A Multi-Period Facility Location Problem

macultad de Ciencias
Universidad Zaragoza

s2s Universidad
10l Zaragoza

1542

Carlos Sandez Garcia
Mathematics Master Thesis

Universidad de Zaragoza

Advisors:
Herminia I. Calvete and Pedro M. Mateo
September 2018

Prologue

In this work we introduce a novel evolutionary algorithm for the Multi-Period Incremental Service
Facility Location Problem. A computational study is carried out to showcase the good results produced
by such an heuristic method. The significance is that, to the authors’ knowledge, no research has been
carried out on similar multi-period problems with genetic or evolutionary algorithms.

The structure of the work is as follows:

Chapter 1 introduces the field of Location Science along with examples of Facility Location prob-
lems. This culminates with the Multi-Period Incremental Service Facility Location Problem, a time-
bound model for the incremental coverage of demand of non-essential services.

Chapter 2 deals with genetic and evolutionary algorithms, reviewing the mechanisms available in
the literature for single-period facility location problems.

Chapter 3 presents the evolutionary algorithm developed to solve the Multi-Period Incremental Ser-
vice Facility Location Problem. The operators that make up the algorithm are explained and some
examples given. The pseudocode is also made available.

Chapter 4 summarizes the results from two computational studies, showing the performance of the
algorithm in a wide array of problems. Comparisons to the exact solving and an artificially decoupled
model are also reported.

Appendix A contains the code of the algorithm implemented in R.

Resumen

En este trabajo se presenta un novedoso algoritmo evolutivo para resolver el Problema Multi-Periodo
de Localizacién de Instalaciones con Oferta Incremental (Multi-Period Incremental Service Facility Lo-
cation Problem). Tras un estudio computacional detallado, se demuestra que la calidad de los resultados
es suficiente para justificar el uso de este método heuristico. Esto es significativo porque no parece
haber articulos sobre la resolucién de problemas multi-periodo similares con algoritmos genéticos o
evolutivos.

La estructura del trabajo se muestra a continuacién:

En el capitulo 1 se introduce el campo de la Ciencia de Localizacién (Location Science) con ejem-
plos de problemas de localizacién de instalaciones. Esto culmina con el Problema Multi-Periodo de
Localizacién de Instalaciones con Oferta Incremental, un modelo dependiente del tiempo para cubrir
incrementalmente la demanda de servicios no esenciales.

El capitulo 2 trata sobre los algoritmos genéticos y evolutivos. Se repasan los mecanismos para
problemas de localizacién de instalaciones de un solo periodo que aparecen en la literatura.

En el capitulo 3 se presenta el algoritmo evolutivo desarrollado para resolver el Problema Multi-
Periodo de Localizacién de Instalaciones con Oferta Incremental. Se explican los operadores que forman
el algoritmo y se dan algunos ejemplos. También estd disponible el pseudocddigo.

En el capitulo 4 se resumen los resultados de dos estudios computacionales, mostrando la eficacia
del algoritmo en un abanico de problemas. También se comparan con la resolucién exacta del modelo y
el obtenido al optimizar periodo a periodo.

En el apéndice A estd el codigo del algoritmo implementado en R.

II1

Contents

Prologue
Resumen

1. Introduction to Facility Location Problems

1.1. Origins of Location Science
1.2. The p-median Problem
1.3. Dynamic Facility Location Problems

1.4. Multi-Period Facility Location Problems

1.4.1. Introducing Multi-periodicity
1.42. Continuous Problems
1.4.3. Network Problems
1.4.4. Discrete Problems
1.5. The Multi-Period Incremental Service Facility Location Problem

2. Evolutionary Algorithms
2.1. Introduction to Evolutionary Algorithms

22. Encoding
2.3, Imitialization
2.4, CroSSOVET . . . v v v v v i it e e e e e e e
2.5. Parent Selection
2.6 Mutation e
2.7. Selection e
28. Fitness

3. An Evolutionary Algorithm for Solving the MISFLP
3.1. Encodingand Fitness
3.2, Imitialization
3.3. CroSsover o v it e
34. Selection
35, Mutation.

4. Computational Study

4.1. Methodology
4.2. Parameter Choice
4.3. Improving the Decoupled Model
4.4. First Experiment
4.5. Second Experiment

5. Conclusions
A. Code of the Evolutionary Algorithm

Bibliography

Chapter 1

Introduction to Facility Location

Problems

Location Science is a discipline concerned with finding the optimal spatial arrangement of facilities
that supply some demand. Facility location problems (FLP) are very much part of this area. In FLP,
facilities have to be located in space. Facility is a generic term that can represent anything from logistic
and distribution centers to hospitals or kindergartens. The point is that a service is provided by the
facility, which is used by some demand nodes. The distribution of the facilities should be optimal in
the sense that a certain goal must be reached. Maybe a certain supply level is needed, or we want to
minimise the sum of the distances between demand nodes and facilities. It is clear how grounded in
reality this problem is, and the many applications in fields such as economics or logistics that it has. We
are concerned with a specific instance of FLP, but will nonetheless introduce the problem progressively,
motivating all the increases in complexity and understanding what has come before. This introduction

will follow that of the book by Nickel and da Gama [21, §11].

1.1. Origins of Location Science

The first Location Science problem as it is known today is that of finding the point in Euclidean
space that minimises the sum of the distances to three other points. This has been attributed to Pierre
de Fermat and thus setting the beginning of Location Science in the 17th Century. Using the modern
terminology, there are three demand nodes and one facility which can be located anywhere on R? but
must minimise the sum of distances. Fermat’s problem was solved geometrically in [16] for all cases.

A more general approach and indicative of the gradual complexity to come in modern Location
Science was due to Carl Friedrich Launhardt. In [22] he added weights to the demand nodes of the

original problem. With this generalisation, the problem is known as a 3-node Weber problem. Alfred

1

2 Chapter 1. Introduction to Facility Location Problems

Weber would later on study these kind of problems [36] and thus lead to the modern terminology.

1.2. The p-median Problem

The concept started in the Weber problem was generalised in the form of the p-median problem.
Median because the sum of the distances between demand nodes and their respective closest facility
must be minimised. The p-median problem was presented in the paper by Cooper [8]. However, it was
Hakimi in [14] who proved that there exists an optimal location of facilities over the demand nodes.
This reduces the location space from the continuous considered in the Weber problem to a discrete
one. Thanks to the location space being now discrete, a mixed-integer linear programming (MILP)
formulation for the p-median was introduced in [29]. Kariv and Hakimi further proved in [20] that the
p-median problem is NP-hard, that is, there is no known non-deterministic polynomial-time algorithm

that solves the p-median problem.

A formulation for the p-median problem can be as follows. Let I be the set of possible locations of
the facilities and J be the set of demand nodes. Let d; be the demand of customer j, ¢;; be the unit cost
of satisfying customer j from facility i, p be the number of facilities to be located, x;; be the fraction of

demand that facility i supplies to j and y; be a binary variable with value 1 when the facility i is located.

min ZZde,‘jX,‘j (11)
il jeJ
subject to inj =1, VjeJ (1.2)
iel
Yvi=p (1.3)
iel
xij <y, Viel,jel (1.4
yi€{0,1}, Viel (1.5)
X,’jzo, Vie],je.] (1.6)

There is another kind of FLP where the objective is to locate facilities so as to minimise the max-
imum distance between any demand node and its closest facility. These are called p-center problems
for the instance where p facilities must be located. These kinds of problems are tied to the supply of
emergency services, where the worst case scenario needs to be alleviated. The concept of center was

first introduced in [14]. We will focus on median-based problems.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 3

1.3. Dynamic Facility Location Problems

The first problem to consider dynamic constraints was by Wesolowsky [37]. This Multi-Period
Weber problem extends the classical Weber so as to encompass changes in the demand distribution
along some time periods. The difference between this model and the previous one is that moving the
facility incurs a relocation cost, and thus cannot be understood as several different Weber problems.

After this problem, an additional constraint is imposed in [7], where at most one new facility can
be located in each time period. This was done for a special case of FLP where the location space is a
graph, but the idea is analogous to the Weber or discrete formulation.

Finally, in [10] a Multi-Period Weber problem where exactly one new facility must be located each
time period was introduced. Notice how, in this case, the p-median problem must assign the facilities
throughout the p time periods. This problem is the predecessor of the incremental service FLP that will

be considered later on.

1.4. Multi-Period Facility Location Problems

The class of Multi-Period Facility Location problems (MPFLP) is a generalisation of the Facility
Location problem where a time dependency is incorporated in the form of a multi-period setting. As it
has been seen in the previous section, considering dynamic FLP changes the problems fundamentally.
The inclusion of time as another dimension for the model affects the structure of the problem, requiring
a global overview to solve it. Time-dependent models appear naturally when considering some dynamic
decisions, such as inventory management, opening and closing of facilities and capacity changes, as well
as other questions arising from budgetary constraints [21].

In FLP, the time frame in which the decisions need to be carried out is the planning horizon. Within
this planning horizon, many strategic and tactical choices have to be carried out, with long-lasting
consequences. The planning horizon can be either finite or infinite, but most of the research is focused
on finite planning horizons and ours will too. Even though the time can be considered as continuous, as
noted in [21], optimal control is a better alternative to solving continuous-time instances. Thus, the time
setting considered in this study will be a finite series of discrete time periods, ranging from the initial
one to the planning horizon. As for the spatial setting where the facilities and customers are allocated,
three distinct approaches appear in the literature. We will give a basic introduction of the first two, and
focus on the third one, which shall be chosen.

Solving for the decoupled model is generally an incorrect approach, as finding the consecutive
best arrangement for the individual time periods misses the larger picture and forces the structure to

mistakes that could have been foreseen. The qualitatively different structures surfacing from these two

4 Chapter 1. Introduction to Facility Location Problems

approaches has been studied in [2], concluding that decoupled models tend to give good objectives for

the first periods, with solutions deteriorating quickly as periods pass.

1.4.1. Introducing Multi-periodicity

Some measures of introducing multi-periodicity in a given formulation of FLP have already been
given. Setting relocation costs, not allowing for facilities to close or setting opening costs all transform
an initially decoupled system into a time-bound one. These changes in formulation appear naturally,
and are even a necessity when modeling the operation of large companies.

Extensions on the constraints about opening and closing facilities include opening facilities for a
minimum period of time, opening a minimum number of facilities each period [2] and only allowing
for a subset of facilities to close [30]. Changes in operating capacity can also be implemented, either
by reducing or increasing the capacity, which was done for the MPFLP in [34]. These are usually
accompanied by economies of scale, where bulk discounts are given based on production volume. Other
extensions consider multiple products and multiple stages of production, as shown in [17].

Introducing time dependencies can have a big impact on a problem. An approach for quantifying
the influence of time in any MPFLP model is to measure the difference between the exact solution and
the time-invariant solution from the static model. The static model has to be artificially constructed,
unifying the time-dependent constraints into others that do not depend on time but still yield feasible
solutions for the original model. The specific way to do it depends on the MPFLP formulation, but can
be contructed by averaging demands. The value of the multi-period solution, as defined in [4], is given

by the difference between the time-invariant weak solution and the strong multi-period solution.

1.4.2. Continuous Problems

Continuous problems come from the use of a continuous location space. The following multi-period
extension of the Weber problem was proposed in [37] and allowed for the change in the set of nodes
in every time period, giving a relocation cost for the factory changing position. This problem can be

formulated as follows:

7]
min Y Y ej(xy) + Y fia (1.7)

teT jeJ; =2
subjectto 7, =0ifdy1, =0, r€T\{1} (1.8)
z€{0,1}, reT (1.9)

The objective (1.7) minimizes both the allocation and relocation costs, denoted by ¢;; and f;, respect-

ively. The variables used are (x;,y;), the euclidean coordinates of a facility in that location in period 7;

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 5

%, a binary variable that indicates whether the facility has changed location; and d;;, the distance by
which it moves. The sets T and J; are the time periods and demand nodes in that period.

Methods for solving this sort of problems started out as dynamic programming and quickly became
exact ones [35].

Other multi-period, multi-facility approaches are proposed in [11], which considered the optimal
time periods to take as well, the recursive installation of a new facility every period in [33], and an

extension of the planar p-median problem in [10].

1.4.3. Network Problems

Network problems encompass those where the facilities are located on a path or tree, at least one per
period. The first extension of the network p-median problem considers a weighted network that varies
in time with assignment and relocation costs [15]. This paper also studied the 1-center multi-period
problem on a network. Some theoretical results hold, which reduce the location space of these kind of
problems. However, not much research is still being carried out in this topic since these problems can

be reduced to discrete ones [21].

1.4.4. Discrete Problems

Discrete problems are the predominant choice for location space [15]. The p-median problem in a
discrete location space is as follows.

Let ¢;j; be the allocation cost of demand node j € J to facility i € I in time period 7 € T and x;
be a binary variable equal to 1 if in time period ¢ facility i is allocated to demand node j. Here, it is
considered that facilities must be located on demand nodes, thus / C J. Also, the demand of a customer

can only be satisfied by one facility.

min Y Y'Y cijixije (1.10)

teTicl jeJ

subjectto Y xiz=1, teT,jel (1.11)
iel
Y xijp < Vv, teTiel (1.12)
jeJ
Y xi=p, teT (1.13)
iel
xij €{0,1}, i€l,jeJteT (1.14)

The position of demand nodes is fixed, whereas in 1.4.2 the weights change represent physical displace-

ment of the demand nodes. This amounts to a fixed set of locations for the facilities, which are such that

6 Chapter 1. Introduction to Facility Location Problems

I C J. No generality is lost, however, since the cost for allocating demand nodes c;j; from facility i to

node j in period ¢ can be set as some penalized value where the original j was j ¢ J;.

Since no reallocation costs are considered, the p-median problem can be decoupled. A simple modi-
fication of the objective function introduces the multi-periodicity. In [38], opening and closing costs are
introduced, making the decoupled problem not optimal in general. Further extensions and methods for
solving this problem have been developed, since the original dynamic programming approach is only

usable for small problems.

When no capacity constraints are considered, that is, there is no limit to the amount of demand a
given facility can satisfy, the problem is called uncapacitated. In the Uncapacitated Facility Location
Problem (UFLP), the demand is allowed to be divided among several facilities. Let x;j, be the fraction
of demand supplied to customer j by facility i in period ¢, and y; be a binary variable that indicates
whether facility i is operating at time ¢ or not. Additionally, let f; be the cost of operating facility i in

period ¢.

min Y Y <fit)’it +) Cijtxijt> (1.15)

€T iel =
subjectto Y xi;y=1, teT,jel (1.16)

iel

injzémyiz, teT,iel (1.17)

jeJ

Xijp >0, i€l jelteT (1.18)

viii €{0,1}, iel,jelteT (1.19)

Notice how the capacity of a given factory is bounded by |J| when that factory is operative. This

implies that the problem is indeed uncapacitated.

Again, the objective is to minimize the running and assignment costs. The model can be decoupled,
since there are no constraints that make it time-dependent. Introducing a natural relocation cost, or

forcing facilities to stay open takes care of that.

Models based on facilities which cannot be closed have been successfully modeled using step vari-
ables, that indicate whether a new facility opens in a given period. This, along with further supply

restrictions, has been studied in [6].

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 7

1.5. The Multi-Period Incremental Service Facility Location Problem

The Multi-Period Incremental Service Facility Location problem (MISFLP) was first introduced by
Albareda-Sambola et al. in [2] and is concerned with the operation of non-essential services. In most
of the previous literature, the facilities considered supplied an essential service that had to cover the
available demand. If, instead, a private or non-essential service is considered, the supply can be incre-
mentally increased by opening new facilities each period and thus increasing the demand coverage until
its completion in the planning horizon. The examples provided in the original paper include libraries,
nursing homes, kindergartens, parking lots, supermarkets and banks. The MISFLP is the subject of this

work, and is presented in depth below.

Let J be the set of customers, / be the set of possible facility locations and T be the set of periods.
Every period, a minimum of n’ customers have to be served and at least p’ new facilities must open.
Once opened, facilities cannot close before the end of the planning horizon. Also, customers that have
their demand satisfied on a given period must also receive the supply every period after. Partial coverage

of a customer’s demand is not allowed.

The costs are as follows. Let ¢} ; be the allocation cost of assigning customer ; to facility i at time
period ¢ and f] be the cost for opening facility i in time period 7. The cost f; includes the initial opening
cost in period ¢ and the maintenance cost until the end of the planning horizon. The facilities that supply

a given customer’s demand may change over time at no extra cost.

Even though full coverage of demand is expected at the end of the planning horizon, partial coverage
can be implemented by introducing a dummy facility with infinite costs in all periods except for the last.

Unsatisfied demand penalties could also be introduced but are not considered in this model.

In [1], several ways of formulating the MISFLP were proposed and compared to find the strongest
one. The mathematical formulation given below is the one with the best results as per [1] and not the one
presented originally in [2]. It will, however, not incorporate the modifications in the problem that [1] has
over [2], namely customer demand in select periods, service costs and penalties for unfulfilled demand.

Let us define

1 if at period ¢ customer j is assigned to facility i

0 otherwise

. 1 if by period ¢ the facility i has already opened

Yi=
0 otherwise

With a slight abuse in notation, y;” =o.

8 Chapter 1. Introduction to Facility Location Problems

The formulation of the MISFLP is as follows:

Y) (ff(-5 +Zc,,xu) (1.20)

ielteT jeJ

subjectto Y Y xi;>n', teT (1.21)
i€l jeJ
Y <1, teT,jel (1.22)
iel
Zx,]>2xl], jeJ,teT\{0} (1.23)
iel iel
Yall=1, vjes (1.24)
i€l
x; <3, Viel,jeJteT (1.25)
Y@-w)=p, Wwer (1.26)
i€l
Jl<§l, VielteT (1.27)
x5 €{0,1}, i€l jelteT (1.28)

The objective function (1.20) minimizes the setup and maintenance costs of the facilities, as well
as the assignment costs. The minimum customers served and facilities opened per period come from
the constraints (1.21) and (1.26), respectively. Each customer is assigned to at most 1 facility in (1.22)
and once fulfilled, keeps on having its demand satisfied by (1.23). The full demand coverage at the
end of the planning horizon is ensured by (1.24). Customers are assigned to open facilities by (1.25).
Constraint (1.27) forces opened facilities to stay open until the end of the planning horizon.

One absence from these constraints is any kind of capacity constraints. For all it matters, the model
could assign all production to a given facility while opening and not using the others, as long as it is
economically viable. The issue with constraints in production capacity is that they greatly increase the
difficulty of the problem, and are only considered if required.

For |T| = 1, the MISFLP is equivalent to the p-median problem, which was proven in [20] to be
NP-hard. This means that the MISFLP is NP-hard as well, and heuristic methods are required to solve

large instances of the problem.

Chapter 2

Evolutionary Algorithms

2.1. Introduction to Evolutionary Algorithms

Evolutionary Algorithms (EA) are a kind of metaheuristic that takes inspiration from nature to
achieve near-optimal solutions relatively quickly on a wide variety of problems. The resemblance to
natural evolution comes in the form of an evolving population of solutions to the studied problem. Each
solution is encoded in such a way that it corresponds to an individual with some activated genes. The
individuals of the population have their quality measured by a fitness function, the objective being to
optimize the fitness so as to find the best possible individual. The population will be subject to several
crossover and mutation operators and their results will be selected to be part of the population again

based on a selection procedure. This is carried out until a stop criterion is met.

Evolutionary processes were described for the first time in the articles by Friedberg in 1958 [12].
The precursors of Evolutionary Algorithms, Genetic Algorithms (GA), were initially developed by Hol-
land in the 1960s as seen in [18]. They were applied for the first time to the p-median problem in the
paper by Hosage [19]. Up until then, p-median problems had been mainly solved by exact methods.
However, as the complexity of the studied instances increases, exact methods have an exponentially

harder time solving them. This is a direct consequence of the p-median problem being NP-hard [20].

An heuristic for such problems is then desirable, because it might obtain good enough solutions
much more quickly. With heuristics, the tradeoff is the loss of certainty of optimality. No longer we
know that the obtained solution is the best one. However, for many purposes, the time requirements of
exact methods are prohibitive and a close enough solution suffices. Common variants of operators used

in evolutionary algorithms applied to the p-median problem are presented in this section

For a review on metaheuristic procedures for the p-median problem, the reader is pointed to the

paper by Mladenovic [27].

10 Chapter 2. Evolutionary Algorithms
2.2. Encoding

The individuals in GA are traditionally represented by a fixed-length binary string. This is the
encoding chosen in [19]. However, this first application didn’t achieve very good results in the p-
median problem, as noted by Alp et al. [3]. The issue is that, with the binary representation, most of
the possible configurations are unfeasible since more or less than p facilities are located. Because of
this, the search space of the algorithm is huge and not representative of the problem. GA with binary
encoding must constantly fight this tendency to unfeasibility and requires methods such as restricted
search [31]. There are some instances where specifically choosing a binary encoding can be helpful,
such as in [26], but most of the research in GA for p-median problems uses the encoding proposed by
Alp et al. [3] and we will too.

This encoding assumes that the facilities are assigned to some index, so that {1,...,m} represents
all the facilities. Out of the possible m facilities, p have to be chosen. The natural expression of which
are chosen is a tuple of length p with increasing elements in {1,...,m}. The strength of this encoding
is that all possible assignments of facilities have a one-to-one relation with all such possible encodings.
No longer we have to worry about unfeasibility, and operations can follow much more quickly. This

also reduces the space of all possible individuals from 2 to (;’7’)

2.3. Initialization

The starting population has to be constructed before the algorithm can proceed. A common method
is by random generation. An individual would be created by selecting a random subset of p element
from the indices. Since the random distribution used is uniform, for sufficiently large population sizes,
this would be a quick way of ensuring population diversity.

A more comprehensive approach proposed by Alp et al. [3] is sequential initialization. The indi-
viduals will be constructed initially by going over the indices in increments of 1 until they run out and
continuing in increments of 2 until all indices are chosen. This continues until the increments are some
pre-specified £ < m. This list is then separated in strings of consecutive p facilities. The example given

in [3]is (m, p,k) = (12,4,2), which yields the population
(1,2,3,4),(5,6,7,8),(9,10,11,12),(1,3,5,7),(2,4,9,11),(6,8,10,12).

Another option is to find some good solutions via local search methods or other quick heuristics
and start the population with those. The issue here is that diversity is not enforced. To circumvent this,
in [23] the initial good solutions are added to a greedy-generated population which is diversified. This

seeding of good solutions does require additional heuristics, but speeds up computation times.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 11

2.4. Crossover

The crossover emulates the reproduction process in nature and the exchange of genetic information.
This operator has been adapted to the p-median problem in several ways. All of them have to deal
with the fact that feasibility should be preserved. Otherwise, operators may result in individuals with
less facilities than necessary or repeated facilities. Operators that work with these situations are called

messy, but are not commonly used [13].

One intuitive crossover operator is the one proposed by Correa et al. in [9]. After individuals have
been chosen for the crossover phase, two exchange vectors are constructed so that they contain the
distinct facilities of the individuals. A random number k between 1 and the length of the exchange
vectors minus 1 is chosen. After randomly choosing k facilities from each exchange vector, those
facilities are swapped in the individuals. Notice how feasibility is preserved, since the length is kept
at p and no repeated facilities are present in an individual. The idea of exchange vectors motivated
the mechanic of permuting facilities, the process by which facilities opened on different periods switch

places in the individual.

Another operator that is computationally more expensive but gains some sense of optimality direc-
tion via greediness is the one presented in [3]. This merge-drop algorithm is more closely related to
greedy heuristics than classical GA crossover. The facilities in the chosen parents are all considered.
The result is in general not feasible, since the union will likely be greater than p. Facilities are excluded
one by one and the fitness evaluated. The subset with one less facility that has the lowest fitness is
chosen, and the omitted facility is dropped. This is repeated until enough facilities have been removed
and the individual is feasible. The cost is that many evaluations of fitness have to be done. Moreover,
the fitness function must allow for the evaluation of non-feasible solutions. Good results are reported

using this method, and it is recommended for inexpensive fitness functions.

A crossover operator where the parents have different roles is presented in [28]. The operator takes
into account the closeness of the facilities in the individuals and substitutes the selected facilities in the
first one by the nearest facility from the other one. Assigning different roles to the parents was also used

in the final version of the EA.

Three more classical crossover operators are presented in [5]. An interesting case of operators being
dynamically chosen based on population diversity to avoid local optima is sketched in [24]. This paper
also extends on the greedy crossover of [3] by presenting a modified increasing vector where the distinct
facilities that increase the fitness the least are progressively added. In [25], a dynamic crossover based
on the diversity of the population is proposed, which allows for the increasing or decreasing of the

population size throughout the iterations.

12 Chapter 2. Evolutionary Algorithms

2.5. Parent Selection

Now the measures to select parents subject to the crossover operator will be discussed. On many
occasions they are just chosen randomly and that produces good results, but other procedures exist. For
instance, a simple elitist selection was studied in [5]. Parents that had better fitness were more likely to
be chosen, but the choice was still probabilistic. This skewness was formulated in two different versions.
The first one accounted for the fitness function, and a normalized value was assigned as weights for the
skewed random selection. The other one took the fitness into account only indirectly, since it was the
ranking that formed the weights. The population was ranked by fitness, and higher-ranking individuals
were more likely to be chosen. The issue with this approach was that similarly-fit individuals may have
very different rankings. It might help distinguish between very flat fitness functions, but better results
were observed with the first approach, as noted in [5]. This fitness-based elitist selection was also used
in the paper which proposes the first GA for solving the p-median problem [19].

A slightly more complex version of this kind of parent selection is the one presented in [32]. The
fitness function values were stretched so as to emphasize the difference between similar individuals but
without going all-out on a ranking system. After this, the individuals were grouped by fitness. Individual
in the same group were equally likely to be selected.

Partially due to the unique encoding chosen for the bionomic algorithm in [26], a unique parent
selection technique was chosen. It is more deterministic than the other random-based approaches that
we have seen. The idea is to select pairs of parents that are as different from each other as possible. This
is measured by maximal independent sets. Essentially, it supercharges exploration of the search space
and avoids many local optima traps. Some local search is necessary on the later stages of GA and the
authors solved this problem with an additional maturation operator based on greedy heuristics.

From the wide variety of methods available in the literature, it is clear that there is no catch-all

approach and that a thorough study of the problems to solve is necessary when dealing with GA [3, §3].

2.6. Mutation

As for the mutation, the usual procedure is to remove some facilities and substitute them for unused
ones. A hypermutation is introduced in [9], which is equivalent to a partial maturation. A maturation is a
local search on the solution space and has been used in [26] too. Maturation stages are computationally
expensive, and are not applied on each iteration. It was also proposed that a maturation stage based on
the Interchange Heuristic could be more beneficial to the quality of the solutions in [27].

Another way to introduce diversity is through invasion, a procedure that introduces new indivi-

duals in the population. As presented in [5] or [32], invaders are added to keep the diversity high and

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 13

strengthen the capabilities of the other operators. Higher invasion rates were found to be more effective.

2.7. Selection

As for the selection of which individuals will go on the next iteration of the GA, most papers apply an
elitist selection, which consists on keeping the individuals with the best fitness. An interesting addition
to the plain selection comes from [28]. The procedure is called fight and every newly created child
goes through the fight stage, in which it is pitted against the individual with the worst fitness. However,
where an elitist procedure would solve the fight as a win for the child if it had better fitness, fight also
takes into account the diversity change in the population when including the new children. This way,
if a child is better than the worst individual but very similar or even equal to other existing individuals,
it will not win the fight. As noted by Perez at al [28], this process can supply a useful local-minima-
avoiding technique similar to the parent selection in the bionomic algorithm but without slowing down
the algorithm or hindering fine searching. This technique inspired the selection procedure based on the
Hamming distance that will be used for the EA proposed in this work. A weaker version of the fight

procedure is an elitist one that does not allow repeated individuals.

2.8. Fitness

Most GA opt for a fitness function that corresponds exactly with the objective function of the original
optimization problem. In the paper by Salhi and Gamal [32], the fitness function is monotonically
distorted to distinguish between more fine increments of fitness. For the p-median problem particularly,
the objective function is the cost of allocating the demand nodes to the facilities and their operating
costs. Other costs may appear, such as maintenance or relocation costs.

It is also possible to not consider the fitness as the objective function. In [28] the diversity that the
individual brings into the population is also considered as part of its fitness, yielding a population-based
fitness.

It is important to keep the evaluation of the fitness as quick as possible, since it is the basis for much
of the computing overhead in GA for p-median problems. A faster way of preserving diversity, an the
one inspiring part of the proposed algorithm, comes from the fight selection.

When choosing a fitness different from the objective function, some precision is lost and any heur-
istic chosen to substitute it must be as realistic as possible while being much quicker to evaluate. Such
a fitness is introduced in [25], considering two separate fitness functions in what is called a bi-objective

fitness.

Chapter 3

An Evolutionary Algorithm for Solving

the MISFLP

In this section we detail the specific procedures by which the proposed EA for the MISFLP solves
such problems. The inner structure of the EA is that of a messy evolutionary algorithm. The encoding
is index-based and clearly distinguishes between periods. Since the representation is in variable length
strings, the algorithm is messy and the encoding is not binary, so the algorithm is evolutionary. The
fitness is computed after finding the optimal allocation of customers to the open facilities, which implies
that the EA is technically a hybrid EA. All in all, the developed algorithm is a messy hybrid EA. The
crossover exchanges facilities between periods and moves the rest to others, favoring the parent with
the better fitness in the child creation. The mutation also has some random exchanges of facilities
between periods, and includes outright removal of facilities. The children are selected with a protected

procedure, so that the diversity is not decreased too sharply.

3.1. Encoding and Fitness

The population of the EA is formed by individuals, each one representing the facilities that open for
the first time on that period. Thus, the encoding is as follows. Each individual has |T| disjoint sets of
indices in /, the set of facility locations. The indices in the #-th set represent the indices of the facilities
which are opened for the first time in time period ¢. The novelty here is that there can be more than the
minimum of facilities being allocated each period, so a variable-length encoding is required.

Given an individual, the facilities that open on each period are given. In order to construct the final
solution of the MISFLP it is still required to find the optimal assignment between demand nodes and
facilities that minimises the allocation costs.

Let dj- = Z/LT:‘, (miniE 1k ci-‘,-) , I* be the open facilities at time k and z’,- be a binary variable of value 1

15

16 Chapter 3. An Evolutionary Algorithm for Solving the MISFLP

if customer j is newly allocated in period #. Then, the following is the allocation subproblem:

min Y Y djZ) (3.1)

teT jeJ

subjectto) Zi=1, VjeJ (3.2)
teT
Yd=n-n"" wier (3.3)
jeJ
>0, VjelVieT (3.4)

The encoded individual, together with the optimum of this subproblem, becomes a feasible solution
of the MISFLP. The customer allocation subproblem has the same constraints for all possible individuals
and those constraints are preloaded in a CPLEX model to speed up the algorithm. The fitness requires
solving an optimization problem, so the EA is actually a hybrid EA.

The MISFLP is uncapacitated, and the optimal allocation of customers to facilities is that which
assigns the lowest customer-facility pairs every period.

The assignment cost of customer j that has demand coverage starting from period ¢ is d;, since
is is allocated to the cheapest available facility on each time period following period ¢ and demand
cannot stop. The global cost is the sum of all assignment costs, which means that the objective function
takes the sum over customers and starting time periods. Further constraints will take care that enough
customers are allocated demand each time period, that there is only one starting period where demand
is received for each customer and that at the planning horizon all demand is covered.

The fitness function, coinciding with the optimum in Equation (1.20), requires solving the allocation
subproblem each time that it has to be computed. The facility opening and maintenance costs are added
to the optimum of this subproblem, resulting in the fitness for the individual. The objective is to find the
individual with the lowest possible fitness.

To achieve this, several basic operations are carried out: crossover of two parents, mutation of one
parent and selection of children.

An element of the individual denoting the initial opening of some facility in some period will be
called a gene. The set of all genes, and thus, all encoded information for a certain individual will be
the genome for that individual. The multi-periodicity could be included in this biological notation by

denoting the different sets as chromosomes.

3.2. Initialization

The initialization is done in a random manner, meaning that, for each chromosome, the number of

facilities that open each period and which ones are chosen is carried out randomly. The only diversity

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 17

that comes from this initialization is in the uniform distribution of the random process used. The sequen-
tial distribution [3] and population seeding [23], as explained in Section 2.3, cannot be readily applied
here. The issue is that since more than the minimum of facilities could open on a given period, in order
to ensure the appropriate coverage, the population size should be really high. To give an idea of why
this is so, we analyse the search space of a problem with |T'| = 12 periods and |I| = 30 facility locations.
The search space of the EA is the space of all possible individuals and its cardinal is computed for the

MISFLP with the following formula.

H=Si=P1 1 [-S2-P2 4 =S~y 1
(1) Slgpl ﬁ 8221’72 g N Srg’r 8|7 !(m R _S\TO!)
In the formula, p = (p1,...,pjr) is the vector with minimum facilities that can open each period.
In order to simplify the expression, we use the notation S| = 0 and S; = Zj;ll sj, Vi=2,...,|T|, and

T .
Pi=yl pi¥i=1,..|T|—1and Py =0.
For p = (1,1,1,2,1,1,1,1,1,1,1,1), the cardinal of the search space is of the order 10°2. If we
compare that to the problem without multi-periodicity, the possible individuals become Gg), which is

of the order 108. For this specific example, an individual using the minimum possible facilities could be

({12}, {8},{26},{10,27},{4},{20},{2}, {18}, {15}, {22}, {1},{6})

Notice that every individual initialized is a point in the search space, ensuring its feasibility. This
means that there are no individuals with periods where the number of opened facilities is lower than the
required by p.

The specific construction of initialized individuals is as follows. First, choose a random number of
facilities to open between Zlill p' and |I|. This is the step that ensures feasibility. After that, assign
to periods all available excess slots, that is, those over Zlill p'. Then, unused facilities are randomly
chosen to fill all unassigned genes, updating the used facilities in the process to avoid repetitions. This
creates a new, feasible individual, and the procedure can be carried out as many times as necessary to
generate the whole population.

In pilot runs, it was observed that the optimal individuals had no excess facilities, that is, the number
of facilities opening each period corresponded exactly with the minimum allowed. Because of this, a
second computational study was carried out where half of the initial population was generated with
a left-skewed Beta(1,5) distribution in the excess facilities. Individuals initialized by this procedure
were more likely to have less opening facilities thus reducing computational time without sacrificing
too much diversification. Everything else was kept the same.

Each individual in the generated population is evaluated for fitness as explained previously. After
this, the main loop of the algorithm begins. It will continue until the stop criteria is met. In our case, a

running time criterion is used.

18 Chapter 3. An Evolutionary Algorithm for Solving the MISFLP

3.3. Crossover

In every iteration of the loop, there is one crossover and sometimes one mutation, according to
some probability of mutation. This is unusual for EA, since usually many children are generated on
each iteration. However, the selection operator from the paper by Perez et al. [28] motivated the current
selection operator. The significance of it is that premature convergence to local minima, a long-time
crux of GA and EA can be significantly overcome through this method. Since it compares the child
with the main individual that generated it, multiple children generation is not easily implemented. The

crossover works as follows.

First, two random distinct parents are chosen among those in the current population. These two
parents are recombinated by the crossover operator. The parents are ordered by fitness, and the one with
the lower fitness is called parent o while the other one is parent . The child is initialized as parent o,
to try to retain some of the good properties of ¢ while enriching the gene pool with the genome from

B. Once initialized the child, a random period ¢ is selected.

The information from period ¢ in is translated to « in the following manner. Only the genes
that are different in the period ¢ between a (a') and B (B’) are used for the crossover. We consider
o'\ (¢ UB") and B'\ (o' UB"). If both of these sets are nonempty, random i € o \ (o' UB") and
i€ B"\ (o UPB") are selected. Then, i is substituted by ¢ in the child and the other position (if it exists)
i’ is substituted by i. If only i was substituted this time, the genome of the child could contain two

instances of the same facility i/, which is an unfeasible individual.

Facilities can be exchanged as in the process above, which will be denoted as facility permutation.
After the substitution, the choices for facility permutation are updated and the procedure repeated until
one of the sets is empty. If it is B\ (a’ UB’) which empties first, that is, |a’ \ (' UB")| > |B"\
(a’" UB")|, the remaining facilities are removed from the period 7 of the child and appended to other

random periods. Note that all operations preserve feasibility.

Hence, if parent o is ({9,1},{2},{7,3,12},{4}), parent B is ({4,6,10},{11},{9,7},{5}) and
p=(2,1,1,1) a possible crossover could be as follows. Initially, the child is the same as parent o.
After randomly selecting period r = 3 to carry out the crossover, the exchange vectors o \ (o’ U ')
and B\ (a’ UB") are computed. They are (3,12) and (9), respectively. We randomly select i = 12
and i/ = 9. The child, which started as ({9,1},{2},{7,3,12},{4}) isnow ({12,1},{2},{7,3,9},{4}).
Notice that if i/ had been an unused facility in «, for instance i’ = 1, the result would have been
({9,1},{2},{7,3,11},{4}). After this, the exchange vector of ¢ is still nonempty, so the remaining
facility (3) moves to another random period 7 = 2. Finally, the child is ({12,1},{2,3},{7,9},{4}). The

pseudocode of the procedure can be seen in Algorithm 1.

A Multi-Period Facility Location Problem - Carlos Sandez Garcia 19

Data: dataFrame, parents, ||
Result: child
order parents;
initialize child as parent alpha;
randomly choose period ¢ to do crossover;
find out exchange vectors parAlphaDist, parBetaDist;
set lenA as ex. vector of alpha, lenB respectively;
if min(lenA,lenB)>0 then
for k in 1:min(lenA,lenB) do
i < random facility in parAlphaDist;
J < random facility in parBetaDist;
child’s i < j;
for all other periods t do

if j in child’s T period then

child’s jin7 <+ i;

end
end
update exchange vectors
end

end
if length(parAlphaDist)>0 then
for k in parAlphaDist do
remove facility k from child’s period #;
randomly choose period 7;
append k to child’s period 7;
end

end
Algorithm 1: Pseudocode for the Crossover operator

3.4. Selection

After the crossover, the fitness of the child is evaluated and goes through the selection procedure. In
the selection, the child is pitted against parent ¢. Only if the fitness of the child is better than that of the
parent will it be placed in the population. The individual that it will substitute depends on the Hamming
distance between the parent and child (set-wise by periods). This distance is the sum per periods of the
largest amount of facilities opened between the child and the parent minus the amount of the common

facilities. For example, the Hamming distance of (1,2,3) and (3,4) is3—1=2.

This avoids premature convergence at local minima. If the obtained distance is lower than a bound
minDistance, the child substitutes the parent in the population. If the obtained distance is higher, the
child substitutes the individual with worst fitness in the population. In the end, the population is re-

ordered by fitness.

20 Chapter 3. An Evolutionary Algorithm for Solving the MISFLP

3.5. Mutation

The mutation is carried out in each iteration with a fixed probability of prMutate. Again, it receives
a randomly-selected parent from the current population which will be mutated. This current population
includes the result of the selection after the crossover, so it could be possible to choose the selected
crossover child as the individual to mutate. The individual to mutate is started as equal to this parent,
and will have some number of genes changed. This number is randomly chosen between a lower
and an upper bound. The lower bound is the maximum of 1 and mutRate — 1, mutRate being a fixed
parameter. This ensures that some mutation is carried out. The upper bound is the minimum of thll)
and mutRate + 1. Since feasible individuals can have as little as):li'l p' genes, it is necessary to set the
bound so as to avoid redundant operations.

For each gene changed, we first set the permutation as impossible if there is only one period in
which facilities open. This is an implementation issue and really has no effect on the usefulness of
the algorithm, since we are focusing on the multi-period instances. Then, a random period ¢ with open
facilities is chosen, as well as a facility i in the set m' of facilities newly opened at period 7 of individual
m.

With probability %, a permutation of facilities is carried out. The permutation is with respect to

1

a random unused facility with a probability of 7

meaning that a new facility will substitute i. This
is the only way that facilities not present in the original population can be introduced. If there are no
unused facilities, the procedure is repeated for the next gene to mutate. Otherwise, the permutation is
with respect to another randomly-chosen period 7 and i/ € m’. In this case, i is substituted by i’ and
vice versa. If the facilities opening in that period are close to the minimum, it is more likely that this
permutation is carried out.

When there is no permutation, a random i € m' is removed from that period. With probability 1 — |Tl|’
i is appended to another random period. This accounts for the facility being removed from the individual
completely. Notice that the probabilities are set up in such a way that no matter the random outcome,
the mutated individual will be feasible.

Another mechanic introduced is that which allows facilities to be completely removed from a period,
without permutation. The removal, combined with the moving of excess facilities, takes advantage of the
structure of the problem, allowing for more rich exploration of the search space than simple permutation.

After this, the periods with facilities are updated and the loop is repeated for the remaining number
of genes to mutate.

The mutated individual is compared to its respective parent and goes through the selection operator,

as after the crossover. The pseudocode of the mutation procedure can be seen in Algorithm 2.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

Data: parent, mutRate, p, facilities, |T|
Result: mutated
initialize mutated individual as parent;
mutRate < random between (max(mutRate-1,1) and min(mutRate+1,sum(p)));
mutRate <— min(mutRate, number of facilities opened in excess of p);
for k in 1:mutRate do
t + random period in which to mutate a gene;
i + facility in period #;
if % (1) <minimum facilities to open in t/facilities open in t then
if % (1)<1/|T| then
‘ i +— random unused facility;
else
f < other random period,;
J < random facility in period 7;
i +— j (permutation in respective periods);
end
else
remove i from original period;
if % (1)>1/|T| then
f < other random period,;
append i to 7;
end

end
end
Algorithm 2: Pseudocode for the Mutation operator

21

Chapter 4

Computational Study

The algorithm presented in Chapter 3 has been subject to a thorough computational study. On this

section, these results will be presented and put in context.

4.1. Methodology

The algorithm has been implemented in RStudio 1.1.456 with R 3.4.2 and the package cplexAPI
1.3.3 to interface with ILOG CPLEX Callable Library 12.8.0. CPLEX uses all four available cores
for the computation whereas RStudio only uses one processor core. When calling CPLEX through the
package cplexAPI, the amount of cores used is one as well. The discrepancy in number of cores used
has not been accounted for in the results presented since downgrading the execution of the optimizer to
one core would be illogical and the implementation of the algorithm does not allow for parallelization in
an obvious fashion. The programming language used is good enough for a proof-of-concept algorithm,
and it is assumed that, had it been programmed in a compiled language such as C, running times and
result quality would have increased accordingly.

Two main computational studies have been carried out on an Intel Core 17-870 processor with 2.93
GHz of base clock speed and 8GB of 1066 MHz DDR3 RAM. The pilot tests for the setting of para-
meters and graph generation were carried out on a Mac running an Intel Core i5-6267U Processor at 3.1
GHz clock speed and 16 GB of 2133 MHz LPDDR3 RAM. The RAM capacity was not a bottleneck for
either configuration, since the test instances took up much less than that.

The set of instances considered is the same as the one used in [2], and they are used for the sake
of comparison. The set consists of 195 instances with parameters ranging in |T| € {4,5,6,7,8,10,12},
1| = {8,10,12,15,20,30} and |J| = {50,100, 150,200,500}. The first instances generated in such a
manner are the ones chosen. For more details on the random distributions used to generate the instances,

check [2]. The optimal solution of the MISFLP instances was calculated with CPLEX, keeping track of

23

24 Chapter 4. Computational Study

the running time. The quality of the results from the EA was then based on these exact solutions.

4.2. Parameter Choice

The experiments are carried out as follows. A pilot study is responsible for fine tuning the parame-
ters used in the whole computational study. For the size of the population to initialize, it is determined
that 100 is enough to reach sufficient convergence both in big and small instances. Lower values resulted
in the EA being stuck in local minima at small instances. Higher populations took too long to compute
without achieving significantly better results. It was observed that the crossover operator struggled to

bring out the good individuals, and the reliance was too much on mutation.

The probability of mutation is set at 30% and has been corrected afterwards to 60%. Such high
probabilities of mutation are not very common at all in the EA research, but because of the unique
choice of the selection operator, the proposed EA has an order of magnitude higher mutation. The
reason is because the selection protects the mutation, discarding the mutated individual if its fitness is
not appropriate. In this way, it behaves like a maturation or local search. The amount of mutation, upon

which the amount of genes to mutate is chosen, is set at 1.

The minimum Hamming distance between two individuals is 3, so individuals with distance 3 or

lower to their respective parent & substitute the parent and not the one with the worst fitness.

The first computational study used the EA with only random initialization of the population. This
means that the whole 100 individuals initialized were random both in the amount of opened facilities

and which ones were chosen.

Two sets of experiments were carried out. On both, the 195 chosen instances are solved 5 times each
with set seeds for the random variables. The termination criteria are different depending on the size of
the instances. For the smallest instances (|| = 4,|I| < 20 and |J| < 150), the algorithm is stopped after
3% 107 iterations without a new individual with best fitness. For instances such that |T'| < 7, |I| < 12 and
|J| < 150, the algorithm is stopped after 10* iterations without a new individual with best fitness. On

the remaining instances, the algorithm is allowed to run for 10 minutes.

The ordering by size of the instances first considers the periods, then the facilities available and then
the customers. So an instance with |T| = 5,|I| = 10 and |J| = 150 is considered bigger than one with
|T| = 4,|I| =30 and |J| = 500.

These criteria were set after comparing the obtained solutions with the optimal solution in pilot
studies. However, it is not necessary to solve the optimisation problem, and similar results can be

obtained by studying the evolution graphs of instances, such as the ones in Figures 4.1 and 4.2.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 25

E4_P10_C500(1) E7_P30_C500(1) E12_P30_C500(1)

295000

Best Fitness
Best Fitness
Best Fitness

285000
1

410000 420000 430000 440000

236600 237000 237400 237800

T T T T T T T T T T T T T
500 1000 1500 0 1000 2000 3000 4000 5000 6000 0 2000 4000 6000 8000

o

Iterations Iterations Iteration

Figure 4.1: Evolution graphs of the fitness function in small, medium and big instances, respectively

E4_P10_C500(1) E7_P30_C500(1) E12_P30_C500(1)
— (=]
1 g
8 g 7]
< o <
5 o
%) 8 |
o~ o o
2 o 2 & 2 3
o 3 @ 3 8 -
s ¥ 4 s s @
[iL i [
£ g §7
o m <
NI @ |
j=3 (=]
2 | 8 |
8 T T T T T T T T T T T T 3 T T T T T
o~ <
0 5 10 15 0 20 40 60 80 100 120 140 0 100 200 300 400
Time (s) Time (s) Time (s)

Figure 4.2: Evolution graphs with respect to running time of the fitness function in small, medium and
big instances, respectively

4.3. Improving the Decoupled Model

The computational study in [2] includes the solution of the instances with CPLEX in a decoupled
manner, i.e. period by period. The optimal location of facilities considering the information from just
the first period is found. Then, given these facilities, the optimal location for the following period is
obtained. Proceeding in this manner until all periods are considered results in a solution of the MISFLP
that is not optimal. However, this decoupled problem is much faster to solve than the original MISFLP,
a speed increase of the order of 10?. For instances of average size, it is likely faster to solve than with the
proposed EA as well. The shortfall of the method is that the non-optimal solution cannot be improved
further and its structure is usually not desirable. In fact, this procedure yields better optima in the initial
periods but worsens as unforeseen costs crop up. The final cost obtained with this artificial decoupling
is higher than the actual minimum cost. For the studied instances in [2], the average percent deviation
is 2.6%. It is important, then, to set proper termination criteria for the EA such that the GAP reached
is lower than the artificially decoupled optimum. Otherwise, the decoupled problem is much faster than

the EA and the benefits of using the heuristic decrease.

26 Chapter 4. Computational Study
4.4. First Experiment

The first experiment has a randomly initialized population of size 100, 30% probability of mutation,
1 as the amount of mutation and minimum Hamming distance 3.

The quality of the results from the first experiment is shown in Table 4.1. Specifically, the average
percent GAP and the maximum GAP of the 5 iterations is shown. The GAP is a measure of the quality
of the achieved solution, calculated as follows:

bestga — opt
opt

* 100

The percentage GAP is where opt is the optimum value of the objective function, as calculated by
CPLEX and bestg4 the best individual in the population at the termination of the evolutionary algorithm.
Lower GAPs are better, and GAPs equal to 0 mean that the optimum is reached. These cases are marked
with an asterisk.

Since heuristic methods should produce quick solutions, the computational times between the EA
and the CPLEX optimisation are compared. Specifically, 14, the time in seconds that it takes the EA to
obtain the individual with the best fitness before termination of the EA is compared to time,,;, the time
to reach the optimum by CPLEX.

The ratio fast shown in Table 4.2 is calculated as follows:

t(}pt
TEA

Values of fast close to 1 mean that no discernible speed difference exists between the EA and CPLEX
for solving a given instance. Values higher than 1 correspond to instances where the EA is faster than
CPLEX. These cases have been prepended with a dot to help distinguish them. In Table 4.2, the average
tga are also shown.

A quick summary of the results obtained from the first experiment is the following. In 88% of the
cases, the optimal solution is reached. Overall, the solution quality is quite good, with an average GAP
of 1.03 % 10~*. The worst instance has GAP 3.60 x 10~3, which is more than an order of magnitude
lower than the expected GAP from a decoupled model. This validates the used termination criteria.

In terms of speed, on average the EA is half the speed of CPLEX. However, this is due to the
instances not being big enough. Large instances cannot be easily optimised and thus are the goal of
heuristic methods. If we only consider the instances where the EA is faster, we find that for 29 of the
bigger instances, the EA is 7.9 times faster on average. As for the biggest instance available (|T'| = 12,
|I| = 30 and |J| = 500), the EA is up to 39 times faster.

Out of the 195 attempted instances, only in 8 of them none of the 5 attempts reach the optimum.
For these instances, the average GAP is 1073 and the average minimum GAP, 5% 10~*. They are also

solved efficiently, with the EA being 5.3 times faster on average.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

i
8 10 12 15 20 30
|T| |J| av. max av. max av. max av. max av. max av. max
4 50 * * * * * * * * 01 04 012 034
100 * % *o0F * * * * * * 0.02 0.04
150 * * * * * * * * * * 0.04 0.12
200 * % *oO* * * * * * * 0.01 0.02
5 50 * * * * * * * * * * 0.13 0.36
150 * * * * * * * * 0.9 0.15 0.01 0.03
200 * * * * * * * * * * 0.02 0.07
500 * % *ooE * * * * * * 0.05 0.22
6 50 * 0% koooE * * * * * * 0.10 0.17
100 * * * * * * * * * * 0.03 0.17
150 * % *o* * * * * * * 0.12 0.23
200 * * * * * * * * * * 0.01 0.05
500 * % *ooE * * * * * * 0.05 0.13
100 * * * * * * * * * * 0.01 0.01
150 * * * * * * * * 0.01 0.02 * *
200 * % *o0F * * * * * 0.02 0.02 0.07
8 50 * * * * * * * * * * 0.05 0.06
150 * * * * * * * * * * 0.06 0.16
200 * % O * * * * * * 0.02 0.05
500 * * * * * * * * * * 0.01 0.02
10 50 * * * * * * 0.01 0.07 0.09 0.19
100 * * * * * * * * 0.02 0.02
150 *o0F * * * * * * 0.01 0.06
200 * * * * * * * * 0.03 0.13
500 *ooOE * * * * 0.14 0.21 0.21 0.28
12 50 * * 0.02 0.05 * * * 0.01
100 * * * * * * 0.04 0.05
150 * * * * 0.04 0.10 0.02 0.07
200 * * 0.01 0.04 * * 0.02 0.04
500 0.01 0.07 0.06 0.17 0.07 0.18 020 0.32

Table 4.1: Average and maximum GAP

27

28 Chapter 4. Computational Study

/]
8 10 12 15 20 30
IT| |J| tga(s) fast tga (s) fast tga (s) fast rga (s) fast tga (s) fast 1ga (s) fast

4 50 128 0.18 7.69 0.03 2.62 0.07 852 0.03 15.66 0.01 51.23 0.01
100 1.12 -1.03 3.84 026 633 0.08 9.25 0.04 19.55 0.02 5577 0.01
150 274 0.13 17.00 0.11 6.80 0.11 10.50 0.10 14.21 0.15 4096 0.04
200 4.82 0.15 7.03 0.13 1690 0.10 12.78 0.23 5256 0.14 2756 0.11
500 17.36 0.26 28.37 -1.07 13.39 0.17 57.73 0.29 70.66 0.09 90.48 0.33

5 50 4.06 005 207 012 746 0.04 1527 0.01 19.81 0.01 50.36 0.01
100 489 033 8.60 0.14 1221 0.05 839 0.08 3747 0.03 34.09 0.11
150 17.29 0.05 3345 0.09 3575 0.04 31.17 0.10 63.72 0.04 52.63 0.03
200 9.19 0.09 32.57 0.05 54.57 0.03 4474 033 27.21 -1.01 88.86 0.05
500 97.86 0.15 70.75 0.24 84.49 0.09 15199 0.21 141.58 0.76 242.42 0.05

6 50 343 020 523 0.11 1541 0.06 1227 0.10 41.46 0.05 5990 0.01
100 10.07 0.12 10.37 0.13 10.70 0.06 25.13 0.29 39.02 0.02 5040 043
150 10.88 0.43 38.62 0.04 24.80 0.26 13.35 0.10 36.86 0.67 106.83 0.02
200 3290 0.13 26.55 024 4699 0.06 21.33 0.11 6937 0.17 7443 0.87
500 27.68 0.35 57.60 0.10 65.74 0.12 124.43 0.17 261.79 0.07 333.93 0.07

7 50 528 0.12 847 0.17 12.86 0.04 191.58 0.01 38.56 0.02 75.26 0.03
100 16.77 0.09 23.68 0.35 21.11 046 4580 0.49 146.78 0.15 253.10 0.02
150 15.20 0.15 47.18 036 15.17 0.06 196.22 0.56 55.04 0.06 104.88 0.84
200 38.07 0.26 52.37 0.10 90.54 0.16 100.45 0.50 102.04 0.07 142.47 0.05
500 53.20 -1.48 97.12 0.46 68.04 0.34 107.40 0.43 275.63 0.41 281.56 +6.28

8 50 12.61 0.04 5150 0.02 20.34 0.04 28.62 0.02 76.28 0.02 256.10 0.01
100 1577 0.14 65.29 0.12 152.78 0.12 50.33 0.09 241.05 0.01 14930 0.60
150 116.14 0.04 94.34 0.09 71.43 0.72 23435 0.15 213.84 0.78 306.26 0.06
200 242.97 0.02 278.68 0.02 165.77 0.13 303.25 0.18 203.47 0.19 371.19 0.64
500 34.64 -1.69 90.08 -1.45 27449 0.65 280.44 0.72 367.50 0.07 529.49 0.29

10 50 24.14 0.09 4224 0.15 97.70 0.10 251.48 0.02 33229 0.01
100 120.29 0.02 29.60 0.53 193.74 0.27 283.23 0.48 227.68 0.02
150 123.75 0.23 322.71 0.18 73.44 0.60 343.99 0.49 304.13 0.38
200 80.26 0.22 5492 0.37 145.60 0.78 105.95 0.12 261.61 0.39
500 141.68 -1.02 191.44 -1.65 402.21 0.33 533.68 -3.07 550.80 0.65

12 50 50.23 0.21 15595 0.14 219.74 0.20 327.33 0.05
100 14734 0.06 69.52 0.29 234.09 0.45 289.90 0.16
150 92.27 0.26 245.08 0.83 189.86 0.25 308.20 0.53
200 165.79 0.50 115.42 «2.26 295.07 0.96 318.30 0.25
500 316.58 -1.66 448.89 -1.29 564.10 -2.16 491.38 -34.84

Table 4.2: Average times of EA and comparison with CPLEX optimum

A Multi-Period Facility Location Problem - Carlos Sandez Garcia 29

4.5. Second Experiment

An additional experiment has been carried out with mixed population initialization and higher muta-
tion probability at 60%. The mixed strategy for initializing the population consists of a random initiali-
zation of half of the population and a skewed initialization of the other half. With the chosen parameters,
50 individuals are random and the next 50 are skewed towards opening less facilities. As noted in Sec-
tion 3.2, the skewed distribution used is a left-skewed Beta(1,5) scaled so that the bounds for minimum
and maximum possible facilities match those of the instance. The probability of mutation was also
adjusted, since pilot studies showed good results with this mutation rate.

As before, the quality of the solutions achieved is shown in Table 4.3 and the time performance in
Table 4.4. This experiment shows lower GAP with more optima being reached and at slightly faster
speed.

A more in-depth summary is the following. More optima are reached, with 90% of the cases achiev-
ing the optimum. The solution quality is better, with an average GAP of 8.86 % 10~>. The worst instance
also has lower GAP, at 3.44 % 1073.

In terms of speed, the EA is again half the speed of CPLEX on average. The restriction to the 27
instances where the EA is faster results in improvements of speeds as well, with the EA being 8.5 times
faster on average. For the biggest instance available, the EA is up to 44 times faster.

Only 6 instances are not solved optimally in any of the 5 attempts, for which the average GAP is
1.3 1073 and the average minimum GAP, 6.3+ 10~*. Since there are 2 fewer instances not solved

optimally, now the EA is 6.7 times faster on average.

30

Chapter 4. Computational Study

1
8 10 12 15 20 30
|T| |J| av. max av. max av. max av. max av. max av. max
4 50 * * * * * * * * * * 0.14 0.21
100 * % *ooE * * * * * * 0.01 0.04
150 * * * * * * * * * * 0.02 0.04
200 * * * * * * * * * * 0.01 0.03
200 * * * * * * * * * * 0.02 0.07
500 *® % Kook * * * * * * 0.01 0.02
6 50 * % *ooE * * * * * * 0.13 0.33
100 * * * * * * * * * * 0.01 0.04
150 * * * * * * * * * * 0.03 0.17
200 * % koK * * * * * * 0.03 0.15
500 * * * * * * * * 0.03 0.16 * *
100 * % Kook * * * * * * 0.01 0.01
200 * % KooK * * * * * * 0.01 0.03
8 50 * * * * * * * * 0.04 0.18 0.01 0.05
150 * * * * * * * * * * 0.07 0.21
200 ¥ * * * * * * * * * 0.03 0.05
10 50 kooOE * * * * 0.01 0.07 0.13 0.19
100 * * * * * * * * 0.02 0.05
150 KooK * * * * 0.01 0.04 =* *
200 * * * * * * * * 0.02 0.12
500 * * * * * * 022 028 01 02
12 50 * 0.01 0.01 0.05 * * 0.01 0.03
100 * * * * * * 0.02 0.05
150 * * * 0.02 0.05 0.09 0.02 0.07
200 * * 0.01 0.04 * * 0.03 0.07
500 0.03 0.05 * * 0.12 028 0.25 034

Table 4.3: Average and maximum GAP

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

7]

/]

|

8

10

12

15

20

30

tea (s)

fast

tea (s)

fast

tea (s)

fast

tea (s)

fast

tea (s)

fast

tea (8)

fast

4

10

12

50
100
150
200
500

50
100
150
200
500

50
100
150
200
500

50
100
150
200
500

50
100
150
200
500

50
100
150
200
500

50
100
150
200
500

1.79
1.28
278
6.13
22.48

5.04
5.84
21.15
13.27
132.18

4.35
15.07
14.74
28.84
16.41

4.17
59.19
25.96
69.44
46.49

9.78
19.35
77.07

264.85
51.43

0.26
0.22
0.16
0.09
0.44

0.03
0.67
0.05
0.11
0.31

0.21
0.21
0.37
0.21
0.75

0.21
0.02
0.19
0.27

2.36

0.13
0.18
0.09
0.04

-1.28

7.53
3.38
13.16
8.22
23.98

3.22
12.45
16.19
38.17

108.01

4.61
10.12
44.59
35.88
44.46

7.17
14.3
53.38
78.34
96.44

68.26
237.4
144.51
268.56
64.26

26.17
196.71
97.12
100.26
124.64

0.07
0.36
0.51
0.15

-1.72

0.07
0.16
0.16
0.06
0.26

0.14
0.17
0.08
0.28
0.19

0.37
0.85
0.39
0.10
0.79

0.02
0.19
0.17
0.13

2.41

0.12
0.02
0.36
0.23

-1.41

2.11
9.12
7.13
16.74
13.36

6.43
2591
43.96
58.75
87.68

11.31
13.09
51.94
38.57
74.31

15.36
22.77
14.77
166.85
72.65

18.79
191.6
72.47
336.02
228.65

47.24
38.59
223.27
63.52
246.87

43.69
116.8
128.59
331.34
315.78

0.17
0.07
0.16
0.22
0.21

0.06
0.06
0.04
0.04
0.09

0.12
0.06
0.54
0.12
0.15

0.06
0.50
0.09
0.16
0.57

0.06
0.20
0.80
0.52
0.93

0.18
0.49
0.27
0.38
-1.48

0.24
0.12
0.40
0.67
+2.80

9.23
8.64
16.43
16.05
35.98

19.08
13.2
28.84
29.97
173.88

11.1
25.17
16.87
22.41
75.53

10.8
24.75
269.44
249.16
98.97

31.54
27.56
99.85
230.44
199.04

49.33
102.88
91.04
130.67
333.17

87.8
97.07
192.57
183.25
473.88

0.05
0.06
0.12
0.25
0.91

0.02
0.07
0.16
0.48
0.46

0.14
0.43
0.10
0.15
0.95

0.05
-1.21
0.65
0.65
0.50

0.02
0.11
0.68
0.62
-1.66

0.14
0.69
-1.20
-1.01
0.43

0.34
0.25
-1.09
+2.46
1.75

16.75
21.45
13.65
35.93
65.89

20.13

48.4
49.52
24.82
149.5

31.34
27.02
41.54
110.81
213.78

33.1
99.17
51.95
91.58

333.44

136.27
100.54
171.55
239.32
349.66

175.17
284.2
222.49
105.34
561.1

139.42
24442
241.66
270.61
512.07

0.02
0.04
0.18
0.21
0.10

0.02
0.04
0.11
1.25
0.89

0.09
0.05
0.64
0.25
0.11

0.03
0.29
0.08
0.08
0.51

0.02
0.04
0.81
0.29
0.09

0.03
0.73
0.75
0.13
-3.40

0.23
0.52
0.45
-1.47
+2.90

55.09
39.33
42.92
56.36
54.09

55.31
26.53
77.68
112.58
259.39

71.56
61.64
122.56
102.22
297.41

85.83
176.11
79.55
129.89
197.15

280.74

82.17
245.79
333.32
494.19

216.13

250.9
296.85
348.25
537.98

267.39
391.5
342.36
4217.5
512.66

Table 4.4: Average times of EA and comparison with CPLEX optimum

0.01
0.02
0.04
0.10
0.79

0.01
0.26
0.03
0.07
0.07

0.01
0.62
0.02
0.88
0.09

0.04
0.04
-1.71
0.08
-12.64

0.01
-1.59
0.19
0.82
0.39

0.02
0.04
0.62
0.38
0.92

0.08
0.16
0.61
0.31
+45.25

31

Chapter 5

Conclusions

In this work, an evolutionary algorithm for the Multi-Period Facility Location Problem is proposed.
The objective is to achieve good results quickly for instances where the linear solver fails to achieve
optimality in a reasonable time. The initial part of this work focuses on introducing the MISFLP and
the existing available research on evolutionary algorithms applied to the p-median problem. We develop
an evolutionary algorithm that is able to solve a multi-period problem. The computational study shows
enticing results that validate the proof-of-concept implementation in R. Both the quality and the speed
of the algorithm are satisfactory and justify the use of this heuristic over the decoupled model or the

MISFLP model stated in Section 1.5 for bigger instances.

To the authors’ knowledge, this is the first case of an evolutionary algorithm applied to a Multi-
Period FLP. The developed operators and successful results encourage further research into these kinds

of problems by means of evolutionary-based heuristics.

Many extensions of the base algorithm were considered, but they exceeded the scope of the project.
The running time termination criteria could be modeled so as to be dynamic and depend on the size of
the studied problem. A more detailed computational study focusing on the benefits of different popula-
tion sizes and strategies for choosing the proper amount is also warranted. As for the specific algorithm,
several extensions that show promise and may be considered in the future are the following: adding a
proper maturation stage with a Local Interchange heuristic, dynamically adjusting the algorithm para-
meters based on the diversity of the population and finding a faster fitness, since it takes up most of
the computation time. Similarly, a refactoring of the code or a translation to C would likely improve
the efficiency. The MISFLP decoupled model could also be programmed and solved for the analysed

instances, in order to compare the GAP instance by instance.

33

34 Chapter 5. Conclusions
Acknowledgements

This research has been supported by the Vice-Rectorate of Scientific Policy of the University of

Zaragoza (PEX-18-004). This support is gratefully acknowledged.

Appendix A

Code of the Evolutionary Algorithm

Code/main.R
#Main file

library (’cplexAPI’) #Used for solving the allocation
subproblems

library (’ gtools) #Used for the natural sorting of
filenames

source ('parse .R’)
source(’ genetic .R’)
source(’init.R”)
source(’allocate .R’)
source(’crossover.R’)
source (’mutation.R”)
source(’selection.R’)

#Parameters :

dataSeed <— 45004
solveSeeds <— ¢(61420, 45498, 47284, 86094, 44162, 11854,
82696, 78401, 74861, 82818, 42284, 44249, 94029, 22427,
57635, 57043, 69665, 58334, 11994, 36237,
27954, 96102, 22073, 13746, 27740, 83262,
31764, 50826,
79943, 76675)

filepaths <— list.files (path = .. /datosMISFLP/’)[—1]
filepaths <— paste(’../datosMISFLP/’, filepaths, sep =)
filepaths <— mixedsort(filepaths)

numlter <— 5 #Less than 30

chosenProblems <— filepaths[c(1:195)%10-9] #0nly solving the
first instance of each problem

bigWithGap <— chosenProblems|[c
(113,117,119,141,146,148,149,150,166,167,168,171,172,174,175,

35

48

49

Chapter A. Code of the Evolutionary Algorithm

180,181,184,188,190,191,192,193,194,195)

36
]
sizePopulation <— 100 #Number of
prMutate <— 0.6 #Probability
stage each iteration
mutRate <— 1
maxNoBestlter <— 3000 #Maximum
without a new best fitness
maxTime <— 600
minDiff <— 3

iterations

results

father and child

autoMaxNoBestlter<— TRUE

maxNoBestlter based on preset

<— ’results. txt

for (problem in chosenProblems) {
cat(sprintf(’Creating problem from file

data <— parse(problem)

sizePeriods

#Automatically

<— data$sizePeriods[1]

sizeFacAvailable <— data$sizeFacAvailable[1]

sizeCustomers

n <— data$n
customers to start

p <— data$p
to open per period

c <— data$c
facilities by period

f <— data$f
period [[t]][[1]]

if (sum(p) > sizeFacAvailable) {
print(’ Insufficient
next ()

}

if (sum(p) < mutRate) {

print(’ Attempting to mutate more facilities

next ()

}

if (length(p[p != 0]) < 2){
print (’Near—empty
next ()

}

if (sizePeriods < 3){

individuals

<— data$sizeCustomers[1]

#Difference

individuals

to enter the mutation

#Amount of genes to mutate

allowed

#Maximum time allowed
#Minimum difference between kept

select

...\n"))

in minimum number of

receiving product from period to period

#Vector with minimum of facilities

#Assignment

[(CeTT00y 1I001]]

cost of customers to

#Cost of running facility from

Facilities)

cause problems

than possible’)

with mutation’)

84

86

87

88

89

91

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

print (’Periods too small, can cause problems with sample
generation’)
next ()

}

if (autoMaxNoBestlter) {
if (problem %in% chosenProblems[1:23]){ maxNoBestlter <— 3000}
if (problem %in% chosenProblems[24:103]){maxNoBestlter <— 10000}
if (problem %in% chosenProblems[104:195]){ maxNoBestlter <—
10000000}

}

cat(sprintf (’Problem construction finished\n’))

for (i in 1l:numlter) {
cat(sprintf (’Evolving new population...\n\n’))
time <— system.time(lst <— genetic(solveSeeds[i],
sizePopulation , p, n, sizeFacAvailable,
c, f, prMutate, mutRate,

maxNoBestlter, minDiff ,
maxTime))

elapsed <— unname(time[3])

df <— Ist[[1]]
bestTime <— 1st[[2]]

fileConn <— file(results ,open="at")
writeLines (sprintf ("%s\ t%s\ t%s\ t%s \ t%s \ t %6f \ t %2\ t%2f° ,dataSeed
solveSeeds[i], maxNoBestlter,sizePopulation ,
problem, df$fit[[1]],bestTime[[1]],elapsed),
fileConn)
close (fileConn)
rm(df)

Code/genetic.R

#This is the main genetic function, whith calls to the different

functions .

#The algorithm initializes the population and does crossover and

mutation in each iteration.

#It stops after the required stop criteria are met.

37

B

#The parameters are:

chosenSeed: Seed for the random calls in this
problem

sizePopulation: Size of the population to initialize

p: Vector with minimum of facilities to
open per period

n: Difference in minimum number of

customers to start receiving product from period to period

10

40

41

43

44

38

H+

sizeFacAvailable:
c:
facilities
f:
1110 i]]
prMutate:
mutRate:
maxNoBestlter:
best fitness
minDiff :
and child

genetic <— function
sizeFacAvailable

set.seed(chosenSe

Chapter A. Code of the Evolutionary Algorithm

Number of available facilities
Assignment cost of customers

by period [[t]][[jII[[1]]

by index
to

Cost of running facility from period [[t

Probability of mutation

Amount of genes
iterations

Maximum

Minimum difference between kept

(chosenSeed ,

, ¢, f, prMutate =

maxNoBestlter =
120)

ed)

sizePeriods <— length (p)

sizeCustomers <—

cat(sprintf (’The
cat(sprintf (’The
cat(sprintf (’The
cat(sprintf (’The
cat(sprintf (’The

#Set up allocation

sum(n)

chosen seed 1is
population size is
number of periods is
number of facilities
number of customers

env <— openEnvCPLEX ()
environment

prob <— initProbCPLEX (env)

nc <— sizePeriods#sizeCustomers
variables

nr <— sizePeriods + sizeCustomers
constraints

rhs <— c(rep(1,sizeCustomers), n)
subproblem restriction rhs

sense <— rep(’E’, nr)
are equalities

Ib <— rep(0, nc)
variables

ub <— rep (CPX_INFBOUND, nc)
bounded on the upper side

beg <— 2%¢(0:(nc—1))
rows

cnt <— rep(2, nc)
zero elements per row

val <— rep(l, 2=xnc)

ind <— ¢()

0.1,

is

%5d\n"’ |
s \n’ ,
90s\n’ ,
is %s\n’,
P%s\n’ ,

subproblem with CPLEX

to mutate
allowed without a new

father

sizePopulation , p, n,
mutRate
10000, minDiff

=1,

= 3, maxTime =

chosenSeed))
sizePopulation))
sizePeriods))
sizeFacAvailable))
sizeCustomers))

#0pen CPLEX

#Assign problem
#Number of

#Number of
#Allocation
#AIll restrictions
#Nonnegative

#Variables

are not

#Begin indices of

#Number of non—

#Non—zero elements
#Initialize column

46

47

48

49

54

56

58

64

74

A Multi-Period Facility Location Problem - Carlos Sandez Garcia 39

indices
for(i in ¢(0:(nc—1))){
ind <— append(ind, i%%sizeCustomers)
ind <— append(ind, sizeCustomers + floor(i/sizeCustomers))
}
obj <— rep(0, nc) #Initialize empty
objective function

copyLpCPLEX (env, prob, nc, nr, CPX_MIN, obj, rhs, sense, beg, cnt,
ind, val, 1b, ub, NULL)
presolveCPLEX (env, prob, CPX_ALG_AUTOMATIC) #Presolve
objective —less problem

#Start problem

population <— init(sizePopulation, p, f, sizeFacAvailable,
sizePeriods)

allol <— allocate (env, prob, population, ¢, f, sizeCustomers,
sizePeriods)

fitness <— allol [[1]]

allocateElapsed <— allol [[2]]

df <— data.frame(popu=population, fit=fitness) #Load initialized
and evaluated population

df <— df[order (unlist (df$fit)),] #Order population
in ascending fitness
dfchild <— dfmutated <— df[1,] #Load dummy

individuals for children and mutations

iter <— 0

noBestlter <— 0

bestFit <— df$fit [1][[11]]

start <— Sys.time ()

while ((difftime (Sys.time (), start, units = "secs") < maxTime) && (

noBestlter < maxNoBestlter)) {

#Crossover section

parentsIndex <— sample(l:sizePopulation, 2) #
Randomly select parents
child <— crossover (df, parentslndex , sizePeriods) #

Create child by crossover of the parents
allo2 <— allocate (env, prob, child, ¢, f, sizeCustomers,
sizePeriods , allocateElapsed) #
Evaluate children fitness
childFit <— allo2 [[1]]
allocateElapsed <— allo2[[2]]
dfchild <— data.frame(popu=child, fit=childFit)
df <— selection (df, dfchild, parentlndex = parentsIndex[order (
unlist (df$fit[parentsIndex]))[1]],

99

100

101

102

103

104

105

106

119

121

122

124

126

40

}

Chapter A. Code of the Evolutionary Algorithm

minDiff , sizePeriods , sizePopulation) #
Proceed with selection of child

#Mutation section

if (runif(1) < prMutate) {

}

parentIndex <— sample(1:sizePopulation, 1) #
Randomly select individual to mutate
mutated <— mutation (df[parentIndex ,1][[1]], mutRate, p,
c(l:sizeFacAvailable), sizePeriods) #
Create child by mutation of selected
individual
allo3 <— allocate (env, prob, mutated, ¢, f, sizeCustomers,
sizePeriods , allocateElapsed) #
Evaluate fitness of mutated child
mutatedFit <— allo3[[1]]
allocateElapsed <— allo3[[2]]
dfmutated <— data.frame(popu=mutated, fit=mutatedFit)
df <— selection (df, dfmutated, parentlndex , minDiff,
sizePeriods , sizePopulation) #
Proceed with selection of mutated child

#Check if new best fitness achieved

if (bestFit > df$fit [[1]]){

}

bestFit <— df$fit[[1]]
noBestlter <— 0
bestTime <— difftime (Sys.time(), start, units = "secs")
cat(sprintf(’In iteration %5d a new optimal minimum of %2f was
achieved in %2f seconds\n’,
iter , bestFit, bestTime[[1]]))
print (’allocate ”)
print (allocateElapsed)
print(’crossover ’)
print (crossoverElapsed)
print (’ mutate *)
print (mutateElapsed)
print (’select *)
print(selectElapsed)
allocateElapsed <— 0
start <— Sys.time ()

H oH O H H H H H H H*

else {

}

noBestlter <— noBestlter + 1

iter <— iter + 1

cat(sprintf (’Stop citeria reached in %s iterations\n\n’, iter))
return (list (df, bestTime))

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 41

Code/init.R

#This function initializes the population.
#The total number of facilities to open is randomly chosen between
the min and max possible.

#The parameters are:

sizePopulation: Size of the population to initialize

p: Vector with minimum of facilities to
open per period

f: Cost of running facility from period [[t
1Tl

sizeFacAvailable: Number of available facilities by index

sizePeriods: Number of periods

init <— function(sizePopulation, p, f, sizeFacAvailable, sizePeriods

) {

population <— I(vector("list", sizePopulation))
for(i in 1l:sizePopulation){
population[[i]] <— I(vector("list", sizePeriods))
if (i<sizePopulation/2){

#Total number of
facilities that open

totalFacOpen <— sample(c(sum(p):sizeFacAvailable) ,1)
}
else {
totalFacOpen <— floor (sum(p)+(sizeFacAvailable —sum(p))=
rbeta(1,1,5))
}
facOpenPer <— p
#Facilities that
open each period
facNotUsed <— c¢(1l:sizeFacAvailable)

if (totalFacOpen > sum(p)){
for(k in 1:(totalFacOpen—sum(p))) {
moreFacInPer <— sample(1:sizePeriods ,1)
facOpenPer[moreFacInPer] <— facOpenPer[moreFacInPer] + 1
#Randomly choose periods in which to open

}
#more than the minimum of facilities
}
for(t in 1:sizePeriods){
if (length (facNotUsed) == 1){

#Catch necessary because
sample(c(3),1) could be 2
chosenFacInPer <— facNotUsed

40

41

42

44

46

47

42 Chapter A. Code of the Evolutionary Algorithm

}
else {
chosenFacInPer <— sample(facNotUsed, facOpenPer[t])
#Randomly choose unused facility to open in
period t

}
population[[i]][[t]] <— chosenFacInPer

facNotUsed <— facNotUsed[!facNotUsed %in% chosenFacInPer]
#Update used facilities

}

return(population)

}

Code/allocate.R

#This gives the optimal allocations of demand of the sets of
facilities in the participants

#The parameters are:

env: CPLEX environment

prob: CPLEX problem preloaded with data

participants: Individuals to be allocated (assumed
same dimensions)

c: Assignment cost of customers to

.facilities by period [[t]][[j]][[1i]]

f: Cost of running facility from period [[t
1100 1]]

sizePeriods: Number of periods

sizeCustomers: Number of customers

allocate <— function(env, prob, participants, ¢, f, sizeCustomers,
sizePeriods , allocateElapsed=0){

sizeAllocated <— length(participants)

nc <— sizePeriods#sizeCustomers

fitness <— I(vector("list", sizeAllocated)) #Initialize
fitness vector

dAst <— d <— I(vector("list", sizePeriods)) #Initialize

objective and dummy objective vector
for(p in 1l:sizeAllocated)({
participant <— participants [[p]]
#The problem is uncapacitated and without reallocation costs
#The objective then is the sum of the cheapest facilities for

customer j at each period from t to the end

for(t in 1:sizePeriods){

40

41

44

46

48

49

50

51

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

openFacilities <— unlist(participant[e(l:t)])

#Figure out cheapest opened facility at any given period for
the customers

d[[t]] <— lapply(lapply(seq_len(ncol(c[[t]])), function(i) c|[
t]][openFacilities ,i]) ,min)

}

for(t in 1:sizePeriods){
dAst[[t]] <— rep(0,sizeCustomers)
for (per in t:sizePeriods)({

#Find out assignation cost opening facility in period t (
stays open to the end)

dAst[[t]] <— dAst[[t]] + unlist(d[[per]])

}
}

#allocateElapsedStart <— Sys.time ()
obj <— unlist (dAst)

chgObjCPLEX (env, prob, nc, ¢(0:(nc—1)), obj) #Change dummy
objective to the calculated

lpoptCPLEX (env, prob) #Optimize
subproblem with CPLEX
result <— solutionCPLEX (env, prob)

fitness [[p]] <— result$objval

#Add running facility cost to fitness (independent from
allocation)

for(t in 1:sizePeriods){
if (length(participant[[t]]) > 0){
fitness [[p]] <— fitness[[p]] + sum(unlist(f[[t]][participan
[([t111))
}
}

#allocateElapsed <— allocateElapsed + Sys.time() —
allocateElapsedStart

}

solution <— I(vector("list", 2))
solution[[1]] <— fitness

#solution [[2]] <— allocateElapsed
return(solution)

43

[

t

44 Chapter A. Code of the Evolutionary Algorithm

Code/crossover.R

#This inputs two random parents and creates a child.

#The parameters are:

df: Dataframe with evaluated population

parents: Indices of two individuals of the
population with fitness

sizePeriods: Number of periods

crossover <— function (df, parents, sizePeriods){
orderPar <— df[parents ,][order(unlist (df[parents ,]$fit)) ,]
#Order parents to find alpha and beta

parAlpha <— orderPar[1,1][[1]]
parBeta <— orderPar[2,1][[1]]

child <— parAlpha
#Child is initialized as alpha parent

t <— sample(1:sizePeriods , 1)
#Randomly choose one period to do crossover

inter <— intersect (parAlpha[[t]], parBeta[[t]])
#Find out equal facilities in chosen period

parAlphaDist <— parAlpha[[t]][!parAlpha[[t]] %in% inter]
#Find out alpha’s distinct facilities

parBetaDist <— parBeta[[t]][!parBeta[[t]] %in% inter]
#Find out beta’s distinct facilities

lenA <— length (parAlphaDist)
lenB <— length (parBetaDist)

if (min(lenA ,lenB) > 0){
#Permutation of same—period facilities is only
for(k in 1:min(lenA ,lenB)){
#possible if both parents have distinct facilities
1 <— parAlphaDist[sample(1:length (parAlphaDist) ,1)]
#Find random distinct facility of alpha i
j <— parBetaDist[sample(1:length(parBetaDist) ,1)]
#Find random distinct facility of beta j
child [[t]][match(i, child[[t]])] <— j
#Substitute child’s i by j

for (tprime in c(1l:sizePeriods)[—t]){
#Look for j in all of other periods
if ((j %in% child [[tprime]])){
child [[tprime]][match(j, child[[tprime]])] <— i
#Substitute found child’s j by i

46

47

48

49

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

}

45

parAlphaDist <— parAlphaDist[!parAlphaDist %in% i]
#Update choices for facility permutation
parBetaDist <— parBetaDist[!parBetaDist %in% j]

}
}

if (length(parAlphaDist) >

0) {

#AIll remaining distinct facilities in alpha
for (k in 1:length(parAlphaDist)){
#are moved to other periods
child [[t]] <— child[[t]][—match(parAlphaDist[k],child[[t]])]
#Remove facility from ¢t
tprime <— sample(c(1:sizePeriods)[—t], 1)
#Randomly choose period to move facility to
child [[tprime]] <— append(child [[tprime]], parAlphaDist[k])
#Append facility to new period

}
}
#if (length (unlist(child))!=length(unique(unlist(child)))){browser
O}
childAst <— I(vector("list", 1))

childAst[[1]] <— child

return (childAst)
}

#This mutates the received

#The parameters are:
parent:
mutRate:
facilities to change)
p:
open per period
facAvailable:
sizePeriods:

mutation <— function (parent

Code/mutation.R

individual .

The individual to mutate

The amount of genes to mutate (
Vector with minimum of facilities to

Available facilities by index
Number of periods

, mutRate, p, facAvailable, sizePeriods){

mutated <— parent #Start
mutated individual as parent
nonZeroPeriods <— which(lengths (mutated) != 0) #Find

out periods where facilities are opened

mutRate <— sample (¢ ((max(mutRate —1,1) :min(mutRate+1,sum(p)))) ,1)

#Random feasible

mutation (bounded)

mutRate <— min(mutRate, sum(lengths (mutated)[nonZeroPeriods] — p))

#Avoids unfeasible

states

26

27

43

44

45

46

49

46

Chapter A. Code of the Evolutionary Algorithm

for(k in 1:mutRate){
t <— sample(nonZeroPeriods, 1) #Select

random period on which to mutate a gene

ilndex <— sample(1l:length(mutated[[t]]), 1) #Find

gene 1 to mutate (facility to change)
<— mutated[[t]][iIndex]

if (runif(l1) < p[t]/length(mutated[[t]])){ #
Permutation more likely with less open excess facilities
if ((runif(1) < 1/(sizePeriods))){ #
Permutation with unused facility
notUsed <— facAvailable[—unlist (mutated)] #A
little overkill , but global ilndex not calculated
if (length(notUsed) == 0){next()} #Quicker
than setting and updating global notUsed
if (length (notUsed) == 1){ #Catch

necessary because sample(c(3),1) could be 2
mutated [[t]][iIndex] <— notUsed

}
else {
mutated [[t]][iIlndex] <— sample(notUsed, 1) #
Substitute i with randomly chosen unused facility
}
}
else{ #
Permutation with facility in other period
if (length(nonZeroPeriods) == 2){
tprime <— nonZeroPeriods[—t]
}
else {
tprime <— sample(nonZeroPeriods[—t], 1) #
Randomly choose other period
}

jIndex <— sample(1:length (mutated [[tprime]]) ,1) #
Randomly choose facility j in tprime

j <— mutated [[tprime]][jIndex]
mutated [[t]][iIndex] <—j #
Substitute i by j in original period
mutated [[tprime]][jIndex] <— i #
Substitute j by i in the other period
}
}
else { #Move or
remove
mutated [[t]] <— mutated[[t]][—iIndex] #Remove

i from original period

if (runif(1) > 1/(sizePeriods)){

52

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia

tprime <— sample(c(1:sizePeriods)[—t],1) #
Randomly choose period to move i to

mutated [[tprime]] <— append(mutated [[tprime]], 1) #Append
i to chosen period

}

nonZeroPeriods <— which(lengths (mutated) != 0) #Update
periods when facilities are opened

}

}
#if (length (unlist(mutated))!=length (unique (unlist (mutated)))){

browser ()}
mutatedAst <— I(vector("list", 1))
mutatedAst[[1]] <— mutated

return (mutatedAst)

Code/selection.R

#This decides whether to introduce a new individual or not.

#The parameters are:

df: Main population df

dfCandidate: Database with new candidate

parentlndex: Parent against which to compare
candidate (optional)

minDiff: Minimum difference between individuals

sizePeriods: Size of the periods

sizePopulation: Size of the population to initialize

selection <— function(df, dfCandidate, parentlndex = 1, minDiff,

sizePeriods , sizePopulation){

dist <— 0 #
Initialize Hamming distance

for(t in 1:sizePeriods){
interLen <— length(intersect(df[[parentlndex ,1]][[t]],
dfCandidate [[1,1]][[t]1])) #Find number matching
facilities
maxLen <— max(length (df [[parentIndex ,1]]J[[t]]) ,length(
dfCandidate [[1,1]][[t]]))
dist <— dist + maxLen — interLen #Since
vector lengths may be different ,
} #
distance 1is counted against highest possible

if (df$fit[[parentIndex]] >= dfCandidate$fit [[1]]){ #
Candidate is only selected if it surpasses parent
if (dist > minDiff){ #

Candidate is significantly different from parent

47

)

24

48

}

Chapter A. Code of the Evolutionary Algorithm

df[sizePopulation ,] <— dfCandidate[1,]
substitutes

Candidate
}

else {

Candidate 1is
df [parentIndex ,] <— dfCandidate[1,]
substitutes

Candidate
}

too similar

worst individual

to parent

parent

df <— df[order (unlist (df$fit)),]

Population

}

return (df)

18

reordered

#

Bibliography

(1]

(2]

(3]

[4]

[5]

[6]

(7]

[8]

(9]

[10]

[11]

ALBAREDA-SAMBOLA, M., ALONSO-AYUSO, A., ESCUDERO, L. F., FERNANDEZ, E., HINO-
JOSA, Y., AND PIZARRO-ROMERO, C. A computational comparison of several formulations for

the multi-period incremental service facility location problem. TOP 18, 1 (2010), 62-80.

ALBAREDA-SAMBOLA, M., FERNANDEZ, E., HINOJOSA, Y., AND PUERTO, J. The multi-

period incremental service facility location problem. Computers & Operations Research 36, 5

(2009), 1356-1375.

ALP, O., ERKUT, E., AND DREZNER, Z. An efficient genetic algorithm for the p-median problem.

Annals of Operations research 122, 1-4 (2003), 21-42.

ALUMUR, S. A., NICKEL, S., SALDANHA-DA GAMA, F., AND VERTER, V. Multi-period re-

verse logistics network design. European Journal of Operational Research 220, 1 (2012), 67-78.

BOZKAYA, B., ZHANG, J., AND ERKUT, E. An efficient genetic algorithm for the p-median

problem. Facility location: Applications and theory (2002), 179-205.

CANEL, C., AND KHUMAWALA, B. M. Multi-period international facilities location: An al-

gorithm and application. International Journal of Production Research 35,7 (1997), 1891-1910.

CAVALIER, T. M., AND SHERALI, H. D. Sequential location-allocation problems on chains and

trees with probabilistic link demands. Mathematical programming 32, 3 (1985), 249-277.
COOPER, L. Location-allocation problems. Operations research 11,3 (1963), 331-343.

CORREA, E. S., STEINER, M. T. A., FREITAS, A. A., AND CARNIERI, C. A genetic algorithm

for solving a capacitated p-median problem. Numerical Algorithms 35, 2-4 (2004), 373-388.

DREZNER, Z. Dynamic facility location: The progressive p-median problem. Location Science

3,1(1995), 1-7.

DREZNER, Z., AND WESOLOWSKY, G. Facility location when demand is time dependent. Naval

Research Logistics (NRL) 38, 5 (1991), 763-777.

49

50

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Chapter A. Bibliography

FRIEDBERG, R. M. A learning machine: Part i. IBM Journal of Research and Development 2, 1

(1958), 2-13.

GOLDBERG, D. E. Messy genetic algorithms: Motivation analysis, and first results. Complex

systems 4 (1989), 415-444.

Haxkimi, S. L. Optimum locations of switching centers and the absolute centers and medians of

a graph. Operations research 12, 3 (1964), 450-459.

Hakimmi, S. L., LABBE, M., AND SCHMEICHEL, E. F. Locations on time-varying networks.

Networks: An International Journal 34, 4 (1999), 250-257.

HEINEN, F. Uber Systeme von Kraeften, deren Intensitaeten sich wie die n. Potenzen der Ent-
fernungen gebenener Punkte von einem Central-Punkte verhalten: in Beziehung auf Punkte, fiir

welche die Summe der n. Entfernungspotenzen ein Maximum oder Minimum ist. Baedeker, 1834.

HINOJOSA, Y., PUERTO, J., AND FERNANDEZ, F. R. A multiperiod two-echelon multicommod-
ity capacitated plant location problem. European Journal of Operational Research 123, 2 (2000),
271-291.

HOLLAND, J. H. Nonlinear environments permitting efficient adaptation. New York: Academic,

1967.

HOSAGE, C., AND GOODCHILD, M. Discrete space location-allocation solutions from genetic

algorithms. Annals of Operations Research 6, 2 (1986), 35-46.

KAR1V, O., AND HAKIMI, S. L. An algorithmic approach to network location problems. ii: The

p-medians. SIAM Journal on Applied Mathematics 37, 3 (1979), 539-560.
LAPORTE, G., NICKEL, S., AND DA GAMA, F. S. Location science. Springer, 2016.

LAUNHARDT, W., AND BEWLEY, A. The Theory of the Trace: Being a Discussion of the Prin-

ciples of Location. Lawrence Asylum Press, 1900.

L1, X., X1A0, N., CLARAMUNT, C., AND LIN, H. Initialization strategies to enhancing the

performance of genetic algorithms for the p-median problem. Computers & Industrial Engineering

61,4 (2011), 1024-1034.

LM, A., AND XU, Z. A fixed-length subset genetic algorithm for the p-median problem. In

Genetic and Evolutionary Computation Conference (2003), Springer, pp. 1596-1597.

LORENA, L. A. N., AND FURTADO, J. C. Constructive genetic algorithm for clustering problems.

Evolutionary Computation 9, 3 (2001), 309-327.

A Multi-Period Facility Location Problem - Carlos Sdndez Garcia 51

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

MANIEZZO0, V., MINGOZZI, A., AND BALDACCI, R. A bionomic approach to the capacitated

p-median problem. Journal of Heuristics 4, 3 (1998), 263-280.

MLADENOVIC, N., BRIMBERG, J., HANSEN, P., AND MORENO-PEREZ, J. A. The p-median
problem: A survey of metaheuristic approaches. European Journal of Operational Research 179,

3 (2007), 927-939.

PEREZ, J. M., GARCIA, J. R., AND MORENO, M. A parallel genetic algorithm for the discrete

p-median problem. Studies in Locational Analysis 7 (1994), 131-141.

REVELLE, C. S., AND SWAIN, R. W. Central facilities location. Geographical analysis 2, 1

(1970), 30-42.

ROODMAN, G. M., AND SCHWARZ, L. B. Extensions of the multi-period facility phase-out
model: New procedures and application to a phase-in/phase-out problem. AIIE Transactions 9, 1

(1977), 103-107.

SALCEDO-SANZ, S., PORTILLA-FIGUERAS, J. A., ORTIZ-GARCIA, E. G., PEREZ-BELLIDO,
A. M., THRAVES, C., FERNANDEZ-ANTA, A., AND YAO, X. Optimal switch location in mobile
communication networks using hybrid genetic algorithms. Applied Soft Computing 8, 4 (2008),
1486-1497.

SALHI, S., AND GAMAL, M. A genetic algorithm based approach for the uncapacitated continu-

ous location—allocation problem. Annals of Operations Research 123, 1-4 (2003), 203-222.

ScoTT, A. J. Dynamic location-allocation systems: some basic planning strategies. Environment

and Planning A 3,1 (1971), 73-82.

SHULMAN, A. An algorithm for solving dynamic capacitated plant location problems with dis-

crete expansion sizes. Operations research 39, 3 (1991), 423-436.

SWEENEY, D. J., AND TATHAM, R. L. An improved long-run model for multiple warehouse

location. Management Science 22,7 (1976), 748-758.
WEBER, A. Uber den standort der industrien. University of Chicago Press, 1929.

WESOLOWSKY, G. O. Dynamic facility location. Management Science 19, 11 (1973), 1241—

1248.

WESOLOWSKY, G. O., AND TRUSCOTT, W. G. The multiperiod location-allocation problem

with relocation of facilities. Management Science 22, 1 (1975), 57-65.

	Prologue
	Resumen
	Introduction to Facility Location Problems
	Origins of Location Science
	The p-median Problem
	Dynamic Facility Location Problems
	Multi-Period Facility Location Problems
	Introducing Multi-periodicity
	Continuous Problems
	Network Problems
	Discrete Problems

	The Multi-Period Incremental Service Facility Location Problem

	Evolutionary Algorithms
	Introduction to Evolutionary Algorithms
	Encoding
	Initialization
	Crossover
	Parent Selection
	Mutation
	Selection
	Fitness

	An Evolutionary Algorithm for Solving the MISFLP
	Encoding and Fitness
	Initialization
	Crossover
	Selection
	Mutation

	Computational Study
	Methodology
	Parameter Choice
	Improving the Decoupled Model
	First Experiment
	Second Experiment

	Conclusions
	Code of the Evolutionary Algorithm
	Bibliography

