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Summary.

Special functions are solutions to differential equations and appear in a large variety of fields, mainly
in mathematics and physics, but also in other fields such as economy and statistics. They can not be writ-
ten in terms of elementary functions but, in many cases, they admit an integral representation (Chapter
1). Therefore, an approximation technique in terms of elementary functions of a certain variable z is
needed in order to approximate and compute them. The most used techniques are the Taylor expansion
and asymptotic expansions (based on Watson’s lemma, Laplace method, etc...), valid for small and large
values of the argument |z| respectively (Chapter 2). The main aim of this work is to derive new repre-
sentations of special functions satisfying the following three properties: (i) they are convergent, (ii) they
are given in terms of elementary functions and (iii) they hold uniformly in a large domain for |z| that
includes small and large values of |z|. A general theory on uniformly expansions is beyond the scope of
this work. Hence we focus our attention in the Struve functions Hν and Kν .

The Struve functions are two fundamental solutions to the non-homogeneous Bessel’s differential
equation

d2w
dz2 +

1
z

dw
dz

+

(
1− ν2

z2

)
w =

( z
2

)ν−1

√
πΓ(ν + 1

2)
.

They are used in the description of several phenomena in aerodynamics, quantum mechanics, optical
diffraction and other physical problems.

In Chapter 3, we consider the Struve function Hν . Our starting point is an integral representation
(valid for Reν > −1/2). The expansion series of an appropriate factor of the integrand is used and
then sum and integral are interchanged. We compute an accurate error bound which shows the uniform
character of the expansion in arbitrary wide horizontal strips of the complex z−plane. In addition, the
error bound shows that the remainder behaves as n−(Reν+ 1

2 ) when n→∞. Then, some graphics illustrate
the uniform expansions compared with the Taylor and asymptotic expansions.

In Chapter 4, we consider the Struve function Kν . The analysis in this case is more difficult since
the interval of integration is not bounded. After a change of variable the interval becomes a compact
interval, but the factor of the integrand that is expanded in power series is much more difficult and its
Taylor remainder can not be computed in terms of known functions. However, it admits a representation
in terms of a Cauchy integral. This representation allows us to obtain an error estimate that shows the
uniform character of the expansion for Rez≥ Λ, Λ > 1 fixed, and that the expansion is convergent and
behaves as n−(Rez−1) when n→ ∞. Finally, some graphics illustrate the uniform expansions compared
with the Taylor and asymptotic expansions.
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Capítulo 1

Funciones especiales

No existe una definición concreta de qué son las funciones especiales, aunque las podemos definir
como aquellas funciones que son solución de una amplia clase de ecuaciones funcionales que tiene
gran relevancia en las matemáticas y la física y que tienen un nombre y una escritura estandarizada.
Aparecen en campos muy diversos, desde la modelización de fenómenos naturales o problemas de
ingeniería, pasando por la simulación numérica y la teoría de números hasta ramas de la economía y la
estadística.

Los ejemplos más sencillos de funciones especiales los encontramos en las funciones elementales
como la exponencial o el logaritmo natural, así como en las funciones trigonométricas. También grandes
familias de funciones como los polinomios ortogonales y las integrales elípticas son funciones especia-
les. A esta lista debemos añadir multitud de funciones particulares que no se pueden expresar por medio
de funciones elementales y que a menudo admiten una representación integral o una representación en
serie, como pueden ser la función gamma de Euler Γ(z) o la función zeta de Riemann ζ (z). Una lista
detallada de las funciones especiales más importantes y funciones relacionadas con ellas puede verse en
[14].

La presencia de estas funciones en multitud de ramas de la física y la matemática hace que su
estudio sea muy importante. En particular, resulta de gran importancia disponer de métodos numéricos
y analíticos que permitan aproximar éstas funciones.

En este trabajo, nos centraremos en los métodos analíticos. Respecto a éstos, las aproximaciones
existentes más importantes son de dos tipos:

Desarrollo de Taylor, válido en un entorno del punto en el que desarrollamos, típicamente el
origen.

Desarrollos asintóticos, válidos para valores grandes de la variable.

Estos dos métodos tienen una gran virtud: aproximan muy bien la función en un entorno; pero poseen un
gran inconveniente: fuera de ese entorno el error cometido es muy grande. Por esta razón la búsqueda
de desarrollos uniformes, esto es, válidos en una amplia región del plano complejo, resultan de gran
interés e importancia. Una teoría general de desarrollos uniformes de funciones especiales se escapa del
contenido de este trabajo. Es por ello que desarrollaremos un método en un caso particular: las funciones
de Struve. Esta elección sigue la línea de investigación iniciada por los directores y ponente de este
trabajo en la búsqueda de desarrollos uniformes de funciones especiales, ver [3] para la función gamma
incompleta, [10] para las funciones de Bessel Jν y Yν , [4] para la función confluente hipergeométrica.
Asimismo, otros trabajos están en progreso, como el relativo a la función hipergeométrica generalizada
pFq.

A lo largo del trabajo aparecerán multitud de funciones especiales como la función hipergeométrica
de Gauss 2F1 y su generalizada pFq, las funciones gamma y beta de Euler incompletas, el símbolo de
Pochhamer (z)n, las funciones de Bessel, etc. El lector puede consultar en [14],[21], [13] la definición y
propiedades más importantes de todas ellas.
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2 Capítulo 1. Funciones especiales

1.1. Funciones de Struve.

En 1882 Hermann Struve [20] introdujo la función Hν(z) que lleva su nombre como la serie

Hν(z) =
(

1
2

z
)ν+1 ∞

∑
n=0

(−1)n
(1

2 z
)2n

Γ(n+ 3
2)Γ(n+ν + 3

2)
, (1.1)

donde Γ(x) denota la función gamma de Euler, z es una variable compleja y ν un parámetro fijo, real
o complejo, llamado orden. La serie (1.1) converge para todo valor finito de z, está bien definida para
cualquier valor del parámetro ν y su valor principal corresponde al valor principal de

(1
2 z
)ν+1. Asimis-

mo, se trata de una función entera en ν siempre que z 6= 0. Además la función z−ν−1Hν(z) es entera en
z. La función de Struve admite una representación integral, siempre que Reν > −1

2 , dada por [[14], ec.
11.5.1]

Hν(z) =
2
(1

2 z
)ν

√
π Γ(ν + 1

2)

∫ 1

0
(1− t2)ν− 1

2 sen(zt)dt

y válida para todo z ∈ C.
Originalmente, Struve introdujo esta función como una solución particular de la ecuación diferencial

de Bessel de segundo orden no homogénea.

d2w
dz2 +

1
z

dw
dz

+

(
1− ν2

z2

)
w =

( z
2)

ν−1

√
πΓ(ν + 1

2)
. (1.2)

Sabemos que las soluciones de la ecuación homogénea son las funciones de Bessel de primer y segundo
tipo, Jν e Yν , respectivamente, por lo que no sorprende la relación de la función de Struve con éstas.
De hecho, podemos construir otra solución Kν de (1.2) tomando Kν(z) = Hν(z)−Yν(z). Esta segunda
función de Struve Kν admite la representación integral [[14], ec. 11.5.2]

Kν(z) =
2
(1

2 z
)ν

√
πΓ(ν + 1

2)

∫
∞

0
e−zt(1+ t2)ν− 1

2 dt,

válida para todo ν ∈ C y para los z con parte real positiva.
Las funciones de Struve tienen muchas aplicaciones en campos de la física. En el artículo original

de Struve [20] aparecen ligadas a la difracción en los telescopios. Asimismo, en [9] aparecen en un
problema de difracción óptica. Pero sus aplicaciones no se limitan únicamente al campo de la óptica. Su
aplicación se ha encontrado en problemas de olas de agua y de ondas de superficie [8], [2]; en problemas
de dinámica inestable [19], [22]; en la distribución de la presión de un fluido sobre un disco vibrante [12]
y en la teoría de inestabilidad MHD (Magneto-Hydro-Dynamics) resistente [16]. Además, las funciones
de Struve también aparecen en algunos estudios sobre la dinámica de partículas elementales [18] y en
el estudio de nanotubos [17].



Capítulo 2

Métodos analíticos previos.

Debido al importante papel que juegan las funciones especiales en un amplio abanico de campos
es necesario buscar métodos numéricos y analíticos que aproximen estas funciones y nos permitan eva-
luarlas fácilmente. Nosotros nos centraremos en los métodos analíticos, en particular, en los desarrollos
de Taylor-McLaurin y asintóticos.

Para comenzar, recordemos la siguiente notación que se debe a Landau.

Definición 2.0.1. Sea Ω un conjunto en el plano complejo z y sea z0 un punto límite de Ω, pudiendo ser
el infinito. Sean f (z) y g(z) dos funciones definidas en Ω. Escribiremos

f (z) = O(g(z)), cuando z→ z0

para decir que existe una constante K > 0 y un entorno U de z0 tal que | f (z)| ≤ K|g(z)|, ∀z ∈ Ω∩U .
Asimismo, escribiremos

f (z) = o(g(z)), cuando z→ z0

para decir que para todo ε > 0 existe un entorno Uε de z0 tal que | f (z)| ≤ ε|g(z)|, ∀z ∈Ω∩Uε .

2.1. Desarrollos en serie de Taylor.

La teoría de desarrollos en serie de Taylor es bien conocida por lo que omitiremos su descripción.
Pueden consultarse todos los detalles de la misma en cualquier libro básico de análisis real o complejo,
como puede ser [[15], Cap. 7] o [[1], Cap. 2.2 y 5.1]. Esta técnica se puede aplicar de diversas formas a
las funciones especiales. Mostramos a continuación una aplicación inmediata de la misma.

En primer lugar se toma una representación integral de la función que queremos aproximar. Después
se toma el desarrollo de Taylor de una parte del integrando y se intercambia la serie con la integral. Tras
integrar obtenemos un desarrollo en serie de la función especial inicial. Veamos un ejemplo:

Consideramos la función exponencial integral complementaria definida mediante la integral [[14],
ec. 6.2.3]

Ein(z) =
∫ 1

0

1− e−zt

t
dt

y reemplazamos el factor 1−e−zt por su serie de Taylor en el origen, esto es, 1−e−zt =∑
∞
n=1(−1)n+1tn zn

n!
.

Intercambiando la serie y la integral en la definición de Ein(z) y calculado la integral que resulta obte-
nemos el desarrollo

Ein(z) =
∞

∑
n=1

(−1)n−1zn

n!n
,

que converge para todo z complejo.
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4 Capítulo 2. Métodos analíticos previos.

2.2. Desarrollos asintóticos.

La teoría asintótica es una rama de las matemáticas que trata problemas relacionados con el com-
portamiento de una función cuando un parámetro tiende a un valor específico o cuando el índice de una
sucesión tiende a infinito. Esta teoría se divide en tres grandes áreas: asintótica de soluciones de ecua-
ciones diferenciales, asintótica de soluciones de ecuaciones en diferencias y asintótica de integrales.
Nosotros nos interesaremos en la última de éstas.

Definición 2.2.1. Llamaremos desarrollo asintótico de una integral paramétrica F(x) =
∫

Γ

f (x, t)dt,

cuando el parámetro x→ ∞ a la aproximación

F(x)∼
∞

∑
n=0

anΦn(x)

donde

1. la sucesión Φn(x) es asintótica, es decir,

Φn(x) = o
(
Φn−1(x)

)
, cuando x→ ∞.

2. F(x)−
N

∑
n=0

anΦn(x) = O
(
ΦN+1(x)

)
, cuando x→ ∞.

Cabe destacar que no estamos asumiendo que la serie ∑
∞
n=0 anΦn(x) sea convergente para ciertos

valores de z. Lo único relevante en la teoría asintótica es que se verifiquen las dos condiciones de la
definición. A menudo, este tipo de desarrollos son divergentes pero al truncar la serie la aproximación a
la función original es muy buena.

De entre la multitud de métodos utilizados para el cálculo de desarrollos asintóticos de integrales
destacan el lema de Watson y el método de Laplace por ser los primeros en ser desarrollados y porque
poseen grandes aplicaciones en la aproximación de funciones especiales.

El lema de Watson es una técnica útil y sencilla para derivar desarrollos asintóticos de integrales, en
particular de la transformada de Laplace de una cierta función analítica f . Establece lo siguiente:

Teorema 2.2.2. (Lema de Watson) Sea F(x) =
∫

∞

0
e−xt f (t)dt, x→ ∞, la transformada de Laplace

de una función f analítica salvo quizás en el origen, que permitimos sea un punto de ramificación.

Sea f (t) =
N−1

∑
n=1

antn/r−1 + fN(t), en |t|< R con r > 0 y fN(t) = O(tN/r−1) cuando t → ∞. Supongamos

además que existe α > 0 de manera que f (t) = O(eαt) cuando t→ ∞. Entonces

F(x) =
∫

∞

0
e−xt f (t)dt ∼

∞

∑
n=1

anΓ

(n
r

)
x−n/r.

Una idea de la demostración es la siguiente. Para x grande la mayor contribución del integrando a la
integral se localiza en torno a t = 0. Por lo tanto, tiene sentido desarrollar f mediante su serie de Taylor
en t = 0. Tras esto, intercambiamos serie e integral e integramos término a término. Una demostración
detallada puede verse en [13], donde además se muestra que el desarrollo es asintótico.

El método de Laplace es algo más general, pues se aplica a integrales de la forma
∫ b

a
e−z f (u)g(u)du,

donde (a,b) es un intervalo real finito o infinito y z→ ∞ es una variable real o compleja. Mediante
un cambio de variable f (u)− f (a) = t la integral se lleva a una transformada de Laplace de una cierta
función h(t), momento en el que se puede aplicar el lema de Watson. Concretamente, establece lo
siguiente:
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Teorema 2.2.3. (Teorema de Laplace). Sea (a,b) un intervalo real, finito o infinito, y consideramos la

función definida por la integral F(x) =
∫ b

a
e−x f (u)g(u)du, x→ ∞. Supongamos que

1. t = a es el único mínimo absoluto de f (t) en [a,b].

2. f ′(t) y g(t) son continuas en un entorno de t = a salvo quizás, en a.

3. Cuando x→ a+ las siguientes expansiones son ciertas:

f (t)∼ f (a)+
∞

∑
n=0

an(t−a)n+µ

y

g(t)∼
∞

∑
n=0

bn(t−a)n+α−1,

con a0 6= 0, b0 6= 0, µ > 0 y Reα > 0.
Supongamos además que el desarrollo de f se puede derivar término a término de manera que

f ′(t)∼
∞

∑
n=0

an(n+µ)(t−a)n+µ−1

cuando t→ a+.

4. La integral que define F(x) converge absolutamente para todo x suficientemente grande.

Entonces

F(x)∼ e−x f (a)
∞

∑
n=0

cnΦn(x), x→ ∞,

donde Φn(x) = Γ

(
n+α

µ

)
x−

n+α

µ y los coeficientes cn son los coeficientes del desarrollo de Taylor entorno

a u = 0 de la función h(u) = g(t(u))
f ′(t(u)) y se puede calcular a partir de los coeficientes an y bn siendo el

primer coeficiente c0 =
b0

µaα/µ

0

.

Una idea de la demostración es la siguiente. Se realiza el cambio de variable f (u)− f (a) = t.
Así, la integral que define F resulta ser F(x) = e−x f (a) ∫ f (b)− f (a)

0 e−xuh(u)du, con h(u) := g(t(u))
f ′(t(u)) . Las

hipótesis del teorema permiten deducir que h admite desarrollo de Taylor en u = 0 y se escribe h(u) =
∑

∞
n=0 cnu(n+α−µ)/µ . La tesis se sigue de aplicar el lema de Watson a la última integral. Una demostración

detallada del teorema puede verse en [[23], pág 58].
Este teorema, aplicado a la función Gamma de Euler desprende la conocida fórmula de Stirling.

En efecto, consideramos la representación integral de la función Gamma dada por [[14], ec. 5.2.1]
Γ(z+1) =

∫
∞

0 e−ttzdt, válida para Rez>−1. Realizamos el cambio de variable t = z(1+y) para obtener
Γ(z+ 1) = e−zzz+1 ∫ ∞

−1 e−zh(y)dy, con h(y) = y− log(1+ y). Rompemos el intervalo de integración en
y = 0 y obtenemos

ezz−z−1
Γ(z+1) =

∫
∞

0
e−zh(y)dy+

∫ 1

0
e−zh(−y)dy.

Teniendo en cuenta que h(y) = ∑
∞
n=2

(−1)n

n xn podemos aplicar el teorema de Laplace a cada una de las
integrales de la derecha, con µ = 2, α = 1, b0 = 1, bn+1 = 0 y an = (−1)n

n+2 , siguiendo la notación del
teorema 2.2.3. Resulta, cuando z→ ∞,∫

∞

0
e−zh(y)dy∼

√
π

2
1

z
1
2
+

2
3

1
z
+

1
12

√
π

2
1

z
3
2
+ . . .

∫ 1

0
e−zh(−y)dy∼

√
π

2
1

z
1
2
− 2

3
1
z
+

1
12

√
π

2
1

z
3
2
− . . .
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Combinando ambas expresiones y utilizando la propiedad [[14], ec. 5.5.1] Γ(z+1) = zΓ(z) se deduce,
cuando z→ ∞, la serie asintótica

Γ(z)∼ e−zzz

√
2π

z

(
1+

1
12z

+ . . .

)
. (2.1)

La fórmula de Stirling se sigue de truncar esta serie en el primer término.

2.3. Desarrollos uniformes.

Los métodos anteriores, aplicados a la mayoría de representaciones integrales de funciones especia-
les, resultan dar desarrollos en términos de funciones elementales. Sin embargo, existe un gran incon-
veniente: los desarrollos solo son útiles en un cierto entorno de la variable z y el carácter uniforme de
los mismos no se discute.

Recordemos la definición de convergencia uniforme:

Definición 2.3.1. Sean f , fn : A ⊆ C→ C. Diremos que fn converge uniformemente a f en A si para
todo ε > 0,∃n0 = n0(ε) ∈ N tal que si n≥ n0 entonces | fn(z)− f (z)| ≤ ε para cualquier punto z ∈ A, o,
equivalentemente, si supz∈A | fn(z)− f (z)| −→

n→∞
0.

Para buscar un desarrollo uniforme de una función especial proponemos la siguiente técnica:

En primer lugar, consideramos una representación integral de la función especial, digamos Ψ(z)=∫ b
a f (t,z)g(t)dt, y tomamos algún factor del integrando donde no aparezca la variable z (g(t)).

A continuación, tomamos el desarrollo en serie de Taylor de ese factor en algún punto de manera
que el disco de convergencia de la serie contenga el intervalo de integración salvo quizás en un
punto. Este desarrollo es convergente para cualquier valor t del intervalo de integración y es,
debido a la elección del factor, independiente de z.

Intercambiamos la serie (finita) con la integral y esperamos que el hecho de que el factor que
desarrollamos es independiente respecto a la variable z se traslade al resto, que deberemos probar
tiende a cero con n y está acotado independientemente de z en alguna región.

En los siguientes capítulos aplicamos esta técnica a la función Hν (Cap. 3) y a la función Kν (Cap.
4) de Struve. Antes de ello veamos algunos desarrollos conocidos (no uniformes) de estas funciones.

2.4. Desarrollos conocidos de las funciones de Struve.

De la definición de la función Hν de Struve (1.1) se desprende un desarrollo en serie de Taylor
entorno a z = 0, a saber,( z

2

)−ν−1
Hν(z) =

n−1

∑
k=0

(−1)k
( z

2

)2k

Γ(k+ 3
2)Γ(k+ν + 3

2)
+R(0),H

n (ν ,z), z ∈ C. (2.2)

Con esto podemos encontrar un desarrollo de Taylor de la función Kν . En efecto, teniendo en cuenta la
relación Kν(z) = Hν(z)−Yν(z) basta encontrar un desarrollo de Taylor de la función de Bessel Yν . Esto
lo conseguimos combinando [[14], ec. 10.2.2]

Jν(z) =
( z

2

)ν n−1

∑
k=0

(−1)k
( z

2

)2k

Γ(k+1)Γ(ν + k+1)
+R(0),J

n (ν ,z),

con [[14], ec. 10.2.3]

Yν(z) =
Jν(z)cos(νπ)− J−ν(z)

sen(νπ)
,
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reemplazando esta expresión por el valor límite

Yν(z) =
1
π

∂Jν(z)
∂ν

∣∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)
∂ν

∣∣∣∣
ν=−n

cuando ν = n es un entero [[14], ec. 10.2.4].
Por otro lado, tenemos los desarrollos asintóticos de las funciones Hν y Kν . En [[14], ec. 11.6.1]

encontramos

Kν(z)∼
1
π

n−1

∑
k=0

Γ(k+ 1
2)
( z

2

)ν−2k−1

Γ(ν + 1
2 − k)

+R(∞),K
n (ν ,z), |phz| ≤ π−δ , (2.3)

con δ una constante positiva arbitrariamente pequeña, que proporciona un desarrollo asintótico de la
función Kν . Además, si combinamos (2.3) con la relación Hν = Kν +Yν y el desarrollo asintótico de la
función Yν de Bessel [[14], ec. 10.17.4]

Yν(z)∼
(

2
πz

) 1
2
(

senω

n−1

∑
k=0

(−1)ka2k(ν)

z2k + cosω

n−1

∑
k=0

(−1)ka2k+1(ν)

z2k+1

)
+R(∞),Y

n (ν ,z), |phz| ≤ π−δ ,

donde

ω = z− 1
2

νπ− 1
4

π,

y a0(ν) = 1,

ak(ν) =
∏

k
j=1
(
4ν2− (2 j−1)2

)
k!8k , k ≥ 1,

obtenemos un desarrollo asintótico de la función Hν de Struve, válido para |phz| ≤ π−δ . Un desarrollo
para |phz|= π lo encontramos con ayuda de la fórmula de continuación analítica [[14], ec. 11.4.16], a
saber, Hν(zemπi) = eπi(ν+1)Hν(z), con m ∈ Z, combinada con el desarrollo anterior.

En la siguiente figura se muestra el valor absoluto del error relativo cometido al aproximar la función
Hν de Struve por su desarrollo de Taylor (azul) y asintótico (verde) para ν = 3 y n = 10 en el intervalo
[5,10]. En ella se observa el hecho comentado con anterioridad: para valores pequeños de la variable z
el error cometido por el desarrollo de Taylor es prácticamente nulo, mientras que para valores grandes
de la variable ese error es muy grande. Para el desarrollo asintótico ocurre lo opuesto. En ningún caso el
desarrollo es válido uniformemente en una región que contenga valores grandes y pequeños de |z|. Para
la función Kν y sus correspondientes desarrollos, la situación es similar.
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Por otro lado, en [[14], Sec. 11.4] encontramos otros desarrollos de la función Hν donde aparece la
función de Bessel de primer tipo Jν(z). Por ejemplo, [[14], ec. 11.4.18]

Hν(z) =
4

√
πΓ(ν + 1

2)

∞

∑
k=0

(2k+ν +1)Γ(k+ν +1)
k!(2k+1)(2k+2ν +1)

J2k+ν+1(z), (2.4)

es válido para cualquier z ∈ C y cualquier ν 6= −1,−2,−3, . . .; mientras que el desarrollo [[14], ec.
11.4.20]

Hν(z) =

( z
2

)ν+ 1
2

Γ(ν + 1
2)

∞

∑
k=0

( z
2

)k

k!(k+ν + 1
2)

Jk+ 1
2
(z) (2.5)

es válido para cualquier z,ν ∈ C.
En la figura de abajo se muestra el valor absoluto del error relativo cometido al aproximar la función

Hν por las aproximaciones (2.4) (azul) y (2.5) (verde) en el intervalo [4,18] para los valores ν = 11/5
y n = 10.

Ninguno de los desarrollos descritos verifica simultáneamente las siguientes tres propiedades: (i)
están dados en términos de funciones elementales, (ii) son convergentes y (iii) son válidas para valores
grandes y pequeños de |z|. Por un lado, en los desarrollos (2.4) y (2.5) aparece la función de Bessel Jν

por lo que (i) no se satisface. Por otro lado los restos R(0)
n no están acotados para valores grandes de |z|

mientras que los restos R(∞)
n están inacotados para valores pequeños de |z|, por lo que (iii) no se cumple.

Asimismo, el desarrollo asintótico es divergente y en consecuencia no cumple (ii). En cualquier caso,
esto no desacredita estas aproximaciones, puesto que se encuentran entre las más competitivas para
aproximar las funciones de Struve en las regiones donde son válidas.

En los siguientes capítulos buscamos un desarrollo de las funciones Hν y Kν que satisfaga las tres
condiciones anteriores. Daremos cotas precisas del error cometido y compararemos el desarrollo uni-
forme con estos otros ya conocidos.



Capítulo 3

Desarrollo uniformemente convergente de
la función H de Struve.

En el capítulo anterior hemos dado distintos desarrollos de las funciones de Struve, pero ninguno
de ellos es uniforme en una región del plano complejo que contenga valores grandes y pequeños de
|z|. En este capítulo, vamos a calcular un desarrollo de la función Hν que cumpla las siguientes tres
propiedades:

(I) Esté dado por medio de funciones elementales.

(II) El desarrollo sea convergente.

(III) El desarrollo sea uniforme en una amplia región de |z| no acotada y que contenga a z = 0.

Teorema 3.0.1. Para Re ν > −1
2 , z ∈ C, n = 1,2,3, . . . y α ∈

[
0, 1

2

]
√

π

2
Γ(ν + 1

2)( z
2

)ν Hν(z) =
n−1

∑
k=0

(1
2 −ν

)
k

k!
(1−α)ν−k− 1

2 Fk(α,z)+RH
n (ν ,α,z),

donde las funciones Fk(α,z) son las funciones elementales

Fk(α,z) :=
∫ 1

0
(t2−α)k sen(zt)dt =

k

∑
m=0

(
k
m

)
(−1)k

α
k−m

(
d
dz

)2m(1− cosz
z

)
=

= (−1)k
k

∑
m=0

(
k
m

)
α

k−m (2m)!
z2m+1

[
1− cosz

m

∑
j=0

z2 j(−1) j

(2 j)!
− senz

m−1

∑
j=0

z2 j+1(−1) j

(2 j+1)!

] (3.1)

que satisfacen la relación de recurrencia

Fk(α,z) =
−(1−α)k cosz+(−α)k

z
+

2k(1−α)k−1 sen(z)
z2 −

4k2−2k
z2 Fk−1(α,z)− 4k(k−1)α

z2 Fk−2(α,z), ∀k ≥ 2,
(3.2)

con 
F0(α,z) =

1− cosz
z

F1(α,z) =
−(1−α)cosz−α

z
+

2senz
z2 +

2(cosz−1)
z3 ,

donde la parte de la derecha para valores cercanos a z = 0 debe entenderse tomando límites.
El resto está acotado por

|RH
n (ν ,α,z)| ≤ cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

(
G1(ν ,α,n)+G2(ν ,α,n)

)
(3.3)

9
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donde

G1(ν ,α,n) =
√

π

2
n!

Γ(n+ 3
2)

(
α

1−α

)n√
α(1−α)

1
2+Reν

2F1

 1+Reν , 1

n+ 3
2

∣∣∣∣∣∣α
 (3.4)

y

G2(ν ,α,n) =
(1−α)

1
2+Reν

1+2Reν
3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣1−α

 . (3.5)

El resto RH
n (ν ,α,z) es uniforme en z con | Imz| ≤ Λ, para cualquier Λ ∈ R+, cuando n→ ∞, y se

comporta como n−Reν− 1
2 .

Demostración. El teorema es la aplicación de la técnica enunciada en la sección 2.3 a la función Hν de
Struve. Para ello, consideramos la representación integral de la función H de Struve dada por [[14], ec.
11.5.1] √

πΓ(ν + 1
2)

2(z/2)ν
Hν(z) =

∫ 1

0
(1− t2)ν− 1

2 sen(zt)dt, Reν >−1
2
, (3.6)

y desarrollamos la función (1− t2)ν− 1
2 en un punto α ∈ [0,1]. Obtenemos

(1− t2)ν− 1
2 =

n−1

∑
k=0

(1
2 −ν)k

k!
(1−α)ν−k− 1

2 (t2−α)k + rn(ν ,α, t), (3.7)

donde (x)n = x · (x+1) · . . . · (x+n−1) = Γ(x+n)
Γ(x) denota el símbolo de Pochhamer; y el resto rn(ν ,α, t)

viene dado por

rn(ν ,α, t) =
∞

∑
k=n

(1
2 −ν)k

k!
(1−α)ν−k− 1

2 (t2−α)k.

Aplicando el criterio del cociente es fácil ver que el radio de convergencia es 1−α , de donde se sigue
que la serie (centrada en α) converge en el intervalo (2α−1,1). Por lo tanto, si imponemos la restricción
α ∈

[
0, 1

2

]
garantizamos dos hechos: (i) el punto α está incluido en el intervalo de integración y (ii) el

disco de convergencia de la serie contiene al intervalo de integración.
Por otro lado, el resto rn(ν ,α, t) admite una expresión cerrada en términos de la función hipergeo-

métrica de Gauss 2F1 (ver [[14], Sec. 15] o [[13], Sec. 5 Cap. 9]), a saber,

rn(ν ,α, t) =
(1

2 −ν)n

n!
(1−α)ν−n− 1

2 (t2−α)n
2F1

 1
2 +n−ν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

 . (3.8)

Sustituyendo el desarrollo (3.7) en (3.6) e intercambiando la suma con la integral, obtenemos

√
πΓ(ν + 1

2)

2(z/2)ν
Hν(z) =

n−1

∑
k=0

1
k!

(
1
2
−ν

)
k
(1−α)ν−k− 1

2 Fk(α,z)+RH
n (ν ,α,z),

donde

RH
n (ν ,α,z) =

∫ 1

0
sen(zt)rn(ν ,α, t)dt (3.9)

y las funciones Fk(α,z) están dadas por (3.1).
La recurrencia (3.2) que satisfacen las funciones Fk(α,z) se sigue de integrar por partes dos veces

en (3.1) mientras que F0(α,z) y F1(α,z) se calculan directamente.
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Además, podemos encontrar una expresión cerrada para Fk(α,z). En efecto, utilizando el binomio
de Newton en el integrando obtenemos

Fk(α,z) =
k

∑
m=0

(
k
m

)
(−α)k−m

∫ 1

0
t2m sen(zt)dt =

(−1)k
k

∑
m=0

(
k
m

)
α

k−m
(

d
dz

)2m(1− cosz
z

)
.

(3.10)

Usando la fórmula de Leibnitz y el hecho de que

d j

dz j (z
−1) = (−1) jz−1− j j!

y

d j

dz j (1− cosz) =

1− cosz si j = 0,

−cos
(

z+
jπ
2

)
en otro caso,

se tiene (
d
dz

)2m(1− cosz
z

)
=

(2m)!
z2m+1 +

2m

∑
j=0

(
2m

j

)
(−1) j+1 cos

(
z+

jπ
2

)
(2m− j)!
z2m+1− j .

Esta expresión se puede escribir en términos de la función gamma incompleta Γ(a,z) (ver [[14], Cap.
8] o [[7], Cap. IX]) como(

d
dz

)2m(1− cosz
z

)
=

(2m)!
z2m+1 −

1
2

1
z2m+1

[
Γ(1+2m, iz)+Γ(1+2m,−iz)

]
.

Teniendo en cuenta la igualdad [[14], ec. 8.4.8] obtenemos(
d
dz

)2m(1− cosz
z

)
=

(2m)!
z2m+1

[
1− cosz

m

∑
l=0

z2l(−1)l

(2l)!
− senz

m−1

∑
l=0

z2l+1(−1)l

(2l +1)!

]
. (3.11)

Finalmente, sustituyendo (3.11) en (3.10) obtenemos una expresión cerrada de Fk como suma (doble)
de funciones elementales.

Por otro lado teníamos la fórmula (3.9) para el resto RH
n (ν ,α,z). Puesto que el resto rn(ν ,α, t) es

integrable, podemos escribir

|RH
n (ν ,α,z)| ≤

∫ 1

0
|rn(ν ,α, t)||sen(zt)|dt.

Teniendo en cuenta que |sen(zt)| ≤ cosh(t Imz) y que t ∈ (0,1) se deduce, gracias a la monotonía
del coseno hiperbólico (creciente en los reales positivos y decreciente en los reales negativos) que
cosh(t Imz)≤ cosh(Imz). Así

|RH
n (ν ,α,z)| ≤ cosh(Imz)

∫ 1

0
|rn(ν ,α, t)|dt.

Sustituyendo aquí la expresión (3.8) se tiene

|RH
n (ν ,α,z)| ≤cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

∣∣∣(1−α)
−1
2 −n+ν

∣∣∣
×
∫ 1

0

∣∣(t2−α)n
∣∣ ∣∣∣∣∣∣2F1

 1
2 +n−ν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

∣∣∣∣∣∣dt
(3.12)
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Teniendo en cuenta la igualdad
∣∣∣(1−α)

−1
2 −n+ν

∣∣∣= (1−α)
−1
2 −n+Reν y la desigualdad∣∣∣∣∣∣2F1

 1
2 +n−ν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

∣∣∣∣∣∣≤ 2F1

 1
2 +n−Reν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α


que se prueba de forma inmediata a partir de la representación integral de la función hipergeométrica
dada en [[14], ec. 15.6.1] se deduce, reemplazando en (3.12), la cota para el error

|RH
n (ν ,α,z)| ≤cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

(1−α)
−1
2 −n+Reν

×
∫ 1

0

∣∣(t2−α)n
∣∣ 2F1

 1
2 +n−Reν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

dt

︸ ︷︷ ︸
=G(ν ,α,n)

. (3.13)

Ahora, calculemos la integral G y obtengamos una cota explícita del error. Debido a la presencia
del valor absoluto en el integrando rompemos la integral en dos, poniendo G(ν ,α,n) = G1(ν ,α,n)+
G2(ν ,α,n), donde

G1(ν ,α,n) =
∫ √

α

0
(α− t2)n

2F1

 1
2 +n−Reν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

dt

y

G2(ν ,α,n) =
∫ 1

√
α

(t2−α)n
2F1

 1
2 +n−Reν , 1

n+1

∣∣∣∣∣∣ t2−α

1−α

dt.

La primera de estas expresiones, G1(ν ,α,n), se puede calcular directamente tras el cambio de variable
α− t2

α
= u y resulta

G1(ν ,α,n) =
√

π

2
n!

Γ(n+ 3
2)

α
n+ 1

2 2F1

 1
2 +n−Reν , 1

n+ 3
2

∣∣∣∣∣∣ α

α−1

 .

De donde se tiene, tras aplicar [[14], ec. 15.8.1] con a = 1,b = 1+Reν ,c = n+ 3
2 y z = α que

G1(ν ,α,n) =
√

π

2
n!

Γ(n+ 3
2)

α
n+ 1

2 (1−α)2F1

 1, 1+Reν

n+ 3
2

∣∣∣∣∣∣α
 . (3.14)

Por otro lado, la parte correspondiente a G2(ν ,α,z) es más delicada y resulta ser, tras el cambio de

variable
t2−α

1−α
= u, igual a

G2(ν ,α,n) =
∫ 1

0

(1−α)n+1

2
un√

(1−α)u+α
2F1

 1
2 +n−Reν , 1

n+1

∣∣∣∣∣∣u
du. (3.15)

La presencia del radical dificulta el cálculo de esta integral. Sin embargo, desarrollando la función

wα(u) =
1√

(1−α)u+α
en serie de Taylor centrada en u = 1 se obtiene

wα(u) =
∞

∑
m=0

(1
2

)
m

m!
(−1)m(1−α)m(u−1)m. (3.16)
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Entonces se verifica que el disco de convergencia de esta serie, a saber D(1; 1
1−α

), contiene al intervalo
de integración [0,1]. Sustituyendo (3.16) en (3.15) e intercambiando la serie con la integral se obtiene,
tras simplificar,

G2(ν ,α,n) =
∞

∑
m=0

(1
2

)
m

m!
(1−α)n+m+1 Γ(1+m)Γ(1+n)

(1+2m+2Reν)Γ(m+n+1)
.

Esta última expresión puede sumarse, en términos de la función hipergeométrica generalizada 3F2 y
queda

G2(ν ,α,n) =
(1−α)n+1

1+2Reν
3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣1−α

 . (3.17)

Ahora, reemplazando las expresiones (3.14) y (3.17) en (3.13) obtenemos la cota para el error
dada en el enunciado (3.3).

Para terminar, veamos que el desarrollo es uniforme en z y el resto (3.3) se comporta como n−Reν− 1
2

cuando n→ ∞.
Para ello, consideramos la representación integral de la función hipergeométrica generealizada 3F2

dada por [[14], ec. 16.5.2]

3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣1−α

= n
∫ 1

0
(1− t)n−1

2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣(1−α)t

dt. (3.18)

Teniendo en cuenta la representación integral de la función hipergeométrica de Gauss 2F1 dada en [[14],
ec. 15.6.1] se tiene que

2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣(1−α)t

=

(
1
2
+Reν

)∫ 1

0
sReν− 1

2 [1− (1−α)ts]
−1
2 ds

t∈(0,1)
<

<

(
1
2
+Reν

)∫ 1

0
sReν− 1

2 [1− (1−α)s]
−1
2 ds = 2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣1−α

 .

Por lo tanto, podemos acotar en (3.18) para obtener

3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣1−α

< n2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣1−α

∫ 1

0
(1− t)n−1dt︸ ︷︷ ︸

= 1
n

=

= 2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣1−α

 .

Esta expresión no depende de n y por lo tanto, al acotar en (3.3), el sumando G2(ν ,α,n) se comporta,
cuando n→ ∞, como una constante.

Por otro lado, acotamos el sumando correspondiente a G1(ν ,α,n). De manera similar y utilizando
la representación integral de la función hipergeométrica 2F1 dada en [[14], ec. 15.6.1] se tiene que

2F1

 1+Reν , 1

n+ 3
2

∣∣∣∣∣∣α
≤ (1−α)−Reν−1 .
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Con esto, obtenemos la siguiente cota para el error∣∣∣∣RH
n

(
ν ,

1
4
,z
)∣∣∣∣≤ cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

[√
π

2
n!

Γ(n+ 3
2)

(
α

1−α

)n+ 1
2

+

+
1

1+2Reν
2F1

 1
2 ,

1
2 +Reν

3
2 +Reν

∣∣∣∣∣∣1−α

 . (3.19)

Tomando límites cuando n→ ∞ siempre que Imz ≤ Λ, para cualquier Λ ∈ R se tiene que el primer
sumando en el corchete de (3.19) tiende rápidamente a cero (pues α ∈ [0, 1

2 ]) mientras que el segundo
es una constante. Por lo tanto, el resto se comporta como

|RH
n (ν ,α,z)| ∼

∣∣(1
2 −ν

)
n

∣∣
n!

.

Escribiendo el símbolo de Pochhammer como cociente de gammas y despreciando constantes se tiene
que

|RH
n (ν ,α,z)| ∼

∣∣Γ(n−ν + 1
2)
∣∣

Γ(n+1)
.

Finalmente, aproximando la función Γ(z) mediante la fórmula de Stirling (2.1) y tomando límites
cuando n→ ∞ se deduce que |RH

n (ν ,α,z)| ∼ n−Reν− 1
2 .

Hemos considerado el desarrollo en un punto genérico α ∈ [0, 1
2 ]. Recordemos que la restricción

a este intervalo es necesaria para asegurar que el intervalo de integración (0,1) está contenido (salvo
quizá en algún punto) en el disco de convergencia de la serie de Taylor. Notemos que si α > 1

2 entonces
la cota del error (3.3) no tiende a cero al hacer n→ ∞, debido a la presencia del factor ( α

1−α
)n, por lo

que la restricción α ∈ [0, 1
2 ] es necesaria.

A continuación vamos a buscar el punto óptimo en el que desarrollar, es decir, el que garantice un
error mínimo (o al menos proporcione el mínimo para la cota del error dada en (3.3)). Para ello es
suficiente encontrar el mínimo (en α) de la función G1(ν ,α,n)+G2(ν ,α,n). Sin embargo, experimen-
tos numéricos muestran que el mínimo de esta función depende de n. No obstante, se tiene el siguiente
resultado:

Teorema 3.0.2. La función G1(ν ,α,n)+G2(ν ,α,n) es decreciente en α ∈ (0, 1
4), donde G1 y G2 están

definidas en (3.4) y (3.5) respectivamente.

Demostración. Dado que las funciones son derivables, es suficiente probar que ∂G1(ν ,α,n)
∂α

+ ∂G2(ν ,α,n)
∂α

<

0, ∀α ∈
[
0, 1

4

]
.

En primer lugar, aplicando [[6], pág. 102, ec. (23)] con a = 1,b = 1+Reν ,c = n+ 3
2 y z = α se

tiene que
∂G1(ν ,α,n)

∂α
=

√
π

2
n!

Γ(n+ 1
2)

α
n− 1

2 (1−α)Reν−n− 1
2 .

Por otro lado, aplicando la regla de la cadena y haciendo uso de [[14], ec. 16.3.2] con a1 = 1
2 ,a2 =

1,a3 =
1
2 +Reν , b1 = n+1,b2 =

3
2 +Reν , z = 1−α y γ = 1

2 +Reν se deduce que

∂G2(ν ,α,z)
∂α

=
−1
2
(1−α)Reν− 1

2 2F1

 1
2 , 1

n+1

∣∣∣∣∣∣1−α

 .

Con esto,

∂G1(ν ,α,n)
∂α

+
∂G2(ν ,α,n)

∂α
=

(1−α)Reν− 1
2

2

√π
n!

Γ(n+ 1
2)

α
n− 1

2 (1−α)−n− 2F1

 1
2 , 1

n+1

∣∣∣∣∣∣1−α

 .
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Ver que G1+G2 es decreciente es equivalente a probar que la expresión anterior es negativa, ∀α ∈ [0, 1
4 ].

Por hipótesis Reν > −1
2 y en consecuencia el factor que multiplica al corchete no presenta problemas

ni cambia de signo para α ∈
[
0, 1

4

]
y lo podemos omitir. Así, se trata de probar que

√
π

n!
Γ(n+ 1

2)
α

n− 1
2 (1−α)−n− 2F1

 1
2 , 1

n+1

∣∣∣∣∣∣1−α

< 0

o, equivalentemente,

π <
√

π
Γ(n+ 1

2)

Γ(n+1)
α

1
2−n(1−α)n

2F1

 1
2 , 1

n+1

∣∣∣∣∣∣1−α


︸ ︷︷ ︸

=An(α)

.

Debemos probar que An(α) ≥ π, ∀α ∈ [0, 1
4 ]. Para ello veamos primero que A1(α) verifica esta de-

sigualdad.

A1(α) =
π(1−α)

(1+
√

α)
√

α
= π

(
1√
α
−1
)
.

De donde se sigue que

A1(α)≥ π ⇔ 1√
α
−1≥ 1⇔ 1

2
≥
√

α ⇔ α ≤ 1
4
.

Por lo tanto, A1(α) cumple la deseada desigualdad, ∀α ∈ [0, 1
4 ].

Ahora, veamos que An(α) es una sucesión creciente y así An+1(α) ≥ An(α) ≥ . . . ≥ A1(α) ≥ π y
habremos terminado.

Consideramos el cociente

An+1(α)

An(α)
=

n+ 1
2

n+1
· 1−α

α
·

2F1

 1, 1
2

n+2

∣∣∣∣∣∣1−α


2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

 .

(3.20)

Utilizando [[14], ec. 15.5.16] con a = 1,b = 1
2 ,c = n+1 y z = 1−α se prueba la relación

2F1

 1, 1
2

n+2

∣∣∣∣∣∣1−α


2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

 =


1

2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

 −α


· n+1
(n+ 1

2)(1−α)
.

Introduciendo esta igualdad en (3.20) se sigue que

An+1(α)

An(α)
=

1

α2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

 −1
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Como An es una serie creciente si y solo si
An+1

An
> 1, tenemos que An es creciente si y solo si

1
2α

> 2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

 , ∀α ∈ (0,1/4).

Tomando la representación integral de la función hipergeométrica que se encuentra en [[14], ec. 15.6.1]
se tiene

2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

= n
∫ 1

0
(1− t)n−1 (1− (1−α)t)−

1
2 dt <

n√
α

∫ 1

0
(1− t)n−1dt =

1√
α
.

Por lo tanto

2F1

 1, 1
2

n+1

∣∣∣∣∣∣1−α

<
1√
α

<
1

2α
,⇔ α ∈ (0,1/4).

Así, An(α) es creciente y entonces An(α)≥ π, ∀n ∈ N de donde se sigue que la función G1(ν ,α,n)+
G2(ν ,α,n) es estrictamente decreciente en α ∈ (0, 1

4).

Esto implica que α = 1
4 es un pseudo-mínimo para (3.3) en el sentido de que minimiza la cota del

error y es válido para todos los n.

3.1. Casos especiales.

Analizamos a continuación varios casos especialmente importantes según los valores de los paráme-
tros. En particular, resaltaremos los casos α = 0 por simplicidad de las fórmulas y α = 1

4 por minimizar
la cota del error. Asimismo destacaremos el caso que ν sea un semientero.

3.1.1. Caso α = 0.

En este caso, el teorema 3.0.1 aporta unas expresiones más sencillas para los términos del desarrollo.
En concreto, establece:

Teorema 3.1.1. Para Reν > −1
2 ,z ∈ C, n = 1,2,3, . . .

√
π

2
Γ(ν + 1

2)( z
2

)ν Hν(z) =
n−1

∑
k=0

(1
2 −ν

)
k

k!
γk(z)+RH

n (ν ,z),

donde las funciones γk(z) son las funciones elementales

γk(z) := Fk(0,z) =
∫ 1

0
t2k sen(zt)dt =

(
d
dz

)2k(1− cosz
z

)
=

= (−1)k (2k)!
z2k+1

[
1− cosz

k

∑
j=0

z2 j(−1) j

(2 j)!
− senz

k−1

∑
j=0

z2 j+1(−1) j

(2 j+1)!

] (3.21)

que satisfacen la relación de recurrencia
γk(z) =

−cosz
z

+
2k sen(z)

z2 − 4k2−2k
z2 γk−1(z), ∀k ≥ 1,

γ0(z) =
1− cosz

z
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El resto está acotado por

|RH
n (ν ,z)| ≤ cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

1
1+2Reν

3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣1
 , (3.22)

y es uniforme en z con | Imz| ≤ Λ, para cualquier Λ ∈ R+ y se comporta como n−Reν− 1
2 cuando

n→ ∞.

La demostración del teorema es inmediata, tomando α = 0 en el teorema 3.0.1.

3.1.2. Caso α = 1
4 .

Hemos visto que este caso tiene interés por minimizar la cota del error. Ahora el teorema 3.0.1 se
lee de la misma forma sustituyendo α = 1

4 . El resto verifica

∣∣∣∣RH
n

(
ν ,

1
4
,z
)∣∣∣∣≤ cosh(Imz)

∣∣(1
2 −ν

)
n

∣∣
n!

√π

4
n!

Γ(n+ 3
2)

(
1
3

)n(3
4

) 1
2+Reν

2F1

 1+Reν , 1

n+ 3
2

∣∣∣∣∣∣ 1
4

+

+

(3
4

) 1
2+Reν

1+2Reν
3F2

 1
2 ,

1
2 +Reν , 1

n+1, 3
2 +Reν

∣∣∣∣∣∣ 3
4

 ,
y es uniforme en z siempre que | Imz| ≤Λ, para cualquier Λ∈R+ y se comporta como n−Reν− 1

2 cuando
n→ ∞.

3.1.3. Valores semienteros del parámetro ν .

Para valores semienteros (no negativos) del parámetro ν la función Hν de Struve es una función
elemental, como se prueba al combinar la relación Kν = Hν −Yν con [[14], ec. 10.47.4], [[14], ec.
10.49.4] y [[14], ec. 11.4.1]. En este caso, la aproximación uniforme dada por el teorema 3.0.1 es
exacta, siempre que n sea suficientemente grande, independientemente de α . En efecto, en la cota (3.3)
del error se observa que, para n suficientemente grande, el factor (1

2 − ν)n se anula y por lo tanto
el error cometido es cero. En consecuencia podemos obtener una fórmula cerrada para Hm+ 1

2
(z), con

m ∈ N∪{0}. Para ello, tomamos α = 0 (por simplicidad) y despejando H
ν+ 1

2
(z) en la expresión del

teorema 3.0.1 obtenemos, para n suficientemente grande (basta tomar n = m+1),

Hm+ 1
2
(z) =

√
z

2π

1
m!

n−1

∑
k=0

(−m)k

k!
γk(z),

donde las funciones γk(z) están dadas en (3.21). Teniendo en cuenta que el Pochhammer se aplica sobre
un número entero [[14], ec. 5.2.7], la expresión anterior queda

Hm+ 1
2
(z) =

√
z

2π

( z
2

)m m

∑
k=0

(−1)k

(m− k)!k!
γk(z).

En particular, para m = 0 se obtiene la expresión

H 1
2
(z) =

√
2

πz
(1− cosz) ,

dada en [[14], ec. 11.4.5]; y tomando m = 1 se obtiene la expresión [[14], ec. 11.4.9]

H 3
2
(z) =

√
z

2π

(
1+

2
z2

)
−
√

2
πz

(
senz+

cosz
z

)
.
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3.1.4. z variable real.

En el caso de z ∈ R, la cota para el error queda

|RH
n (ν ,α,z)| ≤

∣∣(1
2 −ν

)
n

∣∣
n!

(G1(ν ,α,n)+G2(ν ,α,n))

y el desarrollo dado por el teorema 3.0.1 es uniforme para todo z ∈ R.

3.2. Gráficas y tablas numéricas.

3.2.1. Gráficas.

A continuación se muestran unas gráficas en distintos intervalos comparando los valores absolutos

de los errores relativos cometidos al aproximar la función
√

π

2
Γ(ν + 1

2)( z
2

)ν Hν(z), para el valor del pará-

metro ν = 18
5 , utilizando el desarrollo dado en el Teorema 3.0.1 con α = 1

4 y los desarrollos de Taylor y
asintótico dados en el capítulo 2, tomando en los tres casos n = 10. Se representa en azul el desarrollo
de Taylor, en verde el asintótico y en rojo el uniforme.

Hemos representado los intervalos [0,15] (izquierda), [i,15+ i] (centro) y [2i,15+ 2i] (derecha).
En ellas, el visible el carácter uniforme de la aproximación dada en el teorema 3.0.1. Observamos lo
esperado, para valores pequeños de |z| el desarrollo de Taylor es mucho más competitivo mientras que
para valores grandes lo es el asintótico. Sin embargo, el desarrollo uniforme compite con ellas y es
uniformemente mejor. Para valores negativos de la variable z y complejos conjugados las gráficas son
idénticas debido a la simetría de la función, que se conserva en sus aproximaciones. Para α = 0 las
gráficas son similares.

A continuación se representa la función
√

π

2
Γ(11

5 + 1
2)( z

2

) 11
5

H 11
5
(z) (en discontinuo y rojo) junto con

la aproximación uniforme dada por el teorema 3.0.1 para n = 1 (amarillo), n = 2 (morado) y n = 3
(verde) en los intervalos [0,12] (arriba izquierda), [−12,0] (arriba derecha) y [i,12+ i] (abajo). En este
último caso, la gráfica de la izquierda corresponde a su parte real, mientras que la gráfica de la derecha
representa su parte imaginaria.
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Por otro lado se muestran las gráficas de la función
√

π

2
Γ(11

5 + 1
2)( z

2

) 11
5

H 11
5
(z) (en discontinuo y rojo)

junto con las aproximaciones de Taylor (arriba izquierda), asintótico (arriba derecha), uniforme con
α = 1

4 (abajo izquierda) y uniforme con α = 0 (abajo derecha) para n = 1 (amarillo), n = 2 (morado) y
n = 3 (verde) en el intervalo [0,12].

En ellas se observa claramente el comportamiento de cada aproximación. Además, comparando
las dos gráficas de abajo, se observa que para α = 1

4 el error es menor que para α = 0, como hemos
demostrado con anterioridad.
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3.2.2. Tablas numéricas.

Finalmente obtenemos algunas aproximaciones válidas para z ∈ R.

Para comenzar, escribimos los valores que toma la función
√

π

2
Γ( 11

5 + 1
2 )

( z
2)

11
5

H 11
5
(z) para z = 1,2, . . . ,28:

0.177019,0.309041,0.368939,0.356584,0.295336,0.218745,0.155078,0.117429,0.103116,0.100593,

0.0984896,0.0914988,0.080843,0.0707545,0.0643365,0.0616006,0.0602972,0.0581371,0.0544413,

0.0501747,0.0467479,0.0447806,0.0437695,0.0427111,0.0409872,0.0387653,0.0366939,0.0352719.

Por otro lado, escribimos los valores que toma la aproximación dada por el teorema 3.0.1 para n= 3,
α = 1/4 en los valores z = 1,2, . . . ,28:

0.172688,0.303871,0.367075,0.359481,0.300649,0.222315,0.154321,0.113333,0.0992716,0.100164,

0.101688,0.095594,0.0825725,0.06902,0.0609487,0.0595769,0.0612747,0.0611136,0.05681,

0.0500363,0.0444674,0.0425185,0.0435157,0.044592,0.0432793,0.0394998,0.0353746,0.0332164.

Hacemos lo mismo para α = 0:

0.167439,0.29714,0.363547,0.361292,0.305951,0.226904,0.154924,0.10995,0.0948464,0.0980401,

0.103012,0.0986902,0.0846023,0.068379,0.0584161,0.0574075,0.0611769,0.0628828,0.0586904,

0.0503514,0.0430352,0.0406748,0.0428397,0.0455268,0.0448388,0.0402312,0.0346556,0.0317383.

En estas tablas numéricas se observa como se comporta la aproximación uniforme para n= 3, ν = 11
5

para los 28 primeros números enteros positivos. En particular, se tiene que, para α = 1
4 ,

√
π

2
Γ(11

5 + 1
2)( z

2

) 11
5

H 11
5
(z)≈ 15.56716+3.42848z2 +1.00122z4

z5 +

(
−15.56716+4.35510z2 +0.06439z4

)
cosz+

(
−15.56716z−0.83396z3

)
senz

z5 + ε(z),

con
|ε(z)| ≤ 0.00578232,

mientras que para α = 0 la aproximación es peor aunque de fórmula más simple, obteniendo

√
π

2
Γ(11

5 + 1
2)( z

2

) 11
5

H 11
5
(z) =

14.28+3.4z2 + z4 +
(
−14.28+3.74z2 +0.105z4

)
cosz

z5 −

−
(
14.28z+1.02z3

)
senz

z5 +δ (z),

con
|δ (z)| ≤ 0.0124198.

Destacamos dos hechos: En primer lugar, las cotas obtenidas son finas (comparar por ejemplo los
primeros valores dados de la función y sus aproximaciones). En segundo lugar, la función de Struve

reescalada
√

π

2
Γ(11

5 + 1
2)( z

2

) 11
5

H 11
5
(z) es decreciente en la semirrecta real positiva y tiende a cero cuando

n→∞. Por lo tanto, para z suficientemente grande la cota uniforme (que es constante) será relativamente
mala.



Capítulo 4

Desarrollo uniformemente convergente de
la función K de Struve.

Como hemos hecho en el capítulo anterior para la función Hν de Struve, vamos a buscar un desa-
rrollo uniforme de la función Kν que verifique las siguientes tres condiciones:

El desarrollo sea convergente.

Esté dado por medio de funciones elementales.

El desarrollo sea uniforme en una amplia región del plano complejo que contenga valores grandes
y pequeños de |z|.

La técnica a seguir va a ser la misma que en el capítulo 3: consideramos una representación integral
de la función Kν y desarrollamos en serie una parte del integrando. Tras intercambiar la suma con
la integral, obtenemos un desarrollo en serie de nuestra función especial, que deberemos probar es
convergente y uniforme.

En [[14], ec. 11.5.2] se encuentra la siguiente representación integral de la función Kν , válida siem-
pre que Rez > 0:

Kν(z) =
2
( z

2

)ν

√
π Γ(ν + 1

2)

∫
∞

0
e−zt(1+ t2)ν− 1

2 dt.

Ahora bien, encontramos una gran diferencia entre la función Kν y la función Hν , a saber, en la función
Kν el intervalo de integración es no acotado. Por lo tanto, el disco de convergencia del posible factor que
desarrollemos no contendrá al intervalo de integración. Por ello, antes de desarrollar en serie debemos
realizar un cambio de variable en la integral para que el intervalo de integración sea finito. Tomando
t =− logu obtenemos ∫

∞

0
e−zt(1+ t2)ν− 1

2 dt =
∫ 1

0
uz−1(1+ log2 u)ν− 1

2 du.

El intervalo de integración ya es acotado, pero a cambio la función hν(u) = (1+ log2 u)ν− 1
2 que desarro-

llaremos en serie se ha complicado considerablemente. Para desarrollarla consideraremos las funciones
(1+ log2 u)ν− 1

2 = hν(u) = gν

(
f (u)

)
con gν(u) = (1+u)ν− 1

2 y f (u) = log2 u y utilizaremos la fórmula
de Faà di Bruno que proporciona la derivada n−ésima de una composición de funciones.

Lema 4.0.1. Sean gν(u) = (1 + u)ν− 1
2 y f (u) = log2 u. Entonces, para todo m ≥ 1 las derivadas

m−ésimas están dadas por

g(m)
ν (u) = m!

(
ν− 1

2
m

)
(1+u)ν− 1

2−m

y

f (m)(u) =
2(m−1)!(−1)m

um

(
log

1
u
+

m

∑
k=1

1
k

)

21
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Demostración. Por inducción, ambas fórmulas se prueban sin dificultad.

Con esto, podemos calcular, utilizando la fórmula de Faà di Bruno [[14], ec. 1.4.13.], la derivada
n−ésima de la función hν(u) = gν

(
f (u)

)
. Según ésta, resulta

dn

dun g
(

f (u)
)
=

n

∑
k=0

g(k)
(

f (u)
)
Bn,k(g′,g′′, . . . ,g(n−k+1)),

donde Bn,k son los polinomios de Bell descritos en [[5], Cap 11.2] que satisfacen la recurrencia [[5], ec.
11.11] 

Bn,k(x1, . . . ,xn−k+1) = ∑
n−k+1
j=1 x jBn− j,k−1

B0,0 = 1
Bn+1,0 = 0 = B0,n+1

Así, tenemos el siguiente resultado.

Lema 4.0.2. Sea hν(u) = (1+ log2 u)ν− 1
2 = gν

(
f (u)

)
como antes. Entonces

h(k)ν (u) = k!
k

∑
m=1

bk,m(u)
m!

g(m)
ν

(
f (u)

)
donde 

b0,0(u) = 1
bn+1,0(u) = 0
bn,m(u) = ∑

n−1
k=m−1 cn−k(u)bk,m−1(u)

con

cn−k(u) =
2(−1)n−k

(n− k)un−k

[
log

1
u
+

n−k−1

∑
m=1

1
m

]
Demostración. Basta considerar el lema anterior, la fórmula de Faà di Bruno y la relación que verifican
los polinomios de Bell. Sustituyendo todas las expresiones y manipulándolas levemente se tiene la
tesis.

Con esto, tenemos el siguiente teorema.

Teorema 4.0.3. Para Rez > 1, ν ∈ C, n = 1,2,3, . . . y β ∈
(

1
2 ,

1
2cos(1)

)
√

π

2
Γ(ν + 1

2)( z
2

)ν Kν(z) =
n−1

∑
k=0

h(k)ν (β )

k!
Lk(z,β )+RK

n (ν ,β ,z),

donde hν(u) = (1+ log2 u)ν− 1
2 y sus derivadas están dadas en el lema 4.0.2. Además las funciones

Lk(z,β ) son las funciones elementales

Lk(z,β ) :=
∫ 1

0
uz−1(u−β )kdu =

k

∑
m=0

(
k
m

)
(−β )k−m 1

z+m
(4.1)

que satisfacen la relación de recurrencia

Lk(z,β ) =
(1−β )k

z
− k

z
Lk−1(z+1,β ),

con
L0(z,β ) =

1
z
.
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El resto RK
n (ν ,β ,z) está acotado por la expresión

|RK
n (ν ,β ,z)| ≤Mβ ,ν

β
RezB(n+1,Rez−1)+

β

2β −1

(
1
β
−1
)n+1

n+1 2F1

 1, 1−Rez

n+2

∣∣∣∣∣∣1−β


 ,
(4.2)

donde Mβ ,ν es una constante que depende únicamente de β y ν .
En particular, el resto tiende a cero cuando n→∞, por lo que el desarrollo es convergente. Además,

la función entre corchetes es decreciente por lo que el resto es uniforme en z siempre que Rez > Λ, para
cualquier Λ > 1; y se comporta como n−(Rez−1) cuando n→ ∞.

Demostración. De nuevo, vamos a aplicar la técnica explicada en la sección 2.3 a la función Kν de
Struve. Para ello, consideramos la representación integral de esta función dada en [[14], ec. 11.5.2].

Kν(z) =
2√
π

(1
2

)ν

Γ(ν + 1
2)

∫
∞

0
e−zt(1+ t2)ν− 1

2 dt, Rez > 0

El intervalo de integración es no acotado por lo que realizamos cambio de variable t = − logu.
Llegamos a √

π

2
Γ(ν + 1

2)( z
2

)ν Kν(z) =
∫ 1

0
uz−1hν(u)du,

con hν(u) = (1+ log2 u)ν− 1
2 .

Desarrollando la función hν en serie de potencias centrada en β e intercambiando la serie con la
integral, resulta

√
π

2
Γ(ν + 1

2)( z
2

)ν Kν(z) =
n−1

∑
k=0

h(k)ν (β )

k!

∫ 1

0
uz−1(u−β )kdu︸ ︷︷ ︸

=Lk(z,β )

+
∫ 1

0
uz−1rn(ν ,β ,u)du︸ ︷︷ ︸

=RK
n (ν ,β ,z)

, (4.3)

donde rn(ν ,β ,u) es el resto de Taylor del desarrollo de la función hν .
Veamos en primer lugar dónde es válido este desarrollo y que condiciones debe verificar el punto β .

La compleja fórmula que define las derivadas de hν , dada en el lema (4.0.2), hace que intentar aplicar
algún resultado de análisis real como puede ser el criterio del cociente o de la raíz para determinar el
radio de convergencia de la serie sea inútil. Sin embargo, si consideramos la función hν(u) como una
función de variable compleja podemos hallar el radio de convergencia, puesto que éste coincide con la
distancia del punto en el que desarrollamos a la singularidad más cercana.

Las singularidades de la función hν(u) = (1+ log2(u))ν− 1
2 son las siguientes:

Por un lado, el punto u = 0 es un punto de ramificación, por lo que hν no es analitica en la
semirrecta real negativa.

Por otro lado, para valores no semienteros del parámetro ν se tiene que (1 + log2(u))ν− 1
2 =

e(ν−
1
2 ) log(1+log2(u)). Tomando la rama principal del logaritmo se sigue que si 1+ log2(u) < 0 la

función no es analítica. Dado que log(u) = log |u|+ iArg(u) se sigue que 1+ log2(u)< 0 si y solo
si

1+ log2 |u|−Arg2(u)+2i log |u|Arg(u)< 0. (4.4)

Para que (4.4) tenga sentido, la parte imaginaria de este número debe ser nula y por lo tan-
to log |u|Arg(u) = 0, de donde se sigue que |u| = 1 o Arg(u) = 0. Ahora bien, si imponemos
Arg(u) = 0 en (4.4) resulta 1+ log2 |u| < 0 que nunca se cumple. En consecuencia, debe ser
|u| = 1 y reemplazando en (4.4) se deduce Arg2(u) > 1. Es decir, todos los puntos u del ar-
co de la circunferencia unidad que conecta los puntos ei y e−i en sentido positivo verificando
Arg2(u)> 1 son puntos singulares de hν (ver figura).
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Los puntos del arco dibujado, que llamaremos A, junto con la semirrecta real negativa y el origen son
los puntos singulares de hν .

Por otro lado, para valores semienteros la función (1+ log2 u)ν− 1
2 es analítica salvo para u < 0, y no

tendremos una cota superior para β .
Tomando β ∈R+ se sigue que el radio de convergencia de la serie es mı́n{d(β ,0),d(β ,A)} donde d

denota la distancia euclidea. Gráficamente es claro que mı́n{d(β ,0),d(β ,A)}=mı́n{d(β ,0),d(β ,ei)}=
mı́n{β ,

√
β 2 +1−2β cos1}. Estas cantidades coinciden para β = 1

2cos1 y se tiene que si β > 1
2cos1 en-

tonces el disco de convergencia de la serie es D(β ,
√

β 2 +1−2β cos1) que no contiene al intervalo de
integración (0,1). Por lo tanto, debemos rechazar este caso. El caso contrario, β < 1

2cos1 implica que
el disco de convergencia es D(β ,β ) que contiene al intervalo (0,1) siempre que β > 1

2 . Por lo tanto,
debemos imponer β ∈ (1

2 ,
1

2cos1).
En consecuencia, el desarrollo (4.3) es válido en el disco D(β ,β ) con β ∈ (1

2 ,
1

2cos1). Los aproxi-
mantes Lk(z,β ) vienen dados por

Lk(z,β ) :=
∫ 1

0
uz−1(u−β )kdu = (−1)k

β
z+kB 1

β

(z,k+1)

donde Bx(a,b) denota la función beta incompleta de Euler (ver [[14], Sec. 8.17]). Podemos obtener una
expresión explicita de las funciones Lk(z,β ) empleando únicamente funciones funciones elementales.
En efecto, utilizando el binomio de Newton obtenemos

Lk(z,β ) =
∫ 1

0
uz−1(u−β )kdu =

k

∑
m=0

(
k
m

)
(−β )k−m

∫ 1

0
uz+m−1du =

k

∑
m=0

(
k
m

)
(−β )k−m 1

z+m
.

Además, integrando por partes en la definición de las funciones Lk(z,β ) (4.1) se obtiene la recurrencia
del enunciado, mientras que L0(z,β ) se calcula directamente.

Por otro lado, el error rn(ν ,β ,u) que aparece al desarrollar la función hν admite, según [[11], teore-
ma 2.3. con m = 1], la expresión

rn(ν ,β ,u) =
1

2πi

∫
C

hν(w)dw
(w−u)(w−β )n (u−β )n, u > 0

donde C es un camino cerrado simple recorrido en sentido antihorario contenido en el disco D(β ,β )
y que contiene a los puntos u > 0 y β . Tomemos como tal camino la frontera del disco de centro β y
radio βε = β − ε , con ε > 0 arbitrariamente pequeño, lo cual es necesario para que el camino no cruce
el punto singular w = 0. Parametrizando el camino se encuentra

rn(ν ,β ,u) =
1

2πi

∫
π

−π

hν(β +βεeiθ )βεeiθ idθ

(β +βεeiθ −u)(βεeiθ )n (u−β )n.

Tomando valores absolutos se tiene

|rn(ν ,β ,u)| ≤
1

2π

(
|u−β |

βε

)n

βε

∫
π

−π

|hν(β +βεeiθ )|dθ

|β +βεeiθ −u|
.
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Sustituyendo esta expresión en la ecuación que define RK
n (ν ,β ,z) (4.3) se tiene

|RK
n (ν ,β ,z)| ≤

∫ 1

0
uRez−1|rn(ν ,β ,u)|du =

1
2π

∫ 1

0
uRez−1

(
|u−β |

βε

)n

βε

∫
π

−π

|hν(β +βεeiθ )|dθ

|β +βεeiθ −u|
du.

Teniendo en cuenta la desigualdad triangular inversa se deduce que

|β +βεeiθ −u| ≥
∣∣∣βε −|β −u|

∣∣∣={u− ε, si β > u
2β −u− ε > 2β −1− ε, si β < u.

Por lo tanto, se obtiene

|RK
n (ν ,β ,z)| ≤

1
2π

∫
β

0
uRez−1

(
|u−β |

βε

)n
β − ε

u− ε

∫
π

−π

|hν(β +βεeiθ )|dθdu+

+
1

2π

∫ 1

β

uRez−1
(
|u−β |

βε

)n
β − ε

2β −1− ε

∫
π

−π

|hν(β +βεeiθ )|dθdu.

Dado que la función hν(β +βεeiθ ) es integrable en [−π,π], se obtiene, denotando
Mβε ,ν = 1

2π

∫
π

−π
|hν(β +βεeiθ )|dθ y tomando límites cuando ε tiende a cero (aplicar TCD), que el resto

RK
n (ν ,β ,z) está acotado por

|RK
n (ν ,β ,z)| ≤Mβ ,νβ

1−n
∫

β

0
uRez−2 (β −u)n du+Mβ ,νβ

1−n 1
2β −1

∫ 1

β

uRez−1 (u−β )n du.

La primera de estas integrales,
∫ β

0 uRez−2(β − u)ndu, se puede calcular en términos de la función Beta
de Euler [[14], Sect. 5.12.] tras el cambio de variable u = βy, y resulta∫

β

0
uRez−2(β −u)ndu = β

n+Rez−1B(Rez−1,n+1).

Por otro lado, la otra integral
∫ 1

β
uRez−1(u−β )ndu, se puede calcular con ayuda de la función Beta de

Euler incompleta [[14], Sect. 8.17] y, tras el cambio de variable β −u = βy, es igual a∫ 1

β

uRez−1(u−β )ndu = β
n+Rez(−1)n+1B1− 1

β

(n+1,Rez).

Aplicando [[14], ec. 8.17.9], que relaciona la función beta incompleta con la función hipergeométrica
de Gauss 2F1, se tiene

∫ 1

β

uRez−1(u−β )ndu =
β n
(

1
β
−1
)n+1

n+1 2F1

 1−Rez, 1

n+2

∣∣∣∣∣∣1−β

 .

Por lo tanto, el resto RK
n está acotado por

|RK
n (ν ,β ,z)| ≤Mβ ,ν

β
RezB(Rez−1,n+1)+

β

2β −1

(
1
β
−1
)n+1

n+1 2F1

 1−Rez, 1

n+2

∣∣∣∣∣∣1−β


 .
(4.5)

Veamos que la función entre corchetes es decreciente en Rez, para cualquier n ≥ 1 y cualquier
β ∈ (1

2 ,
1

2cos1). Para ello, veamos que es suma de funciones decrecientes.
Por un lado, en el segundo factor la variable Rez aparece únicamente en la función hipergeométrica

de Gauss, por lo que basta probar que ésta es decreciente. Sean x > y > 1.
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Veamos que 2F1

 1− x, 1

n+2

∣∣∣∣∣∣1−β

< 2F1

 1− y, 1

n+2

∣∣∣∣∣∣1−β

 . Para ello, basta considerar la repre-

sentación integral de la función hipergeométrica de Gauss dada en [[[14]], ec. 15.6.1]

2F1

 1− x, 1

n+2

∣∣∣∣∣∣1−β

= (n+1)
∫ 1

0

(1− t)n

(1− (1−β )t)1−x dt.

Dado que β ∈ (1
2 ,

1
2cos1), t ∈ [0,1], x > y > 1 se sigue que 1

(1−(1−β )t)1−x <
1

(1−(1−β )t)1−y . Reemplazando,

se tiene que 2F1

 1− x, 1

n+2

∣∣∣∣∣∣1−β

 < 2F1

 1− y, 1

n+2

∣∣∣∣∣∣1−β

 , y por lo tanto el segundo de los

sumandos del corchete en (4.5) es decreciente.
Por otro lado, vamos a probar que el primer sumando del corchete en (4.5) es decreciente. Sea

ϕ(x) = β xB(x−1,n+1), x > 1. Entonces

∂ϕ

∂x
= β

xB(x−1,n+1) [logβ +ψ(z−1)−ψ(z+n)] ,

donde ψ denota la función digamma dada en [[14], ec. 5.2.2]. Para probar que ϕ(x) es decreciente, basta
probar que logβ +ψ(z− 1)−ψ(z+ n) < 0, pues el factor que multiplica al corchete nunca se anula,
para x > 1 y β ∈ (1

2 ,
1

2cos1). Aplicando reiteradamente la relación [[14], ec. 5.5.2] se encuentra

ψ(z+n) = ψ(z−1)+
n−1

∑
j=−1

1
z+ j

,

por lo que se deduce que ϕ(x) es decreciente si y solo si

logβ −
n−1

∑
j=−1

1
x+ j

< 0,

que es trivialmente cierto pues todos los sumandos que aparecen son negativos, dado que β < 1 y x > 1.
En consecuencia, ϕ(x) es decreciente y por lo tanto la función que aparece entre corchetes en (4.5)
también lo es.

En consecuencia, para todo z tal que Rez > Λ para cualquier Λ > 1 se tiene que

|RK
n (ν ,β ,z)| ≤Mβ ,ν

β
ΛB(Λ−1,n+1)+

β

2β −1

(
1
β
−1
)n+1

n+1 2F1

 1−Λ, 1

n+2

∣∣∣∣∣∣1−β


 , (4.6)

que da una cota uniforme del resto.
Tomamos ahora límites cuando n→ ∞ en (4.5). En primer lugar, el orden del primer sumando de

(4.5) lo obtenemos con ayuda de la fórmula de Stirling:

β
RezB(Rez−1,n+1) = β

Rez Γ(Rez−1)Γ(n+1)
Γ(n+Rez)

∼ n−(Rez−1).

Por otro lado, considerando el primer término del desarrollo asintótico de la función hipergeométrica
de Gauss, dado en [[14], Sect. 15.12.(ii)], se deduce que el orden del segundo sumando del corchete en
(4.5) es

β

2β −1

(
1
β
−1
)n+1

n+1 2F1

 1−Rez, 1

n+2

∣∣∣∣∣∣1−β

∼
(

1
β
−1
)n+1

n+1
.



Pablo Palacios Herrero 27

Por lo tanto,

|RK
n (ν ,β ,z)| ∼ n−(Rez−1)+

(
1
β
−1
)n+1

n+1
.

Dado que β ∈ (1
2 ,

1
2cos1) ≈ (0.5,0.92) se tiene que

(
1
β
−1
)n+1

< 1 y por consiguiente el segundo de
los sumando tiende más rápidamente a cero que el primero (al hacer n→ ∞), por lo que el orden de
convergencia de la serie dada en el teorema 4.0.3 lo marca el sumando n−(Rez−1).

Para terminar, destaquemos varios aspectos de la aproximación dada en el teorema 4.0.3:

En primer lugar, hemos conseguido demostrar la convergencia y uniformidad del desarrollo a
pesar de la compleja fórmula que define las derivadas de h y por consiguiente el resto. Para
ello, hemos recurrido al análisis complejo y a integrales de Cauchy y hemos encontrado cotas no
explícitas del error. Por ello, no podemos optimizar el valor del punto β en el que desarrollamos
como hemos hecho para la función Hν .

En segundo lugar, la restricción para β ∈ (1
2 ,

1
2cos1) es necesaria. En efecto, si β < 1

2 entonces el

factor
(

1
β
−1
)

es mayor que 1 y el resto no tendería a cero cuando n→ ∞, es decir, el desarrollo
no sería convergente.

En tercer lugar, a pesar de que la representación integral de la función Kν [[14], ec. 11.5.2] es
válida para todo z tal que Rez > 0, hemos probado que el desarrollo obtenido es válido para
Rez > Λ > 1. Además, en el comportamiento asintótico del resto observamos que la velocidad
de convergencia es lenta, especialmente para valores de z con Rez próximo a uno. Por esta razón,
para valores de z con parte real próxima a uno el error cometido al aproximar puede ser muy
grande si n es pequeño.

Veamos algunas gráficas sobre la función Kν y la aproximación.

4.1. Gráficas.

A continuación se muestran unas gráficas en distintos intervalos comparando los valores absolutos

de los errores relativos cometidos al aproximar la función
√

π

2
Γ(ν + 1

2)( z
2

)ν Kν(z), para el valor del paráme-

tro ν = 3.1, utilizando el desarrollo dado en el Teorema 4.0.3 con β = 0.8 y los desarrollos de Taylor y
asintótico dados en el capítulo 2, tomando en los tres casos n = 10. Se representa en azul el desarrollo
de Taylor, en verde el asintótico y en rojo el uniforme.

Hemos representado los intervalos [1,12] (izquierda), [5,5+12i] (centro) y [5,5+6ei π

4 ] (derecha).
En ellas, se observa que cuando la parte real de z tiende a uno, el error aumenta, como era de esperar
debido al comportamiento asintótico del error. Observamos además que para valores pequeños de z el
desarrollo de Taylor es mucho más competitivo mientras que para valores grandes lo es el asintótico. Sin
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embargo, el desarrollo uniforme compite con ellas y es mejor que ambas en alguna región intermedia.
Además es uniformemente mejor. Para otros valores de β las gráficas son similares.

A continuación se representa la función
√

π

2
Γ(ν + 1

2)( z
2

)ν Kν(z) para ν = 3.1 (en discontinuo y rojo),

junto con la aproximación uniforme dada por el teorema 4.0.3 con β = 0.8 para n = 1 (amarillo), n = 2
(morado) y n = 3 (verde) en los intervalos [1,12] (arriba izquierda), parte real de [5,5+ 15ei π

4 ] (arriba
derecha) y [5,5+12i] (abajo). En este último caso, la gráfica de la izquierda corresponde a su parte real,
mientras que la gráfica de la derecha representa su parte imaginaria.

Las gráficas para otros valores de β son similares. Observamos que la función que aproximamos y la
aproximación tienen la misma forma. Sin embargo, para los valores de z con parte real próxima a uno, el
error es grande siempre que n no sea lo suficientemente grande, como se observa en el comportamiento
asintótico del error. Además, el error lo medimos verticalmente. Esto justifica las gráficas anteriores
donde representábamos el valor absoluto del error relativo cometido y éste era grande para los z con
Rez próximo a uno, pues considerábamos n = 10, que no es lo suficientemente grande.

Por otro lado se muestran las gráficas de la función
√

π

2
Γ(ν + 1

2)( z
2

)ν Kν(z) (en discontinuo y rojo) junto

con las aproximaciones de Taylor (arriba izquierda), asintótico (arriba derecha), uniforme con β = 0.55
(abajo izquierda) y uniforme con β = 0.9 (abajo derecha) para n = 1 (amarillo), n = 2 (morado) y n = 3
(verde) en el intervalo [0,12].
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En las gráficas de abajo observamos que la aproximación con β = 0.55 es bastante peor que para
β = 0.9. De nuevo, no tenemos información sobre el valor óptimo de β , pero experimentos numéricos
muestran que el valor de β que minimiza el error se encuentra en torno a β = 0.8.

Finalmente, la relación Kν(z) = Hν(z)−Yν(z) junto con los desarrollos uniformes calculamos para
la función Hν y Kν (teoremas 3.0.1 y 4.0.3) permite obtener un desarrollo uniforme para la función de
Bessel de segundo tipo Yν , en la región intersección donde son válidos los desarrollos de la Hν y la Kν ,
es decir, en la región {| Imz|< Ω}∩{Rez > Λ}, con Ω > 0 y Λ > 1.
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