : Cos t o f r u n n i n g f a c i l i t y from p e r i o d [ [ t

] ] [ [ i ] ]
9 # s i z e P e r i o d s : Number o f p e r i o d s

10 # s i z e C u s t o m e r s : Number o f c u s t o m e r s
11

12 a l l o c a t e <− f u n c t i o n ( env , prob , p a r t i c i p a n t s , c , f , s i z e C u s t o m e r s ,
s i z e P e r i o d s , a l l o c a t e E l a p s e d =0) {

13

14 s i z e A l l o c a t e d <− l e n g t h ( p a r t i c i p a n t s )
15 nc <− s i z e P e r i o d s * s i z e C u s t o m e r s
16

17 f i t n e s s <− I ( v e c t o r ( " l i s t " , s i z e A l l o c a t e d ) ) # I n i t i a l i z e
f i t n e s s v e c t o r

18 dAst <− d <− I ( v e c t o r ( " l i s t " , s i z e P e r i o d s ) ) # I n i t i a l i z e
o b j e c t i v e and dummy o b j e c t i v e v e c t o r

19

20 f o r ( p i n 1 : s i z e A l l o c a t e d ) {
21

22 p a r t i c i p a n t <− p a r t i c i p a n t s [ [ p ] ]
23

24 #The problem i s u n c a p a c i t a t e d and w i t h o u t r e a l l o c a t i o n c o s t s
25 #The o b j e c t i v e t h e n i s t h e sum of t h e c h e a p e s t f a c i l i t i e s f o r

c u s t o m e r j a t each p e r i o d from t t o t h e end
26

27 f o r ( t i n 1 : s i z e P e r i o d s ) {
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28 o p e n F a c i l i t i e s <− u n l i s t ( p a r t i c i p a n t [ c ( 1 : t ) ] )
29

30 # F i g u r e o u t c h e a p e s t opened f a c i l i t y a t any g i v e n p e r i o d f o r
t h e c u s t o m e r s

31

32 d [ [ t ] ] <− l a p p l y ( l a p p l y ( seq _ l e n ( nco l ( c [ [ t ] ] ) ) , f u n c t i o n ( i ) c [ [
t ] ] [ o p e n F a c i l i t i e s , i ] ) , min )

33 }
34

35 f o r ( t i n 1 : s i z e P e r i o d s ) {
36 dAst [ [ t ] ] <− rep ( 0 , s i z e C u s t o m e r s )
37 f o r ( p e r i n t : s i z e P e r i o d s ) {
38

39 # Find o u t a s s i g n a t i o n c o s t open ing f a c i l i t y i n p e r i o d t (
s t a y s open t o t h e end )

40

41 dAst [ [ t ] ] <− dAst [ [ t ] ] + u n l i s t ( d [ [ p e r ] ] )
42 }
43 }
44

45 # a l l o c a t e E l a p s e d S t a r t <− Sys . t ime ( )
46

47 o b j <− u n l i s t ( dAst )
48

49 chgObjCPLEX ( env , prob , nc , c ( 0 : ( nc−1) ) , o b j ) # Change dummy
o b j e c t i v e t o t h e c a l c u l a t e d

50

51 lpoptCPLEX ( env , p rob ) # Opt imize
subprob lem wi th CPLEX

52 r e s u l t <− solut ionCPLEX ( env , p rob )
53

54 f i t n e s s [ [ p ] ] <− r e s u l t $ o b j v a l
55

56 #Add r u n n i n g f a c i l i t y c o s t t o f i t n e s s ( i n d e p e n d e n t from
a l l o c a t i o n )

57

58 f o r ( t i n 1 : s i z e P e r i o d s ) {
59 i f ( l e n g t h ( p a r t i c i p a n t [ [ t ] ] ) > 0 ) {
60 f i t n e s s [ [ p ] ] <− f i t n e s s [ [ p ] ] + sum ( u n l i s t ( f [ [ t ] ] [ p a r t i c i p a n t

[ [ t ] ] ] ) )
61 }
62 }
63 # a l l o c a t e E l a p s e d <− a l l o c a t e E l a p s e d + Sys . t ime ( ) −

a l l o c a t e E l a p s e d S t a r t
64 }
65

66 s o l u t i o n <− I ( v e c t o r ( " l i s t " , 2 ) )
67 s o l u t i o n [ [ 1 ] ] <− f i t n e s s
68

69 # s o l u t i o n [ [ 2 ] ] <− a l l o c a t e E l a p s e d
70 re turn ( s o l u t i o n )
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71 }

Code/crossover.R

1 # Th i s i n p u t s two random p a r e n t s and c r e a t e s a c h i l d .
2

3 #The p a r a m e t e r s a r e :
4 # df : Da ta f rame wi th e v a l u a t e d p o p u l a t i o n
5 # p a r e n t s : I n d i c e s o f two i n d i v i d u a l s o f t h e

p o p u l a t i o n wi th f i t n e s s
6 # s i z e P e r i o d s : Number o f p e r i o d s
7

8 c r o s s o v e r <− f u n c t i o n ( df , p a r e n t s , s i z e P e r i o d s ) {
9 o r d e r P a r <− df [ p a r e n t s , ] [ order ( u n l i s t ( df [ p a r e n t s , ] $ f i t ) ) , ]

# Order p a r e n t s t o f i n d a l p h a and b e t a
10

11 parAlpha <− o r d e r P a r [ 1 , 1 ] [ [ 1 ] ]
12 p a r B e t a <− o r d e r P a r [ 2 , 1 ] [ [ 1 ] ]
13

14 c h i l d <− parAlpha
# C h i l d i s i n i t i a l i z e d as a l p h a p a r e n t

15

16 t <− sample ( 1 : s i z e P e r i o d s , 1 )
#Randomly choose one p e r i o d t o do c r o s s o v e r

17

18 i n t e r <− i n t e r s e c t ( pa rAlpha [ [ t ] ] , p a r B e t a [ [ t ] ] )
# Find o u t e q u a l f a c i l i t i e s i n chosen p e r i o d

19

20 p a r A l p h a D i s t <− parAlpha [ [ t ] ] [ ! parAlpha [ [ t ] ] %i n% i n t e r ]
# Find o u t a lpha ’ s d i s t i n c t f a c i l i t i e s

21 p a r B e t a D i s t <− p a r B e t a [ [ t ] ] [ ! p a r B e t a [ [ t ] ] %i n% i n t e r ]
# Find o u t be t a ’ s d i s t i n c t f a c i l i t i e s

22

23 lenA <− l e n g t h ( p a r A l p h a D i s t )
24 lenB <− l e n g t h ( p a r B e t a D i s t )
25

26 i f ( min ( lenA , lenB ) > 0) {
# P e r m u t a t i o n o f same−p e r i o d f a c i l i t i e s i s on ly

27 f o r ( k i n 1 : min ( lenA , lenB ) ) {
# p o s s i b l e i f bo th p a r e n t s have d i s t i n c t f a c i l i t i e s

28 i <− p a r A l p h a D i s t [ sample ( 1 : l e n g t h ( p a r A l p h a D i s t ) , 1 ) ]
# Find random d i s t i n c t f a c i l i t y o f a l p h a i

29 j <− p a r B e t a D i s t [ sample ( 1 : l e n g t h ( p a r B e t a D i s t ) , 1 ) ]
# Find random d i s t i n c t f a c i l i t y o f b e t a j

30 c h i l d [ [ t ] ] [ match ( i , c h i l d [ [ t ] ] ) ] <− j
# S u b s t i t u t e c h i l d ’ s i by j

31

32 f o r ( t p r i m e i n c ( 1 : s i z e P e r i o d s ) [− t ] ) {
#Look f o r j i n a l l o f o t h e r p e r i o d s

33 i f ( ( j %i n% c h i l d [ [ t p r i m e ] ] ) ) {
34 c h i l d [ [ t p r i m e ] ] [ match ( j , c h i l d [ [ t p r i m e ] ] ) ] <− i

# S u b s t i t u t e found c h i l d ’ s j by i
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35 }
36 }
37

38 p a r A l p h a D i s t <− p a r A l p h a D i s t [ ! p a r A l p h a D i s t %i n% i ]
# Update c h o i c e s f o r f a c i l i t y p e r m u t a t i o n

39 p a r B e t a D i s t <− p a r B e t a D i s t [ ! p a r B e t a D i s t %i n% j ]
40 }
41 }
42

43 i f ( l e n g t h ( p a r A l p h a D i s t ) > 0 ) {
# A l l r e m a i n i n g d i s t i n c t f a c i l i t i e s i n a l p h a

44 f o r ( k i n 1 : l e n g t h ( p a r A l p h a D i s t ) ) {
# a r e moved t o o t h e r p e r i o d s

45 c h i l d [ [ t ] ] <− c h i l d [ [ t ] ] [−match ( p a r A l p h a D i s t [ k ] , c h i l d [ [ t ] ] ) ]
#Remove f a c i l i t y from t

46 t p r i m e <− sample ( c ( 1 : s i z e P e r i o d s ) [− t ] , 1 )
#Randomly choose p e r i o d t o move f a c i l i t y t o

47 c h i l d [ [ t p r i m e ] ] <− append ( c h i l d [ [ t p r i m e ] ] , p a r A l p h a D i s t [ k ] )
#Append f a c i l i t y t o new p e r i o d

48 }
49 }
50 # i f ( l e n g t h ( u n l i s t ( c h i l d ) ) ! = l e n g t h ( u n i qu e ( u n l i s t ( c h i l d ) ) ) ) { b rowse r

( ) }
51 c h i l d A s t <− I ( v e c t o r ( " l i s t " , 1 ) )
52 c h i l d A s t [ [ 1 ] ] <− c h i l d
53

54 re turn ( c h i l d A s t )
55 }

Code/mutation.R

1 # Th i s m u t a t e s t h e r e c e i v e d i n d i v i d u a l .
2

3 #The p a r a m e t e r s a r e :
4 # p a r e n t : The i n d i v i d u a l t o mu ta t e
5 # mutRate : The amount o f genes t o mu ta t e (

f a c i l i t i e s t o change )
6 # p : Ve c t o r wi th minimum of f a c i l i t i e s t o

open p e r p e r i o d
7 # f a c A v a i l a b l e : A v a i l a b l e f a c i l i t i e s by i n d e x
8 # s i z e P e r i o d s : Number o f p e r i o d s
9

10 m u t a t i o n <− f u n c t i o n ( parent , mutRate , p , f a c A v a i l a b l e , s i z e P e r i o d s ) {
11 muta t ed <− parent # S t a r t

mu ta t ed i n d i v i d u a l a s p a r e n t
12 n o n Z e r o P e r i o d s <− which ( l e n g t h s ( muta t ed ) ! = 0) # Find

o u t p e r i o d s where f a c i l i t i e s a r e opened
13

14 mutRate <− sample ( c ( ( max ( mutRate −1 ,1) : min ( mutRate +1 ,sum ( p ) ) ) ) , 1 )
#Random f e a s i b l e m u t a t i o n ( bounded )

15 mutRate <− min ( mutRate , sum ( l e n g t h s ( muta t ed ) [ n o n Z e r o P e r i o d s ] − p ) )
# Avoids u n f e a s i b l e s t a t e s
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16

17 f o r ( k i n 1 : mutRate ) {
18 t <− sample ( n o n Ze r o Pe r i od s , 1 ) # S e l e c t

random p e r i o d on which t o mu ta t e a gene
19

20 i I n d e x <− sample ( 1 : l e n g t h ( mu ta t ed [ [ t ] ] ) , 1 ) # Find
gene i t o mu ta t e ( f a c i l i t y t o change )

21 i <− muta t ed [ [ t ] ] [ i I n d e x ]
22

23 i f ( r u n i f ( 1 ) < p [ t ] / l e n g t h ( mu ta t ed [ [ t ] ] ) ) { #
P e r m u t a t i o n more l i k e l y wi th l e s s open e x c e s s f a c i l i t i e s

24 i f ( ( r u n i f ( 1 ) < 1 / ( s i z e P e r i o d s ) ) ) { #
P e r m u t a t i o n wi th unused f a c i l i t y

25 notUsed <− f a c A v a i l a b l e [− u n l i s t ( mu ta t ed ) ] #A
l i t t l e o v e r k i l l , b u t g l o b a l i I n d e x n o t c a l c u l a t e d

26 i f ( l e n g t h ( notUsed ) == 0) { next ( ) } # Quicke r
t h a n s e t t i n g and u p d a t i n g g l o b a l notUsed

27 i f ( l e n g t h ( notUsed ) == 1) { # Catch
n e c e s s a r y b e c a u s e sample ( c ( 3 ) , 1 ) c o u l d be 2

28 muta t ed [ [ t ] ] [ i I n d e x ] <− notUsed
29 }
30 e l s e {
31 muta t ed [ [ t ] ] [ i I n d e x ] <− sample ( notUsed , 1 ) #

S u b s t i t u t e i w i th randomly chosen unused f a c i l i t y
32 }
33 }
34 e l s e { #

P e r m u t a t i o n wi th f a c i l i t y i n o t h e r p e r i o d
35 i f ( l e n g t h ( n o n Z e r o P e r i o d s ) == 2) {
36 t p r i m e <− n o n Z e r o P e r i o d s [− t ]
37 }
38 e l s e {
39 t p r i m e <− sample ( n o n Z e r o P e r i o d s [− t ] , 1 ) #

Randomly choose o t h e r p e r i o d
40 }
41

42 j I n d e x <− sample ( 1 : l e n g t h ( mu ta t ed [ [ t p r i m e ] ] ) , 1 ) #
Randomly choose f a c i l i t y j i n t p r i m e

43 j <− muta t ed [ [ t p r i m e ] ] [ j I n d e x ]
44 muta t ed [ [ t ] ] [ i I n d e x ] <− j #

S u b s t i t u t e i by j i n o r i g i n a l p e r i o d
45 muta t ed [ [ t p r i m e ] ] [ j I n d e x ] <− i #

S u b s t i t u t e j by i i n t h e o t h e r p e r i o d
46 }
47 }
48 e l s e { #Move or

remove
49 muta t ed [ [ t ] ] <− muta t ed [ [ t ] ] [− i I n d e x ] #Remove

i from o r i g i n a l p e r i o d
50

51 i f ( r u n i f ( 1 ) > 1 / ( s i z e P e r i o d s ) ) {
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52 t p r i m e <− sample ( c ( 1 : s i z e P e r i o d s ) [− t ] , 1 ) #
Randomly choose p e r i o d t o move i t o

53 muta t ed [ [ t p r i m e ] ] <− append ( mu ta t ed [ [ t p r i m e ] ] , i ) #Append
i t o chosen p e r i o d

54 }
55

56 n o n Z e r o P e r i o d s <− which ( l e n g t h s ( muta t ed ) ! = 0) # Update
p e r i o d s when f a c i l i t i e s a r e opened

57 }
58 }
59 # i f ( l e n g t h ( u n l i s t ( mu ta t ed ) ) ! = l e n g t h ( u n i qu e ( u n l i s t ( mu ta t ed ) ) ) ) {

b rowse r ( ) }
60 m u t a t e d A s t <− I ( v e c t o r ( " l i s t " , 1 ) )
61 m u t a t e d A s t [ [ 1 ] ] <− muta t ed
62

63 re turn ( m u t a t e d A s t )
64 }

Code/selection.R

1 # Th i s d e c i d e s whe the r t o i n t r o d u c e a new i n d i v i d u a l o r n o t .
2

3 #The p a r a m e t e r s a r e :
4 # df : Main p o p u l a t i o n d f
5 # d f C a n d i d a t e : D a t a b a s e wi th new c a n d i d a t e
6 # p a r e n t I n d e x : P a r e n t a g a i n s t which t o compare

c a n d i d a t e ( o p t i o n a l )
7 # minDi f f : Minimum d i f f e r e n c e between i n d i v i d u a l s
8 # s i z e P e r i o d s : S i z e o f t h e p e r i o d s
9 # s i z e P o p u l a t i o n : S i z e o f t h e p o p u l a t i o n t o i n i t i a l i z e

10

11 s e l e c t i o n <− f u n c t i o n ( df , d f C a n d i d a t e , p a r e n t I n d e x = 1 , minDif f ,
s i z e P e r i o d s , s i z e P o p u l a t i o n ) {

12

13 d i s t <− 0 #
I n i t i a l i z e Hamming d i s t a n c e

14

15 f o r ( t i n 1 : s i z e P e r i o d s ) {
16 i n t e r L e n <− l e n g t h ( i n t e r s e c t ( df [ [ p a r e n t I n d e x , 1 ] ] [ [ t ] ] ,

d f C a n d i d a t e [ [ 1 , 1 ] ] [ [ t ] ] ) ) # Find number ma tch ing
f a c i l i t i e s

17 maxLen <− max ( l e n g t h ( df [ [ p a r e n t I n d e x , 1 ] ] [ [ t ] ] ) , l e n g t h (
d f C a n d i d a t e [ [ 1 , 1 ] ] [ [ t ] ] ) )

18 d i s t <− d i s t + maxLen − i n t e r L e n # S i n c e
v e c t o r l e n g t h s may be d i f f e r e n t ,

19 } #
d i s t a n c e i s c o u n t e d a g a i n s t h i g h e s t p o s s i b l e

20

21 i f ( df $ f i t [ [ p a r e n t I n d e x ] ] >= d f C a n d i d a t e $ f i t [ [ 1 ] ] ) { #
C a n d i d a t e i s on ly s e l e c t e d i f i t s u r p a s s e s p a r e n t

22 i f ( d i s t > minDi f f ) { #
C a n d i d a t e i s s i g n i f i c a n t l y d i f f e r e n t from p a r e n t
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23 df [ s i z e P o p u l a t i o n , ] <− d f C a n d i d a t e [ 1 , ] #
C a n d i d a t e s u b s t i t u t e s w o r s t i n d i v i d u a l

24 }
25 e l s e { #

C a n d i d a t e i s t o o s i m i l a r t o p a r e n t
26 df [ p a r e n t I n d e x , ] <− d f C a n d i d a t e [ 1 , ] #

C a n d i d a t e s u b s t i t u t e s p a r e n t
27 }
28 df <− df [ order ( u n l i s t ( df $ f i t ) ) , ] #

P o p u l a t i o n i s r e o r d e r e d
29 }
30

31 re turn ( df )
32 }
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