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Summary.

Special functions are solutions to differential equations and appear in a large variety of fields, mainly
in mathematics and physics, but also in other fields such as economy and statistics. They can not be writ-
ten in terms of elementary functions but, in many cases, they admit an integral representation (Chapter
1). Therefore, an approximation technique in terms of elementary functions of a certain variable z is
needed in order to approximate and compute them. The most used techniques are the Taylor expansion
and asymptotic expansions (based on Watson’s lemma, Laplace method, etc...), valid for small and large
values of the argument |z| respectively (Chapter 2). The main aim of this work is to derive new repre-
sentations of special functions satisfying the following three properties: (i) they are convergent, (ii) they
are given in terms of elementary functions and (iii) they hold uniformly in a large domain for |z| that
includes small and large values of |z|. A general theory on uniformly expansions is beyond the scope of
this work. Hence we focus our attention in the Struve functions H, and Ky .

The Struve functions are two fundamental solutions to the non-homogeneous Bessel’s differential

equation
dw  ldw (1 (5)""
— = - W= —=—.
dz2 7 dz 72 VIL(v+3)

They are used in the description of several phenomena in aerodynamics, quantum mechanics, optical
diffraction and other physical problems.

In Chapter 3, we consider the Struve function H,. Our starting point is an integral representation
(valid for Rev > —1/2). The expansion series of an appropriate factor of the integrand is used and
then sum and integral are interchanged. We compute an accurate error bound which shows the uniform
character of the expansion in arbitrary wide horizontal strips of the complex z—plane. In addition, the
error bound shows that the remainder behaves as n~(ReV+2) when n — oo. Then, some graphics illustrate
the uniform expansions compared with the Taylor and asymptotic expansions.

In Chapter 4, we consider the Struve function K. The analysis in this case is more difficult since
the interval of integration is not bounded. After a change of variable the interval becomes a compact
interval, but the factor of the integrand that is expanded in power series is much more difficult and its
Taylor remainder can not be computed in terms of known functions. However, it admits a representation
in terms of a Cauchy integral. This representation allows us to obtain an error estimate that shows the
uniform character of the expansion for Rez > A, A > 1 fixed, and that the expansion is convergent and
behaves as n~Rez=1) when n — oo Finally, some graphics illustrate the uniform expansions compared
with the Taylor and asymptotic expansions.
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Capitulo 1

Funciones especiales

No existe una definicién concreta de qué son las funciones especiales, aunque las podemos definir
como aquellas funciones que son soluciéon de una amplia clase de ecuaciones funcionales que tiene
gran relevancia en las matemdticas y la fisica y que tienen un nombre y una escritura estandarizada.
Aparecen en campos muy diversos, desde la modelizacion de fenémenos naturales o problemas de
ingenieria, pasando por la simulacién numérica y la teoria de nimeros hasta ramas de la economia y la
estadistica.

Los ejemplos mds sencillos de funciones especiales los encontramos en las funciones elementales
como la exponencial o el logaritmo natural, asi como en las funciones trigonométricas. También grandes
familias de funciones como los polinomios ortogonales y las integrales elipticas son funciones especia-
les. A esta lista debemos afiadir multitud de funciones particulares que no se pueden expresar por medio
de funciones elementales y que a menudo admiten una representacion integral o una representacion en
serie, como pueden ser la funcién gamma de Euler I'(z) o la funcién zeta de Riemann {(z). Una lista
detallada de las funciones especiales mds importantes y funciones relacionadas con ellas puede verse en
[14].

La presencia de estas funciones en multitud de ramas de la fisica y la matemdtica hace que su
estudio sea muy importante. En particular, resulta de gran importancia disponer de métodos numéricos
y analiticos que permitan aproximar éstas funciones.

En este trabajo, nos centraremos en los métodos analiticos. Respecto a éstos, las aproximaciones
existentes mds importantes son de dos tipos:

= Desarrollo de Taylor, vdlido en un entorno del punto en el que desarrollamos, tipicamente el
origen.

= Desarrollos asintéticos, vdlidos para valores grandes de la variable.

Estos dos métodos tienen una gran virtud: aproximan muy bien la funcién en un entorno; pero poseen un
gran inconveniente: fuera de ese entorno el error cometido es muy grande. Por esta razén la bisqueda
de desarrollos uniformes, esto es, vélidos en una amplia regién del plano complejo, resultan de gran
interés e importancia. Una teorfa general de desarrollos uniformes de funciones especiales se escapa del
contenido de este trabajo. Es por ello que desarrollaremos un método en un caso particular: las funciones
de Struve. Esta eleccién sigue la linea de investigacion iniciada por los directores y ponente de este
trabajo en la busqueda de desarrollos uniformes de funciones especiales, ver [3] para la funcién gamma
incompleta, [10] para las funciones de Bessel Jy y Yy, [4] para la funcion confluente hipergeométrica.
Asimismo, otros trabajos estdn en progreso, como el relativo a la funcién hipergeométrica generalizada
oFy.

A lo largo del trabajo aparecerdn multitud de funciones especiales como la funcién hipergeométrica
de Gauss >F; y su generalizada ,F,, las funciones gamma y beta de Euler incompletas, el simbolo de
Pochhamer (z),, las funciones de Bessel, etc. El lector puede consultar en [14],[21], [13] la definicién y
propiedades mds importantes de todas ellas.
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1.1. Funciones de Struve.

En 1882 Hermann Struve [20] introdujo la funcién Hy (z) que lleva su nombre como la serie

B 1 V+1l oo (—1)” (lZ)Zn
Hy(2) = (2Z> ,;)F(n+%)F(n2+v+%)’ (-1

donde I'(x) denota la funcién gamma de Euler, z es una variable compleja y v un parametro fijo, real
o complejo, llamado orden. La serie (1.1) converge para todo valor finito de z, estd bien definida para
cualquier valor del pardmetro v y su valor principal corresponde al valor principal de (%z) " Asimis-
mo, se trata de una funcién entera en v siempre que z # 0. Ademds la funcién z~V~'H, (z) es entera en
z. La funcién de Struve admite una representacion integral, siempre que Rev > _71 dada por [[14], ec.
11.5.1]

y vdlida para todo z € C.
Originalmente, Struve introdujo esta funcién como una solucién particular de la ecuacién diferencial
de Bessel de segundo orden no homogénea.

Pudn (1),

dz2 'z dz 22 (1.2

Sabemos que las soluciones de la ecuacién homogénea son las funciones de Bessel de primer y segundo
tipo, Jy e Yy, respectivamente, por lo que no sorprende la relacién de la funcién de Struve con éstas.
De hecho, podemos construir otra solucién K, de (1.2) tomando Ky (z) = Hy(z) — Yy(z). Esta segunda
funcién de Struve K, admite la representacién integral [[14], ec. 11.5.2]

K= 28 / e (142
Y Var(v+1) Jo ’
vélida para todo v € C y para los z con parte real positiva.

Las funciones de Struve tienen muchas aplicaciones en campos de la fisica. En el articulo original
de Struve [20] aparecen ligadas a la difraccidn en los telescopios. Asimismo, en [9] aparecen en un
problema de difraccién éptica. Pero sus aplicaciones no se limitan inicamente al campo de la 6ptica. Su
aplicacion se ha encontrado en problemas de olas de agua y de ondas de superficie [8], [2]; en problemas
de dindmica inestable [19], [22]; en la distribucion de la presion de un fluido sobre un disco vibrante [12]
y en la teorfa de inestabilidad MHD (Magneto-Hydro-Dynamics) resistente [16]. Ademads, las funciones
de Struve también aparecen en algunos estudios sobre la dindmica de particulas elementales [18] y en
el estudio de nanotubos [17].



Capitulo 2

Métodos analiticos previos.

Debido al importante papel que juegan las funciones especiales en un amplio abanico de campos
es necesario buscar métodos numéricos y analiticos que aproximen estas funciones y nos permitan eva-
luarlas facilmente. Nosotros nos centraremos en los métodos analiticos, en particular, en los desarrollos
de Taylor-McLaurin y asintéticos.

Para comenzar, recordemos la siguiente notacién que se debe a Landau.

Definicion 2.0.1. Sea Q un conjunto en el plano complejo z y sea zg un punto limite de Q, pudiendo ser
el infinito. Sean f(z) y g(z) dos funciones definidas en Q. Escribiremos

f(z) =0(g(z)), cuandoz— 2

para decir que existe una constante K > 0 y un entorno U de zp tal que |f(z)| < K|g(z)|,Vz € QNU.
Asimismo, escribiremos

f(z) =0(g(z)), cuandoz— z9

para decir que para todo € > 0 existe un entorno U, de zg tal que |f(z)| < €|g(z)], Vz € QN Uk.

2.1. Desarrollos en serie de Taylor.

La teorfa de desarrollos en serie de Taylor es bien conocida por lo que omitiremos su descripcion.
Pueden consultarse todos los detalles de la misma en cualquier libro basico de anélisis real o complejo,
como puede ser [[15], Cap. 7] o [[1], Cap. 2.2 y 5.1]. Esta técnica se puede aplicar de diversas formas a
las funciones especiales. Mostramos a continuacién una aplicacién inmediata de la misma.

En primer lugar se toma una representacion integral de la funcién que queremos aproximar. Después
se toma el desarrollo de Taylor de una parte del integrando y se intercambia la serie con la integral. Tras
integrar obtenemos un desarrollo en serie de la funcién especial inicial. Veamos un ejemplo:

Consideramos la funcién exponencial integral complementaria definida mediante la integral [[14],

ec. 6.2.3]
1 1— —zt
Ein() = / ¢
Jo t

. . w 4
y reemplazamos el factor 1 —e~7 por su serie de Taylor en el origen, estoes, | —e @ =Y (—1)"T1s" L

Intercambiando la serie y la integral en la definicién de Ein(z) y calculado la integral que resulta obte-

nemos el desarrollo
. (_ 1 )nf 1 7"
E = -

in(z) E .

' )
n—1 n

que converge para todo z complejo.
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2.2. Desarrollos asintoticos.

La teorfa asintética es una rama de las matemdticas que trata problemas relacionados con el com-
portamiento de una funcién cuando un pardmetro tiende a un valor especifico o cuando el indice de una
sucesion tiende a infinito. Esta teorfa se divide en tres grandes dreas: asintdtica de soluciones de ecua-
ciones diferenciales, asintética de soluciones de ecuaciones en diferencias y asintdtica de integrales.
Nosotros nos interesaremos en la dltima de éstas.

Definicién 2.2.1. Llamaremos desarrollo asintético de una integral paramétrica F(x) = / f(x,1)dt,
r

cuando el pardmetro x — oo a la aproximacion

F(x) ~ i}ancbn (x)

donde

1. la sucesién ®,(x) es asintdtica, es decir,

@, (x) = 0(Py_1(x)), cuandox — co.

N
2. F(x)— Z a4y ®@y(x) = O(Py41(x)), cuando x — oo,
n=0

Cabe destacar que no estamos asumiendo que la serie ), a,P,(x) sea convergente para ciertos
valores de z. Lo tnico relevante en la teorfa asintética es que se verifiquen las dos condiciones de la
definicién. A menudo, este tipo de desarrollos son divergentes pero al truncar la serie la aproximacion a
la funcién original es muy buena.

De entre la multitud de métodos utilizados para el cdlculo de desarrollos asintéticos de integrales
destacan el lema de Watson y el método de Laplace por ser los primeros en ser desarrollados y porque
poseen grandes aplicaciones en la aproximacién de funciones especiales.

El lema de Watson es una técnica til y sencilla para derivar desarrollos asintdticos de integrales, en
particular de la transformada de Laplace de una cierta funcion analitica f. Establece lo siguiente:

Teorema 2.2.2. (Lema de Watson) Sea F(x) = / e M f(t)dt, x— oo, la transformada de Laplace
0

de una funcion f analitica salvo quizds en el origen, que permitimos sea un punto de ramificacion.
N-—1

Sea f(t) = Z a4 fy(t), en |t| <R con r >0y fy(t) = O"/"1) cuando t — oo. Supongamos
n=1

ademds que existe & > 0 de manera que f(t) = O(e™) cuando t — oo. Entonces
F(x)= / e f(t)dt ~ Y a,T <ﬁ) x
0 n=1 r

Una idea de la demostracion es la siguiente. Para x grande la mayor contribucion del integrando a la
integral se localiza en torno a t = 0. Por lo tanto, tiene sentido desarrollar f mediante su serie de Taylor
en ¢t = 0. Tras esto, intercambiamos serie e integral e integramos término a término. Una demostracion
detallada puede verse en [13], donde ademads se muestra que el desarrollo es asintético.

b
El método de Laplace es algo mds general, pues se aplica a integrales de la forma / e ) g(u)du,

a
donde (a,b) es un intervalo real finito o infinito y z — oo es una variable real o compleja. Mediante
un cambio de variable f(u) — f(a) =t la integral se lleva a una transformada de Laplace de una cierta
funcién h(r), momento en el que se puede aplicar el lema de Watson. Concretamente, establece lo
siguiente:
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Teorema 2.2.3. (Teorema de Laplace). Sea (a,b) un intervalo real, finito o infinito, y consideramos la

b
funcion definida por la integral F (x) = / e g (u)du, x — oo. Supongamos que

a

1. t = a es el uinico minimo absoluto de f(t) en |a,b).
2. f'(¢) y g(t) son continuas en un entorno de t = a salvo quizds, en a.

3. Cuando x — a* las siguientes expansiones son ciertas:

oo

f@6)~ fla)+ ) an(t —a)"™

n=0

conay#0,bg#0, u>0yRea > 0.
Supongamos ademds que el desarrollo de f se puede derivar término a término de manera que

F0)~ Y an(n+p)(t—a) !
n=0
cuandot — at.

4. La integral que define F (x) converge absolutamente para todo x suficientemente grande.

Entonces .
F(x)~e™ @Y 6,@,(x),  x—oo,
n=0

donde ®,(x) =T <H7a> P v los coeficientes c,, son los coeficientes del desarrollo de Taylor entorno

a u =0 de la funcion h(u) = ﬁ’((tt((lz)))) y se puede calcular a partir de los coeficientes a, y b, siendo el

bo
uag/u :

primer coeficiente cy =

Una idea de la demostracion es la siguiente. Se realiza el cambio de variable f(u)— f(a) = 1.

Asi, la integral que define F resulta ser F(x) = ¢ /(%) fof (6)=fla) e h(u)du, con h(u) := ﬁ,((t((b;)))). Las
hipétesis del teorema permiten deducir que 4 admite desarrollo de Taylor en u = 0 y se escribe h(u) =
Yoo cuu AR/ La tesis se sigue de aplicar el lema de Watson a la dltima integral. Una demostracién
detallada del teorema puede verse en [[23], pdg 58].

Este teorema, aplicado a la funcién Gamma de Euler desprende la conocida férmula de Stirling.
En efecto, consideramos la representacion integral de la funcién Gamma dada por [[14], ec. 5.2.1]
[(z+1) = [y e 't*dt, vilida para Rez > —1. Realizamos el cambio de variable r = z(1+y) para obtener
[(z+1) = e 27t [% e #0)dy, con h(y) =y —log(1 +y). Rompemos el intervalo de integracién en
y =0y obtenemos

(o] 1
7 I (z+1) :/ e_Zh(y)dy+/ e~ ay,
0 0

w (1)

Teniendo en cuenta que A(y) =}, ~—,~—x" podemos aplicar el teorema de Laplace a cada una de las

integrales de la derecha, con u =2, o =1,bg=1, b,y 1 =0y a, = (,:%n, siguiendo la notacién del
teorema 2.2.3. Resulta, cuando z — oo,

. 121 1 [mi
gy~ JEL 22 L L
A R P A J il

1 1 21 1 Tl
~h( gy JEL =2 L JEL
fy e \[21; 3: 12V23



6 Capitulo 2. Métodos analiticos previos.

Combinando ambas expresiones y utilizando la propiedad [[14], ec. 5.5.1] ['(z+ 1) = zI'(z) se deduce,
cuando z — o, la serie asintdtica

ez, |27 b
['(z) ~e *z ; (1—!—1224—...). (2.1)

La férmula de Stirling se sigue de truncar esta serie en el primer término.

2.3. Desarrollos uniformes.

Los métodos anteriores, aplicados a la mayorfa de representaciones integrales de funciones especia-
les, resultan dar desarrollos en términos de funciones elementales. Sin embargo, existe un gran incon-
veniente: los desarrollos solo son ttiles en un cierto entorno de la variable z y el cardcter uniforme de
los mismos no se discute.

Recordemos la definicién de convergencia uniforme:

Definicion 2.3.1. Sean f, f, : A C C — C. Diremos que f;, converge uniformemente a f en A si para
todo € > 0,3ny = no(€) € N tal que si n > ng entonces | f,(z) — f(z)| < € para cualquier punto z € A, o,
equivalentemente, si sup,c4 | fn(z) — f(z)| — 0.

n—oo

Para buscar un desarrollo uniforme de una funcién especial proponemos la siguiente técnica:

= En primer lugar, consideramos una representacion integral de la funcién especial, digamos W(z) =
I : f(t,2)g(t)dt, y tomamos alguin factor del integrando donde no aparezca la variable z (g(¢)).

= A continuacién, tomamos el desarrollo en serie de Taylor de ese factor en algtiin punto de manera
que el disco de convergencia de la serie contenga el intervalo de integracién salvo quizds en un
punto. Este desarrollo es convergente para cualquier valor ¢ del intervalo de integracion y es,
debido a la eleccién del factor, independiente de z.

= Intercambiamos la serie (finita) con la integral y esperamos que el hecho de que el factor que
desarrollamos es independiente respecto a la variable z se traslade al resto, que deberemos probar
tiende a cero con n y estd acotado independientemente de z en alguna region.

En los siguientes capitulos aplicamos esta técnica a la funcién H, (Cap. 3) y a la funcién K, (Cap.
4) de Struve. Antes de ello veamos algunos desarrollos conocidos (no uniformes) de estas funciones.

2.4. Desarrollos conocidos de las funciones de Struve.

De la definicién de la funciéon Hy, de Struve (1.1) se desprende un desarrollo en serie de Taylor
entorno a z = 0, a saber,

<Z>_v_1H(Z):n§ D +RM(v2), zeC (2.2)
2 ' S T(k+3)k+v+3) " 12)s . '

Con esto podemos encontrar un desarrollo de Taylor de la funcién K, . En efecto, teniendo en cuenta la
relacién Ky (z) = Hy(z) — Yy(z) basta encontrar un desarrollo de Taylor de la funcién de Bessel Y. Esto
lo conseguimos combinando [[14], ec. 10.2.2]

N GO 0
M= (3) e ey +RYY (v,2),

con [[14], ec. 10.2.3]
Jy(z)cos(va) —J_y(2)

(z) = sen(Vvr)

)
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reemplazando esta expresion por el valor limite

1 9Jy(z) N (—=1)" dJy(z)

hia) = T v T av

vV=n V=—n

cuando vV = n es un entero [[14], ec. 10.2.4].
Por otro lado, tenemos los desarrollos asintéticos de las funciones Hy, y Ky. En [[14], ec. 11.6.1]

encontramos
1 n—1 F(k—f—l) z v—2k—1
KV(Z) ~ Z 2 (2)

T T(v+3—k)

+RK(v,2), |phz| < 7—8, 2.3)

con & una constante positiva arbitrariamente pequeiia, que proporciona un desarrollo asintdtico de la
funcién K,,. Ademads, si combinamos (2.3) con la relacién H, = K, + Y, y el desarrollo asintético de la
funcién Y, de Bessel [[14], ec. 10.17.4]

1
2\? % o
Yy(z) ~ <> (senwz ) axdv) —i—coswz Z;{TTN)) +R )vY(V,z), |phz| <m—3§,

mz
donde
W = lV7'E l71'
RN
y
ap(v) =1,
H (42 —(2j-1)?)
ak(V) k'Sk 3 k217

obtenemos un desarrollo asintético de la funcién Hy de Struve, vélido para |phz| < w— §. Un desarrollo
para |phz| = 7 lo encontramos con ayuda de la férmula de continuacién analitica [[14], ec. 11.4.16], a
saber, Hy (z¢"™) = ¢™(V*1H, (z), con m € Z, combinada con el desarrollo anterior.

En la siguiente figura se muestra el valor absoluto del error relativo cometido al aproximar la funcién
H, de Struve por su desarrollo de Taylor (azul) y asintético (verde) para v =3y n = 10 en el intervalo
[5,10]. En ella se observa el hecho comentado con anterioridad: para valores pequefios de la variable z
el error cometido por el desarrollo de Taylor es practicamente nulo, mientras que para valores grandes
de la variable ese error es muy grande. Para el desarrollo asint6tico ocurre lo opuesto. En ningtin caso el
desarrollo es valido uniformemente en una region que contenga valores grandes y pequefios de |z|. Para
la funcién Ky y sus correspondientes desarrollos, la situacién es similar.

0.005:
0.004::
0.0032
0.002

0.001 |
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Por otro lado, en [[14], Sec. 11.4] encontramos otros desarrollos de la funcién H, donde aparece la
funcién de Bessel de primer tipo Jy (z). Por ejemplo, [[14], ec. 11.4.18]

4 & (kv DIk+v+1)

Hvie)= J : 2.4

o \/EF(VJr%)kg() k!(2k+1)(2k+2v +1) 2utv1(2) (24)

es vélido para cualquier z € C y cualquier v # —1,—-2,—3,...; mientras que el desarrollo [[14], ec.
11.4.20]

6" ¢ )
i) = Jesi (2 2.5
v(2) F(V—I—%)kzok!(k%-\/-l-%) k+%() (2.5)

es valido para cualquier z,v € C.

En la figura de abajo se muestra el valor absoluto del error relativo cometido al aproximar la funcién
H, por las aproximaciones (2.4) (azul) y (2.5) (verde) en el intervalo [4,18] para los valores v = 11/5
y n=10.

=

Ninguno de los desarrollos descritos verifica simultdneamente las siguientes tres propiedades: (i)
estdn dados en términos de funciones elementales, (ii) son convergentes y (iii) son vdlidas para valores
grandes y pequefios de |z|. Por un lado, en los desarrollos (2.4) y (2.5) aparece la funcién de Bessel J,,

por lo que (i) no se satisface. Por otro lado los restos RE,O) no estan acotados para valores grandes de |z|

mientras que los restos R,(fo) estdn inacotados para valores pequefios de |z|, por lo que (iii) no se cumple.
Asimismo, el desarrollo asintético es divergente y en consecuencia no cumple (ii). En cualquier caso,
esto no desacredita estas aproximaciones, puesto que se encuentran entre las mds competitivas para
aproximar las funciones de Struve en las regiones donde son validas.

En los siguientes capitulos buscamos un desarrollo de las funciones H, y K, que satisfaga las tres
condiciones anteriores. Daremos cotas precisas del error cometido y compararemos el desarrollo uni-

forme con estos otros ya conocidos.



Capitulo 3

Desarrollo uniformemente convergente de
la funcion H de Struve.

En el capitulo anterior hemos dado distintos desarrollos de las funciones de Struve, pero ninguno
de ellos es uniforme en una regién del plano complejo que contenga valores grandes y pequefios de
|z|. En este capitulo, vamos a calcular un desarrollo de la funcién H, que cumpla las siguientes tres
propiedades:

(1) Esté dado por medio de funciones elementales.
(1r) El desarrollo sea convergente.
(111) El desarrollo sea uniforme en una amplia regién de |z| no acotada y que contenga a z = 0.
Teorema 3.0.1. ParaRe v > 5,z C,n=1,2,3,...y . € [0,1]
VAT(v+3) W (GE-Vh
2 G V@)= ,;0 k!
donde las funciones Fi(o,z) son las funciones elementales

Fla,z) == /Ol(tz—a)ksen(zt)dt: f <”;)(—1)kakm <;’Z)2m (1‘ZC°SZ> _

m=0

(1—a)" * 2 F(a,2) + R (v, a,2),

. . , 3.1
k m 2 m—1 _2j+1
K\ . (2m)! z7(—1)/ I (=1)
= (—1) ( >ak mr__|l—cosz) ——2 —senzg -~
(=1) mZ:“O m Z2mtl j;) (2))! j;) (2j+1)!
que satisfacen la relacion de recurrencia
—(1 —a)*cosz+ (—a)*  2k(1 —a)*!sen
Rl - (1@ st (a2 —a) sen(e)
4k* — 2k ) dk(k—1) ) G:2)
- -1a
TFk—l(OC,@ - TFk—Z(OCvZ>7 Vk > 2,
con |
—cos
Foot,9) = ———
—(1—a)cosz—o  2sen 2(cosz—1
Fi(a,s) = —UZ@Jcosiza 2Z+( § ),
z Z Z
donde la parte de la derecha para valores cercanos a z = 0 debe entenderse tomando limites.
El resto estd acotado por
1
H ‘(E_V)n‘
IR, (v,0t,2)| < cosh(Imz)T(Gl(v,a,n) +Ga(v,a,n)) (3.3)
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donde
1+Rev, 1
T n! o " 1 ’
Gl(v,a,n):\gr 3 (1—05) Va(l—a)r™ReV,p o (3.4)
(I’l+ j) n_i_%
y
(1_a)%+Rev %7 %+RCV7 1
Gy (v,o,n) = ~——"——3F l-a|. (3.5)
1+2Rev I’l—l—l, %—FRCV

El resto R (v,a,z) es uniforme en z con |Imz| < A, para cualquier A € RT, cuando n — oo, y se
1

comporta como n~R¢V=1,

Demostracion. El teorema es la aplicacion de la técnica enunciada en la seccién 2.3 a la funcién Hy de

Struve. Para ello, consideramos la representacién integral de la funcién H de Struve dada por [[14], ec.

11.5.1]
VAL(V+3) e 2yv-1 1
202y Hy(z) —/0 (1 —17)""2sen(zt)dt, Rev > ~5 (3.6)

y desarrollamos la funcién (1 — tz)V*% en un punto & € [0, 1]. Obtenemos

1 n—l (l—V)k 1
(1—12)V"2 = ZT(I — )" (2 — ) (v, ), (3.7)

I'(x+n)
I'(x)

(

(e} 1
—v
r(v,o,t) =Y k‘)k(l —a) (2 — )k,
k=n :

donde (x), =x-(x+1)-...-(x+n—1)=
viene dado por

denota el simbolo de Pochhamer; y el resto r,(v, a,t)

S]]

Aplicando el criterio del cociente es facil ver que el radio de convergencia es 1 — &, de donde se sigue
que la serie (centrada en o) converge en el intervalo (2ot — 1, 1). Por lo tanto, si imponemos la restriccién
ae [0, %} garantizamos dos hechos: (i) el punto & esta incluido en el intervalo de integracién y (i) el
disco de convergencia de la serie contiene al intervalo de integracion.

Por otro lado, el resto r,(Vv, a,1) admite una expresion cerrada en términos de la funcién hipergeo-
métrica de Gauss o F] (ver [[14], Sec. 15] o [[13], Sec. 5 Cap. 9]), a saber,

1 _
(%_V)n 2+I’l Vv, 1 lz

—a
ra(v,a,t) = (1— )" ™" 2(12 — )", F (3.8)
n! 1—a
n+1
Sustituyendo el desarrollo (3.7) en (3.6) e intercambiando la suma con la integral, obtenemos
VAT (v+1) nly /1 !
——="H =) —(=— 1—a) F2F RH
donde
1
RE(v,a,2) = / sen(zt)ra(V, 0, 1)dt (3.9)
0

y las funciones Fy (¢, z) estdn dadas por (3.1).
La recurrencia (3.2) que satisfacen las funciones Fi(a,z) se sigue de integrar por partes dos veces
en (3.1) mientras que Fy(,z) y Fi(a,z) se calculan directamente.
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Ademds, podemos encontrar una expresion cerrada para Fi(a,z). En efecto, utilizando el binomio
de Newton en el integrando obtenemos

Fi(a,z) = i <k> (—a)k_m/ol 2" sen(zt)dt =

m=0 m

B () ()

Usando la férmula de Leibnitz y el hecho de que

(3.10)

d’ | ) )
ot R N DY 2t b 1]
SED = (1
y
di 1 —cosz sij=0,
—(1—cosz) = T
dz! —cos | z+ 5 en otro caso,
se tiene
d\*" (1—cosz\ (2m)! 2% (2m . jm\ (2m—j)!
hall — _1)/t1 JE) RS
() () =g (T)evmem (o) ST

Esta expresion se puede escribir en términos de la funcién gamma incompleta I'(a, z) (ver [[14], Cap.
8] o [[7], Cap. IX]) como

d\*" [ 1—cosz 2m)! 1 1 . .
<dz> ( z > = Z2m+l - §Z2m+1 |:F(1 +2m,lZ) +F(1 +2m,—ZZ):| .

Teniendo en cuenta la igualdad [[14], ec. 8.4.8] obtenemos

d 2m 1— 2m)! m 21 -1 [ m—1 _2[+1 -1 !

— cosz :( m) l—coszzZ (=1) —senzzM

dz z z2m+l =2 = (2r+1)!
Finalmente, sustituyendo (3.11) en (3.10) obtenemos una expresion cerrada de F; como suma (doble)
de funciones elementales.

Por otro lado tenfamos la férmula (3.9) para el resto R (v, o, z). Puesto que el resto r, (v, @,t) es
integrable, podemos escribir

. 3.11)

1
RY (v, a,z)| S/O ra(v, o,1)|| sen(zz)|dt.

Teniendo en cuenta que |sen(zf)| < cosh(tImz) y que t € (0,1) se deduce, gracias a la monotonia
del coseno hiperbdlico (creciente en los reales positivos y decreciente en los reales negativos) que
cosh(zImz) < cosh(Imz). Asi

1
RY (v, a,7)| < cosh(Imz) / (v, 00,1) dr.
0

Sustituyendo aqui la expresion (3.8) se tiene

[(G=v),l
n

(1 _ a)%]—n-‘r\/

1 2
1 , . §+” vV, 1 [2 (31 )
r—a F dt
></() }( ) ‘ 2 -

n+1

IRY (v,@,2)| < cosh(Im2)
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Teniendo en cuenta la igualdad (1 — &) 2 V| = (1 — &) 7 ~"*ReV y Ja desigualdad

%—i—n—v, 1 %—Fn—Rev, 1 2_q
I < h I
n+1 —a n+1 -«

2—a

2k

que se prueba de forma inmediata a partir de la representacion integral de la funcién hipergeométrica
dadaen [[14], ec. 15.6.1] se deduce, reemplazando en (3.12), la cota para el error

1
1_y B
\Rf(v,oc,z)\ SCOSh(Imz)‘(Z')”‘(l _ og)Tl_”"‘ReV
n.
%-Fn—Rev, 1 2

1
< [ 16 = oo 1
0 n+1

- (3.13)
-

=G(v,o,n)

Ahora, calculemos la integral G y obtengamos una cota explicita del error. Debido a la presencia
del valor absoluto en el integrando rompemos la integral en dos, poniendo G(v, &,n) = G{(Vv,a,n) +

G2(v,a,n), donde

%—i—l’l—ReV, 1 tz

_ va ) —-a
G](V,OC,H) :/ (OC —t )n2F1 1 dt
0 n+1 —a
Y 1
o 1 ) i §+I’l—RCV, 1 tzia
Gz(V,OC,n) = (l‘ — OC) 2 Fi 1 dt.
Ve n+1 o

La primera de estas expresiones, G| (v, a,n), se puede calcular directamente tras el cambio de variable
a—1?
o

= u y resulta

I+n—Rev, 1 u
GI(V,(X’”) =

1
(Xn+22F1 o
n+%

S

2 T(n+3)

De donde se tiene, tras aplicar [[14], ec. 15.8.1]cona=1,b=1+Rev,c=n+ % yz= O que

1, 1+Rev
— T ! ’
Gi(v,o,n) = £”73a"+%(1 —a)F ol . (3.14)
n—+ b
Por otro lado, la parte correspondiente a G»(V,@,z) es mas delicada y resulta ser, tras el cambio de
?— o
variable I =u, igual a
1
5 —Rev, 1
- 11—« n+1 n > +n s
Ga(v, a,n) = / (1-) u JF wl|du.  (3.15)
0 2 \/(I—OC)I/H-OC n—|—l
La presencia del radical dificulta el cdlculo de esta integral. Sin embargo, desarrollando la funcién
1
W (#) = ——=—=—=—= en serie de Taylor centrada en u = 1 se obtiene
(1—a)ut+o

o (1
wa(u) =Y (2)m(—1)'"(1—a)m(u—1)m. (3.16)
m=0
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Entonces se verifica que el disco de convergencia de esta serie, a saber D(1; ﬁ), contiene al intervalo
de integracion [0, 1]. Sustituyendo (3.16) en (3.15) e intercambiando la serie con la integral se obtiene,
tras simplificar,

i Ly gpm_ TOEmI )
2250 (1 — )" +1(1+2m+2Rev)F(m+n+1)'

Esta tltima expresién puede sumarse, en términos de la funcién hipergeométrica generalizada 3F; y
queda

_ (1—or)t! 3+ 3 +Rev, 1
Gz(V,OC,n) = W3Fz 1—-a ). (317)
n+1, 3+Rev

Abhora, reemplazando las expresiones (3.14) y (3.17) en (3.13) obtenemos la cota para el error
dada en el enunciado (3.3).

Para terminar, veamos que el desarrollo es uniforme en z y el resto (3.3) se comporta como n
cuando n — oo.

Para ello, consideramos la representacion integral de la funcién hipergeométrica generealizada 3 F;
dada por [[14], ec. 16.5.2]

1
—Rev—3

1 l—I—Rev, 1 1 5 %—FRCV
) -« :n/ (1-0)""HLEA (1—o)t |dt.  (3.18)
n+1, 3+Rev 0 3 +Rev

B[—

Teniendo en cuenta la representacion integral de la funcién hipergeométrica de Gauss »F; dadaen [[14],
ec. 15.6.1] se tiene que

11
2 2 Rev I | v e
oF (1-a) | = (5+Rev /s”*z[l—u—a)mﬁds <
%+Rev 0
11
1 1 1 -1 20 3T Rev
< <2+Rev>/ SRV — (1 - a)s] 2 ds = o Fy -«
0 %+Rev
Por lo tanto, podemos acotar en (3.18) para obtener
%7 %+Rev, 1 %7 %+Rev 1
3B 1—oa | <mkEF | /(l—t)”*ldt:
n+1, 3+Rev 3 +Rev <
_1
I, I+Rev
20 2
=,7F 1—a
%+Rev

Esta expresion no depende de n y por lo tanto, al acotar en (3.3), el sumando G(V, o,n) se comporta,
cuando n — e, COMO una constante.

Por otro lado, acotamos el sumando correspondiente a G (v, &, n). De manera similar y utilizando
la representacién integral de la funcion hipergeométrica ,F dada en [[14], ec. 15.6.1] se tiene que

1+Rev, 1
2 Fi ol < (I—Ot)iRevil.
n—i—%
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Con esto, obtenemos la siguiente cota para el error

(=)l

1

N ((x >"+z+

1
RY (v, 4,z> ‘ < cosh(Imz) }

n! 2 I(n+3) \1-«a
1 5, 5+Rev (3.19)
+72F1 1-«o
1+2Rev %—i—RCV

Tomando limites cuando n — oo siempre que Imz < A, para cualquier A € R se tiene que el primer
sumando en el corchete de (3.19) tiende rapidamente a cero (pues o € [0, %]) mientras que el segundo
es una constante. Por lo tanto, el resto se comporta como

I—v
IR? (v, at,2)| ~ w
Escribiendo el simbolo de Pochhammer como cociente de gammas y despreciando constantes se tiene
que
‘F(n —V+ %)‘

I'(n+1)
Finalmente, aproximando la funcién I'(z) median]te la férmula de Stirling (2.1) y tomando limites
—Rev—3 .

’R{Z—I(V,(X,Z)’ ~

cuando n — oo se deduce que |RY (v, a,z)| ~n
O

Hemos considerado el desarrollo en un punto genérico a € [0, %] Recordemos que la restriccion
a este intervalo es necesaria para asegurar que el intervalo de integracion (0, 1) estd contenido (salvo
quizé en algtin punto) en el disco de convergencia de la serie de Taylor. Notemos que si & > % entonces
la cota del error (3.3) no tiende a cero al hacer n — oo, debido a la presencia del factor (%;)", por lo
que la restriccién o € [0, %] es necesaria.

A continuacién vamos a buscar el punto 6ptimo en el que desarrollar, es decir, el que garantice un
error minimo (o al menos proporcione el minimo para la cota del error dada en (3.3)). Para ello es
suficiente encontrar el minimo (en @) de la funcién G (v, a,n) + G2(v,a,n). Sin embargo, experimen-
tos numéricos muestran que el minimo de esta funcién depende de n. No obstante, se tiene el siguiente
resultado:

Teorema 3.0.2. La funcion Gi(v,o,n)+ G (v, a,n) es decreciente en o € (0, }), donde Gy y Gy estdn
definidas en (3.4)y (3.5) respectivamente.

Demostracion. Dado que las funciones son derivables, es suficiente probar que 96, (a‘;a’") + anng;a’") <

0,Va € [0,4].
En primer lugar, aplicando [[6], pag. 102, ec. (23)] cona=1,b=1+4+Rev,c = n+% yZ=0 se
tiene que

8G1(v,(x,n) :ﬁ n! 1 an—%(l_a)Revfnfé_

Por otro lado, aplicando la regla de la cadena y haciendo uso de [[14], ec. 16.3.2] con a; = 5,a; =
l,a3 = %%—Rev, by=n+1,by= %+Rev, z=1l—-ayy= %%—Rev se deduce que

1
5, 1
9G -1 o
2’(8"’0‘72):2(1_05)1‘”%25 -«
a n+1
Con esto,
1
5, 1
oG oG 1— o)Rev—3 ! g
l(av,oc,n)+ 2(8\’706,’1):( o) Ji—" : o 1(1— )" —F -«
o o 2 T(n+3) n+1
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Ver que G| + G es decreciente es equivalente a probar que la expresion anterior es negativa, Va € [0, %]
Por hipétesis Rev > —% y en consecuencia el factor que multiplica al corchete no presenta problemas
ni cambia de signo para o € [0, H y lo podemos omitir. Asf, se trata de probar que

1
n! 1 2 1
\/ﬁil(xnfi(l—a)fn—zﬂ l_a <0
0, equivalentemente,
1
5, 1
C(n+1 2’
T < \/ﬁ(iz)a%*”(l—oc)”zﬂ -«
I'(n+1) ntl

=A,(a)

Debemos probar que A, (@) > 7, Vo € [0, 7). Para ello veamos primero que A; () verifica esta de-

sigualdad.
or(l-a) 1
Al(a)_(1+\/&)\/&_n<\/a 1>'

De donde se sigue que

1 1
Alla)>rne ——-1>21c->Vvaoesa<
1( )— \/a sl 2_f >~

Bl —

Por lo tanto, A (o) cumple la deseada desigualdad, Va € [0, 1].

Ahora, veamos que A, () es una sucesion creciente y asi Ap+1(a) > A, (o) > ... > Aj(a) > 7y
habremos terminado.
Consideramos el cociente
1
L, 5
2 F 11—«
A a n+i 1-a n+2
(@) _ntg 1 (3.20)
Ay(a) n+l « 1, 5
2 F 11—«
n+1

Utilizando [[14], ec. 15.5.16] cona = 1,b = %,c =n+1yz=1— o se prueba la relacién

1
1, 5
2 F l—o
n+2 1 n+1
1 = 1 O
Il Ll i+ D—a)
2k 11— 2F 1—o
n+1 n+1

Introduciendo esta igualdad en (3.20) se sigue que

A,H_](OC) _ 1 1
An(a) 1, 1

ok l1—a
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Como A, es una serie creciente si'y solo si > 1, tenemos que A, es creciente si y solo si

n

1
I L2
— > F 1—o , Va€(0,1/4)
2a
n+1

Tomando la representacion integral de la funcion hipergeométrica que se encuentra en [[14], ec. 15.6.1]
se tiene

Por lo tanto

1 1
2 F l-a ]| <—=<—,cac(0,1/4).

n+1 va 2o

Asi, A, () es creciente y entonces A, () > 7, Vn € N de donde se sigue que la funcién G (v, o,n) +
G> (v, a,n) es estrictamente decreciente en a € (0, 1).
O

Esto implica que @ = % es un pseudo-minimo para (3.3) en el sentido de que minimiza la cota del

error y es valido para todos los n.

3.1. Casos especiales.

Analizamos a continuacidn varios casos especialmente importantes segtin los valores de los parame-
tros. En particular, resaltaremos los casos ¢ = 0 por simplicidad de las férmulas y o0 = % por minimizar
la cota del error. Asimismo destacaremos el caso que v sea un semientero.

3.1.1. Caso o =0.

En este caso, el teorema 3.0.1 aporta unas expresiones mas sencillas para los términos del desarrollo.
En concreto, establece:

Teorema 3.1.1. Para Rev > %l,z eCn=1,2,3,...

VETOHD) o (v
O A

donde las funciones Y (z) son las funciones elementales

%(z) := F(0,2) = /OltZk sen(zt)dt = <jz>2k (1—Zcosz> _

. . . . (3.21)
2%k)! k 2j(_1)J k=1 2j+1(_1)J
:(—1)’“(%21 l—coszzy—senz #
Z = (2))! = (2j+1)!
que satisfacen la relacion de recurrencia
—cosz 2ksen(z) 4k*>—2k
Ye(z) = -t @ _ 2 Ye-1(2), Vk>1,

1—cosz

(2) .
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El resto estd acotado por

11
G-V, 1 sl 7 e 1 (3.22)
347 ) .
|
n! 1+2Rev Nl %—I—Rev

IRE(v,2)| < cosh(Imz)

. . _Rev_1
y es uniforme en z con |Imz| < A, para cualquier A € R y se comporta como n~ V=2 cuando
n —» oo,

La demostracion del teorema es inmediata, tomando &« = 0 en el teorema 3.0.1.

3.1.2. Casoa=j.

Hemos visto que este caso tiene interés por minimizar la cota del error. Ahora el teorema 3.0.1 se

lee de la misma forma sustituyendo o = %. El resto verifica

1

n 1 1+Rev
1 G=Vv).||vE n 1\" /3 2RV B
R (v, - < cosh(I nl | X2 -) (= F -
(v meomama S s ) () L [i)
2
(%)%-HQEV %, %"‘RCV, 1 3
73F2 n ’
1+2Rev nil, 34Rev

. . . _Rev_}
y es uniforme en z siempre que |Imz| < A, para cualquier A € R* y se comporta como n~R¢V~2 cuando
n— oo,

3.1.3. Valores semienteros del parametro v.

Para valores semienteros (no negativos) del pardmetro v la funcién H, de Struve es una funcién
elemental, como se prueba al combinar la relacién K, = Hy, — Y, con [[14], ec. 10.47.4], [[14], ec.
10.49.4] y [[14], ec. 11.4.1]. En este caso, la aproximacién uniforme dada por el teorema 3.0.1 es
exacta, siempre que n sea suficientemente grande, independientemente de .. En efecto, en la cota (3.3)
del error se observa que, para n suficientemente grande, el factor (% — V), se anula y por lo tanto
el error cometido es cero. En consecuencia podemos obtener una férmula cerrada para H,, ( ), con
m € NU {0}. Para ello, tomamos & = 0 (por simplicidad) y despejando H,, 1 (z) en la expresmn del
teorema 3.0.1 obtenemos, para n suficientemente grande (basta tomar n = m —|— ),

1n1
\/27r

donde las funciones ¥ (z) estdn dadas en (3.21). Teniendo en cuenta que el Pochhammer se aplica sobre
un nimero entero [[14], ec. 5.2.7], la expresién anterior queda

Hm+%(z) = \/Z (%)m i MYk(Z)'

k=0

%(2),

En particular, para m = 0 se obtiene la expresion

H%(z) = \/Z(l—cosz),

dada en [[14], ec. 11.4.5]; y tomando m = 1 se obtiene la expresién [[14], ec. 11.4.9]

Z 2 2 cosz
H;(z) = o <1—|—Z2> —\/n—z <senz+z>.
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3.1.4. zvariable real.

En el caso de z € R, la cota para el error queda

—

IRE (v, a,2)| < W (Gi(v,a,n)+Gy(v,o,n))

y el desarrollo dado por el teorema 3.0.1 es uniforme para todo z € R.

3.2. Graéficas y tablas numéricas.

3.2.1. Grificas.

A continuacién se muestran unas graficas en distintos intervalos comparando los valores absolutos

al(v+1
de los errores relativos cometidos al aproximar la funcién \{((Z)VZ)HV (2), para el valor del para-
2
metro V = 15—8, utilizando el desarrollo dado en el Teorema 3.0.1 con ot = zlt y los desarrollos de Taylor y
asintético dados en el capitulo 2, tomando en los tres casos n = 10. Se representa en azul el desarrollo

de Taylor, en verde el asintético y en rojo el uniforme.

0.0010 0.0010 0.0010
0.0008 0.0008 0.0008
0.0006 0.0006 0.0006
0.0004 0.0004 0.0004

0.0002 0.0002 0.0002

Hemos representado los intervalos [0, 15] (izquierda), [i,15 + i] (centro) y [2i,15 + 2i] (derecha).
En ellas, el visible el cardcter uniforme de la aproximacién dada en el teorema 3.0.1. Observamos lo
esperado, para valores pequefios de |z| el desarrollo de Taylor es mucho mds competitivo mientras que
para valores grandes lo es el asintético. Sin embargo, el desarrollo uniforme compite con ellas y es
uniformemente mejor. Para valores negativos de la variable z y complejos conjugados las graficas son
idénticas debido a la simetria de la funcién, que se conserva en sus aproximaciones. Para o = 0 las
gréficas son similares.

11
L . V(5 +3 , . L
A continuacion se representa la funcion \{(snz)H 11 (z) (en discontinuo y rojo) junto con

5 S
la aproximaciéon uniforme dada por el teorema 3.().1( p)ara n =1 (amarillo), n = 2 (morado) y n = 3
(verde) en los intervalos [0, 12] (arriba izquierda), [—12,0] (arriba derecha) y [i, 12 + i] (abajo). En este
ultimo caso, la grafica de la izquierda corresponde a su parte real, mientras que la grafica de la derecha
representa su parte imaginaria.

[\SlIS
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0.1

05;

. T . . .
Por otro lado se muestran las gréficas de la funcién £—”H 11 (z) (en discontinuo y rojo)

z\5 5
(3)

junto con las aproximaciones de Taylor (arriba izquierda), asintético (arriba derecha), uniforme con
o= % (abajo izquierda) y uniforme con o = 0 (abajo derecha) para n = 1 (amarillo), n = 2 (morado) y
n =3 (verde) en el intervalo [0, 12].

101

08

06

04

02F S

0.4F 0.4F
v
o =
& R
0.2 02
s I L L L s I " L L
2 4 6 8 10 12 2 4 [ 8 10 12
-02r -02r

En ellas se observa claramente el comportamiento de cada aproximacién. Ademds, comparando
las dos gréficas de abajo, se observa que para o = }‘ el error es menor que para & = 0, como hemos
demostrado con anterioridad.
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3.2.2. Tablas numéricas.

Finalmente obtenemos algunas aproximaciones vélidas para z € R.

. .,  JELE
Para comenzar, escribimos los valores que toma la funcién 4 (57“2)H 1
z2\5 35

(z) paraz=1,2,...,28:

2

0.177019,0.309041,0.368939,0.356584,0.295336,0.218745,0.155078,0.117429,0.103116,0.100593,
0.0984896,0.0914988,0.080843,0.0707545,0.0643365,0.0616006,0.0602972,0.0581371,0.0544413,
0.0501747,0.0467479,0.0447806,0.0437695,0.0427111,0.0409872,0.0387653,0.0366939,0.0352719.

Por otro lado, escribimos los valores que toma la aproximacién dada por el teorema 3.0.1 paran =3,
o =1/4 enlos valores z=1,2,...,28:

0.172688,0.303871,0.367075,0.359481,0.300649,0.222315,0.154321,0.113333,0.0992716,0.100164,
0.101688,0.095594,0.0825725,0.06902,0.0609487,0.0595769,0.0612747,0.0611136,0.05681,
0.0500363,0.0444674,0.0425185,0.0435157,0.044592,0.0432793,0.0394998,0.0353746,0.0332164.

Hacemos lo mismo para o = O:

0.167439,0.29714,0.363547,0.361292,0.305951,0.226904,0.154924,0.10995,0.0948464,0.0980401,
0.103012,0.0986902,0.0846023,0.068379,0.0584161,0.0574075,0.0611769,0.0628828,0.0586904,
0.0503514,0.0430352,0.0406748,0.0428397,0.0455268,0.0448388,0.0402312,0.0346556,0.0317383.

En estas tablas numéricas se observa como se comporta la aproximacion uniforme paran =3, v = %1
para los 28 primeros nimeros enteros positivos. En particular, se tiene que, para @ = %,

VEL (S +3) 15.56716+ 3.428487% + 1.00122z*
7 Hu(z) ~ 3 +
26T -
2
(—15.56716+4.35510z% +0.06439z*) cosz+ (—15.56716z — 0.833962%) senz (@)
5 <)
g

con
le(z)] < 0.00578232,

mientras que para ¢ = 0 la aproximacidn es peor aunque de férmula mas simple, obteniendo

ﬁr(gﬁ)H . 14.28 +3.42% + 2* + (—14.28 +3.74z2 +0.105z*) cos z
——FFHiu(z) = -
G g
14.28z+1.027%) senz
| g ) +8(2),

con
18(2)| < 0.0124198.

Destacamos dos hechos: En primer lugar, las cotas obtenidas son finas (comparar por ejemplo los
primeros valores dados de la funcién y sus aproximaciones). En segundo lugar, la funcién de Struve

1,1
(5 +3) . , iy .
reescalada [5“2]_1 11(2) es decreciente en la semirrecta real positiva y tiende a cero cuando
)5 >

2
n — oo. Por lo tanto, para z suficientemente grande la cota uniforme (que es constante) serd relativamente
mala.



Capitulo 4

Desarrollo uniformemente convergente de
la funcion K de Struve.

Como hemos hecho en el capitulo anterior para la funcién H, de Struve, vamos a buscar un desa-
rrollo uniforme de la funcién K, que verifique las siguientes tres condiciones:

= FEl desarrollo sea convergente.
= Esté dado por medio de funciones elementales.

= FEl desarrollo sea uniforme en una amplia region del plano complejo que contenga valores grandes
y pequefios de |z].

La técnica a seguir va a ser la misma que en el capitulo 3: consideramos una representacion integral
de la funcién Ky y desarrollamos en serie una parte del integrando. Tras intercambiar la suma con
la integral, obtenemos un desarrollo en serie de nuestra funcién especial, que deberemos probar es
convergente y uniforme.

En [[14], ec. 11.5.2] se encuentra la siguiente representacion integral de la funcién K, vélida siem-
pre que Rez > O: )

< oo
Ko(g) = ) 1 / e (14+2)" 2d1.
\/ﬁ F(V + f) 0
Abhora bien, encontramos una gran diferencia entre la funcién K, y la funcién H,, a saber, en la funcién
Ky el intervalo de integracion es no acotado. Por lo tanto, el disco de convergencia del posible factor que
desarrollemos no contendrd al intervalo de integracién. Por ello, antes de desarrollar en serie debemos
realizar un cambio de variable en la integral para que el intervalo de integracién sea finito. Tomando
t = —logu obtenemos

(e} 1
/ e*Z’(l—l—tZ)V*%dt:/ uzfl(l—i—logZu)V*%du.
0 0

El intervalo de integracién ya es acotado, pero a cambio la funcién hy (1) = (1 +log? u)"*% que desarro-
llaremos en serie se ha complicado considerablemente. Para desarrollarla consideraremos las funciones
(14+1logu)V~"2 = hy(u) = gy (f(u)) con gy(u) = (1+ u)Y"2 y f(u) = log*u y utilizaremos la férmula
de Faa di Bruno que proporciona la derivada n—ésima de una composicién de funciones.

Lema 4.0.1. Sean g,(u) = (1+ u)"_% y f(u) = log?u. Entonces, para todo m > 1 las derivadas
m—ésimas estdn dadas por

_1
7w =m (¥ 2)

m

2(m—1)1(—1)"

1 o]
Fo ) = R (logu +y k)
k=1

um

21
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Demostracion. Por induccién, ambas férmulas se prueban sin dificultad. O

Con esto, podemos calcular, utilizando la férmula de Faa di Bruno [[14], ec. 1.4.13.], la derivada
n—ésima de la funcion hy (u) = gy (f(u)). Segin ésta, resulta

d" n
dung(f(”)) = Y g0 (£(u)Bur(',g", ... g" D),
k=0

donde B, x son los polinomios de Bell descritos en [[5], Cap 11.2] que satisfacen la recurrencia [[5], ec.
11.11]

1
Bﬂ,k('xl)"‘7xl’l*k+l) Zn kx xj n—jk—1
B()70 =1

Bui10=0=Bo,1

Asi, tenemos el siguiente resultado.

Lema 4.0.2. Sea hy(u) = (1 +log? u)"_% = gv(f(u)) como antes. Entonces

k
)=k Y 2 (1)
m=1 :

donde
boo(u) =1
anrl 0(”) =0
( ) Zk m—1Cn— k( )bk,mfl(u)
con 2(=1 n—k n—k—1 1

Demostracion. Basta considerar el lema anterior, la formula de Faa di Bruno y la relacién que verifican
los polinomios de Bell. Sustituyendo todas las expresiones y manipuldndolas levemente se tiene la
tesis. 0

Con esto, tenemos el siguiente teorema.

Teorema 4.0.3. ParaRez>1,veC n=1,2,3,...yB € <2,20015( )>

(2, B) +RY (v, B,2),

(5)"

donde hy(u) = (1 + log? u)V*% y sus derivadas estdn dadas en el lema 4.0.2. Ademds las funciones
Ly (z, B) son las funciones elementales

T(v+1) *(v
\/2E(v~|— ;

L= [ pra= Y, (5)pror @

m=0 \7 z+m
que satisfacen la relacion de recurrencia

(1-B) &

Li(z,B) = P ELk,l(er 1,B),

con

Lo(z,B) = -
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El resto RK (v, B,z) estd acotado por la expresion

5 (%_1>”“ 1, 1—Rez
2F
-1 ntl

’Rtlf(vvﬁaz)‘SMﬁ,v BRCZB(n+17ReZ_1)+ l_ﬁ )
n+2
4.2)
donde Mg ,, es una constante que depende tinicamente de 3 y v.
En particular, el resto tiende a cero cuando n — oo, por lo que el desarrollo es convergente. Ademds,
la funcion entre corchetes es decreciente por lo que el resto es uniforme en z siempre que Rez > A, para

cualquier A > 1; y se comporta como n~ RV cuando n — oo,

Demostracion. De nuevo, vamos a aplicar la técnica explicada en la seccién 2.3 a la funcién K, de
Struve. Para ello, consideramos la representacién integral de esta funcién dada en [[14], ec. 11.5.2].

Ky(2) 2 () /w (1412 " dr Rez > 0
7) = —F—=—"""—+ e , ez
Y VET(v+1)Jo
El intervalo de integracién es no acotado por lo que realizamos cambio de variable t = —logu.

Llegamos a

al(v+1 !

\/2>(Z\/2>KV(Z) Z/ szlhv(”)d”a
(5) 0

1

con hy(u) = (1+1log?u)"~2.
Desarrollando la funcién hy en serie de potencias centrada en 8 e intercambiando la serie con la
integral, resulta

VALY )
TT)VZKV(Z)—];O o /Ou l(u—ﬁ)kdu—l—/o (v, Bou)du, (4.3)

:Lk(z,ﬁ) :R,’f(v,ﬁ,z)

donde r,, (v, B,u) es el resto de Taylor del desarrollo de la funcién h,,.

Veamos en primer lugar dénde es valido este desarrollo y que condiciones debe verificar el punto f3.
La compleja férmula que define las derivadas de 4y, dada en el lema (4.0.2), hace que intentar aplicar
algin resultado de andlisis real como puede ser el criterio del cociente o de la raiz para determinar el
radio de convergencia de la serie sea indtil. Sin embargo, si consideramos la funcién A, () como una
funcién de variable compleja podemos hallar el radio de convergencia, puesto que éste coincide con la
distancia del punto en el que desarrollamos a la singularidad mas cercana.

Las singularidades de la funcion Ay (1) = (1 + logz(u))"_% son las siguientes:

= Por un lado, el punto # = 0 es un punto de ramificacién, por lo que /4, no es analitica en la
semirrecta real negativa.

= Por otro lado, para valores no semienteros del pardmetro v se tiene que (14 log?(u))’ ™2 =
e(V=2)log(1+10g* () Tomando la rama principal del logaritmo se sigue que si 14 log?(u) < 0 la
funcién no es analitica. Dado que log(u) = log |u| +iArg(u) se sigue que 14log?(u) < 0'siy solo

si
1+ log? |u| — Arg®(u) + 2ilog |ujArg(u) < O. (4.4)

Para que (4.4) tenga sentido, la parte imaginaria de este nimero debe ser nula y por lo tan-
to log |u|Arg(u) = 0, de donde se sigue que |u| = 1 o Arg(u) = 0. Ahora bien, si imponemos
Arg(u) =0 en (4.4) resulta 1+ 1log?|u| < O que nunca se cumple. En consecuencia, debe ser
lu| = 1 y reemplazando en (4.4) se deduce Arg?(u) > 1. Es decir, todos los puntos u del ar-
co de la circunferencia unidad que conecta los puntos e y e~/ en sentido positivo verificando
Arg?(u) > 1 son puntos singulares de &, (ver figura).
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S

Los puntos del arco dibujado, que llamaremos A, junto con la semirrecta real negativa y el origen son
los puntos singulares de /.

Por otro lado, para valores semienteros la funcién (1 + log? u)v_% es analitica salvo para u < 0, y no
tendremos una cota superior para f3.

Tomando 8 € RT se sigue que el radio de convergencia de la serie es min{d(f3,0),d(B,A)} donde d
denota la distancia euclidea. Graficamente es claro que min{d(f3,0),d(B,A)} = min{d(j,0),d(B,e)} =
min{B, /B2 +1—2Bcos1}. Estas cantidades coinciden para § = TeosT Y S€ tiene que si § > ﬁ en-

tonces el disco de convergencia de la serie es D(f3, \/ B?+1—2Bcos1) que no contiene al intervalo de

integracién (0, 1). Por lo tanto, debemos rechazar este caso. El caso contrario, < ﬁ implica que

el disco de convergencia es D(f3, ) que contiene al intervalo (0, 1) siempre que 8 > 5. Por lo tanto,
debemos imponer f € (3, 527
En consecuencia, el desarrollo (4.3) es vélido en el disco D(8,8) con 8 € (3,

mantes L (z, ) vienen dados por

1
2cos 1

). Los aproxi-

Lo B) = [ 6 e B)du= (168, (k1)
0 B

donde B,(a,b) denota la funcién beta incompleta de Euler (ver [[14], Sec. 8.17]). Podemos obtener una
expresion explicita de las funciones Ly (z, ) empleando tnicamente funciones funciones elementales.
En efecto, utilizando el binomio de Newton obtenemos

m=0 m=0 \"" z+m ‘
Ademds, integrando por partes en la definicién de las funciones L;(z,) (4.1) se obtiene la recurrencia
del enunciado, mientras que Lo(z, B) se calcula directamente.

Por otro lado, el error r,(v, B, u) que aparece al desarrollar la funcién 4, admite, segtin [[11], teore-
ma 2.3. con m = 1], la expresioén

1 hy (w)dw
ra(V,B.u) = — u—pBY", u>0
B = s | e e B
donde % es un camino cerrado simple recorrido en sentido antihorario contenido en el disco D(f3, 3)
y que contiene a los puntos u# > 0 y 3. Tomemos como tal camino la frontera del disco de centro f y
radio B = B — &, con € > 0 arbitrariamente pequefio, lo cual es necesario para que el camino no cruce
el punto singular w = 0. Parametrizando el camino se encuentra

Loy hy (B + Bee®)Bee®idd
}”n(V,ﬁ,M) 7/771: (ﬁ +Bgei9_u)(ﬂgei9)n

(u—PB)".

oW

Tomando valores absolutos se tiene

|M_ﬁ|>nﬁg /” |y (B + Bee™®)|dO

1
|rn(V7ﬁau)‘§2n_< Bs i ‘B+ﬁgei9—u| .
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Sustituyendo esta expresién en la ecuacién que define RX (v, B,z) (4.3) se tiene

K ! Rez—1 _L ! Rez—1 |u7ﬁ| " r |hV(B+ﬁ€ele)|d6
RE Bl < [ v praolde= 5 [ < pe )BS/_E BrBec®—u]

Teniendo en cuenta la desigualdad triangular inversa se deduce que

1B ‘_{ g, sif>u

i0
+ pee
B+ Pe 2B—u—e>2p—1—¢, si B <u.

Por lo tanto, se obtiene

IRK(v,B,2)| < ;/BuRe“ <|”_B|>nﬁ_8/_ihv(/3 + Bee'®) |dOdu+

Be u—=&
o o () P i e

Dado que la funcién Ky (B + Bee®) es integrable en [, 7], se obtiene, denotando
M g v " |hv(B + Bee'®)|d6 y tomando limites cuando € tiende a cero (aplicar TCD), que el resto
RX(v, [3 z) estd acotado por

—n ﬁ €7— n —n 1 ! €7— n
R (Y. B,2)1 < M ' [ (B et My ' 5 [ ()

La primera de estas integrales, Oﬁ uRe=2(B — u)"du, se puede calcular en términos de la funcién Beta
de Euler [[14], Sect. 5.12.] tras el cambio de variable u = By, y resulta

B
/ uR2(B —u)"du= B RIB(Rez — 1,n+1).
0

Por otro lado, la otra integral [g u } uRe=1 (4 — B)du, se puede calcular con ayuda de la funcién Beta de

Euler incompleta [[14], Sect. 8. 17] y, tras el cambio de variable § —u = By, es igual a
1
/ uRezfl(u _ ﬁ)"du — ﬁn+ReZ(_1)n+lBl,% (n+ I,Rez).
B

Aplicando [[14], ec. 8.17.9], que relaciona la funcién beta incompleta con la funcién hipergeométrica
de Gauss »F], se tiene

1 )”“ | —Rez, 1
2B

/ﬁl R (4 — BY du = p* (ﬁ

1—
n+1 B

n+2

Por lo tanto, el resto RX estd acotado por

B <%_1>n+1 1—Rez, 1
2k

RK <M RezpRer— 1 1
Ry (VB 2)[ < Mp v | PP BRez—Lnt1) + 557 ==

1-B
n+2
4.5)
Veamos que la funcién entre corchetes es decreciente en Rez, para cualquier n > 1 y cualquier
B e (2, TeosT Osl ). Para ello, veamos que es suma de funciones decrecientes.
Por un lado, en el segundo factor la variable Re z aparece tinicamente en la funcién hipergeométrica

de Gauss, por lo que basta probar que ésta es decreciente. Sean x >y > 1.
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1—x, 1 11—y, 1
Veamos que »F) 1-B | <2F 1— B | . Paraello, basta considerar la repre-
n+2 n+2
sentacion integral de la funcién hipergeométrica de Gauss dada en [[[14]], ec. 15.6.1]
1—x, 1 |
; 1—¢)"
2F 1-B :(”‘H)/ ( ) =t
i 0 (1—(1—PB))
Dado que 8 € (3,52—),7 € [0,1], x>y > 1 se sigue que (1_(1_113)”1,)( < (1—(1—1ﬁ)t)1*>" Reemplazando,
1—x, 1 11—y, 1
se tiene que 2F] 1-B | <2F 1—B ],y por lo tanto el segundo de los
n+2 n+2

sumandos del corchete en (4.5) es decreciente.
Por otro lado, vamos a probar que el primer sumando del corchete en (4.5) es decreciente. Sea
¢(x) =pB*B(x—1,n+1), x> 1. Entonces

88()[: =B*B(x—1,n+1)[logB+y(z—1)—y(z+n)],

donde y denota la funcién digamma dada en [[14], ec. 5.2.2]. Para probar que ¢(x) es decreciente, basta
probar que logf + w(z—1) — y(z+n) < 0, pues el factor que multiplica al corchete nunca se anula,
parax>1yp € (%, . ). Aplicando reiteradamente la relacién [[14], ec. 5.5.2] se encuentra

2cos 1
n—1 1
Yiz+n)=y-1)+ ) ——
=1z +J
por lo que se deduce que ¢(x) es decreciente si y solo si
n—1 1
logf3 — — <0,
gp - X1

j=

que es trivialmente cierto pues todos los sumandos que aparecen son negativos, dadoque f <1y x> 1.
En consecuencia, ¢(x) es decreciente y por lo tanto la funcién que aparece entre corchetes en (4.5)
también lo es.

En consecuencia, para todo z tal que Rez > A para cualquier A > 1 se tiene que

n+1
NN
T R— 2Fy 1-B]|, 406

n+2

RE(v,B.2)| < Mg, |B*B(A—1,n+1)+

que da una cota uniforme del resto.
Tomamos ahora limites cuando n — o0 en (4.5). En primer lugar, el orden del primer sumando de
(4.5) lo obtenemos con ayuda de la férmula de Stirling:
(Rez— 1)F(I’l—|— 1) —(Rez—1)

r
Rez Rez
B**B(Rez—1,n+1)=p ~ .
( €z 1 ) l(n+Rez) "

Por otro lado, considerando el primer término del desarrollo asintético de la funcién hipergeométrica
de Gauss, dado en [[14], Sect. 15.12.(ii)], se deduce que el orden del segundo sumando del corchete en

(45) es ntl n+1
O AT

26—1 n+1 et n+1
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Por lo tanto,

(é— )n+l
RK ~ 5~ (Rez—1) )
RE(v,B2)] ~onRes) 4 S8

n+1
Dado que 8 € (3, 707) ~ (0.5,0.92) se tiene que (% - ) < 1y por consiguiente el segundo de

los sumando tiende més rdpidamente a cero que el primero (al hacer n — o), por lo que el orden de
convergencia de la serie dada en el teorema 4.0.3 lo marca el sumando n~(Rez=1), 0

Para terminar, destaquemos varios aspectos de la aproximacién dada en el teorema 4.0.3:

= En primer lugar, hemos conseguido demostrar la convergencia y uniformidad del desarrollo a
pesar de la compleja férmula que define las derivadas de & y por consiguiente el resto. Para
ello, hemos recurrido al andlisis complejo y a integrales de Cauchy y hemos encontrado cotas no
explicitas del error. Por ello, no podemos optimizar el valor del punto 8 en el que desarrollamos
como hemos hecho para la funcién H,,.

= En segundo lugar, la restriccion para 8 € (2, 2“1)51) es necesaria. En efecto, si f < % entonces el

factor (3 — ) es mayor que 1y el resto no tenderia a cero cuando n — oo, es decir, el desarrollo
no seria convergente.

= En tercer lugar, a pesar de que la representacion integral de la funcién K, [[14], ec. 11.5.2] es
vélida para todo z tal que Rez > 0, hemos probado que el desarrollo obtenido es vélido para
Rez > A > 1. Ademais, en el comportamiento asintético del resto observamos que la velocidad
de convergencia es lenta, especialmente para valores de z con Re z préximo a uno. Por esta razén,
para valores de z con parte real préxima a uno el error cometido al aproximar puede ser muy
grande si n es pequefio.

Veamos algunas gréficas sobre la funcién K, y la aproximacion.

4.1. Graficas.

A continuacién se muestran unas graficas en distintos intervalos comparando los valores absolutos

\FF(\H— )

de los errores relativos cometidos al aproximar la funcién — ———=-K, (z), para el valor del pardme-

tro v = 3.1, utilizando el desarrollo dado en el Teorema 4.(). con [3 0.8 y los desarrollos de Taylor y
asintético dados en el capitulo 2, tomando en los tres casos n = 10. Se representa en azul el desarrollo
de Taylor, en verde el asintético y en rojo el uniforme.
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0010

0.04+
0.008

0.03
0.004

0.01 0.002

Hemos representado los intervalos [1,12] (izquierda), [5,5 + 12i] (centro) y [5,5+ 661%] (derecha).
En ellas, se observa que cuando la parte real de z tiende a uno, el error aumenta, como era de esperar
debido al comportamiento asintético del error. Observamos ademds que para valores pequefios de z el
desarrollo de Taylor es mucho mds competitivo mientras que para valores grandes lo es el asintdtico. Sin
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embargo, el desarrollo uniforme compite con ellas y es mejor que ambas en alguna regién intermedia.
Ademds es uniformemente mejor. Para otros valores de 3 las graficas son similares.

I . VED(v+3 N :
A continuacion se representa la funcién \ZF(ZVZ) Ky(z) para v = 3.1 (en discontinuo y rojo),

2
junto con la aproximacién uniforme dada por el teorema 4.0.3 con f = 0.8 para n = 1 (amarillo), n = 2

(morado) y n = 3 (verde) en los intervalos [1, 12] (arriba izquierda), parte real de [5,5 + 15ei%] (arriba
derecha) y [5,5+ 12i] (abajo). En este tltimo caso, la grafica de la izquierda corresponde a su parte real,
mientras que la grafica de la derecha representa su parte imaginaria.
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Las graficas para otros valores de 3 son similares. Observamos que la funcién que aproximamos y la
aproximacion tienen la misma forma. Sin embargo, para los valores de z con parte real pr6xima a uno, el
error es grande siempre que # no sea lo suficientemente grande, como se observa en el comportamiento
asintdtico del error. Ademds, el error lo medimos verticalmente. Esto justifica las graficas anteriores
donde representdbamos el valor absoluto del error relativo cometido y éste era grande para los z con
Rez préximo a uno, pues considerdbamos n = 10, que no es lo suficientemente grande.

al(v+1
Por otro lado se muestran las graficas de la funcién \5 %K\, (z) (en discontinuo y rojo) junto

2
con las aproximaciones de Taylor (arriba izquierda), asint6tico (arriba derecha), uniforme con 8 = 0.55

(abajo izquierda) y uniforme con 8 = 0.9 (abajo derecha) para n = 1 (amarillo), n = 2 (morado) y n =3
(verde) en el intervalo [0, 12].




Pablo Palacios Herrero

]
1
]
|
1
1
|
1
\
]
\
\
1
\
3

051
S

En las gréficas de abajo observamos que la aproximacién con 3 = 0.55 es bastante peor que para

B = 0.9. De nuevo, no tenemos informacién sobre el valor 6ptimo de 3, pero experimentos numéricos
muestran que el valor de 8 que minimiza el error se encuentra en torno a § = 0.8.

Finalmente, la relacién K, (z) = Hy(z) — Yy (z) junto con los desarrollos uniformes calculamos para
la funcién Hy y K, (teoremas 3.0.1 y 4.0.3) permite obtener un desarrollo uniforme para la funcién de

Bessel de segundo tipo Yy, en la regién interseccién donde son vélidos los desarrollos de la Hy y la K,
es decir, en la region {|Imz| < Q}N{Rez> A}, conQ >0y A > 1.
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