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Prologue

The general aim of this work is to give a description of the estimation of Value at Risk (VaR) using
Quantile Regression models. In order to be able to measure the performance of these models, different
classical approaches for the estimation of VaR have been considered. These models will be used to
predict the VaR for the series of returns of the Euro-Dollar Exchange Rate and three companies from
the IBEX35: Banco Santander, Endesa and Indra.

The first studies in Value at Risk estimation were written by Markowitz (see [34]) and Roy (see [41]),
who intended their VaR measures for theoretical portfolio optimization work. However, VaR studies
became a main object of interest in 1980, when the Securities and Exchange Commission (SEC) enacted
the first regulatory measures related to Value at Risk conditions for institutions. Global standards are
nowadays published by the Basel Committee on Banking Supervision (BCBS). In the Basel Accords,
indications for the measurement of VaR and forecasts are given and financial institutions lean on these
requirements to calculate financial risk, capital changes and contingency plans.

The Value at Risk can be described as the worst expected loss over a given horizon under normal
market conditions at a given confidence level. A historical introduction to Value at Risk and main
definitions of VaR, Returns and VaR estimation are given in the first chapter.

Methods for estimating VaR can be divided in two main groups: parametric and non-parametric
models. Classical methods from both groups are presented in the second chapter, in which explicit
formulas of Value at Risk forecasts are given for each model. In order to measure their accuracy,
classical performance tests and cost evaluation functions are given. Performance tests measure the
dependence of excesses over the VaR forecast and their independence and cost functions evaluate the
scale of these excesses.

The quantile regression approach to forecast Value at Risk is presented in the third chapter. Firstly,
an introduction to Quantile Regression and its estimation of parameters is given and later, the Condi-
tional Autoregressive Value at Risk (CAViaR) model is introduced. This model, described by Engle
and Manganelli [21], tries to fit the VaR by focusing on modelling the quantiles of the distribution of
returns instead of the entire distribution. The Dynamic Quantile (DQ) test proposed in the same article,
measure whether the excesses over the VaR can be fitted to a linear quantile regression model. Thus, a
performance test based on Quantile Regression is given.

In order to estimate the Value at Risk of the return series described above, estimation of distributions
of all the models, VaR forecasts and performance evaluations are presented in the last chapter. The
statistical programming language R is the main tool used in this work.
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Resumen

La medición y modelización del riesgo en las instituciones financieras se ha convertido en una im-
portante área de desarrollo en el sector de la banca. El riesgo de mercado se define como el riesgo
asumido en una inversión provocado por las fluctucaciones de los valores de mercado. Sistemas regula-
torios como el Comité de Basilea, y las instituciones financieras han definido diferentes medidas para
este riesgo.

El Valor de Riesgo (VaR, por sus siglas en inglés), se define como la pérdida máxima de un inversor
que se puede producir en un periodo de tiempo dado y con una cierta probabilidad. Es decir, el VaR es
el valor mínimo que casi seguramente no traspasará la cartera de un inversor.

Los primeros resultados relacionados con la medición formal de riesgo se atribuyen a Markowitz
(ver [34]) y Roy (ver [41]), que fueron pioneros en la investigación de la teoría de carteras y definieron
los primeros indicadores del VaR.

Los primeros documentos regulatorios que recogen el Valor de Riesgo, fueron publicados por la
Comisión de Seguridad e Intercambio (SEC), en los que se definieron unos requisitos por los cuales
las instituciones financieras debían medir el riesgo que se tomaban en las operaciones con un 95% de
confianza a 30 días.

En 1988, el Comité de Basilea (BCBS), formado por estados miembros del G10 y Luxemburgo
publicó Basilea I, un documento regulatorio en el que se exponían recomendaciones y reglas no obli-
gatorias para la supervisión bancaria. En la actualidad, 27 países forman parte de este Comité y estos
estÃ́¡ndares globales para la regulación y previsión del riesgo para posibilitar la creación de planes de
contingencia bancarios, han derivado en la publicación de Basilea II (2004) y Basilea III (2016).

Sea {rt}n
t=1 la serie temporales de retornos de un portfolio y sea n el número de elementos de la

muestra. El Valor de Riesgo en el tiempo t con un nivel de confianza 1−α y horizonte temporal h≥ 1,
VaRt,α(h), es el valor que satisface:

℘(rt+h ≤VaRt,α(h)|Ωt) = α

donde Ωt es la información de la serie en t.
El primer enfoque que se considera en este trabajo para el cálculo del Valor de Riesgo es la uti-

lización de métodos clásicos. Los primeros métodos que se presentan son los más utilizados, por su
simplicidad y rápida computación: el método histórico y el método Delta o Vairnaza-Covarianza. Dada
una serie de retornos, {rt}n

t=1, el VaR del método histórico con probabilidad α en n+1 es el α-cuantil
de la serie de retornos. Para el caso del método Delta, el VaR en t con horizonte h se define como:

VaRt,α(h) = r̄t+h|t +Φ(α) · σ̄t+h|t

donde r̄t+h|t and σ̄2
t+h|t son la media y la varianza muestral de los retornos de la muestra con información

hasta t y Φ es la distribución normal estándar.
Otra aproximación al problema de la estimación del Valor de Riesgo son los modelos GARCH.

Estos modelos consideran que la varianza de uns serie de retornos no es constante, por lo tanto, mo-
delan la heterocedasticidad de la serie. Se presentan diferentes tipos de modelos GARCH (IGARCH,
GJR-GARCH, EWMA, etc.). Cada uno de ellos posee propiedades particulares y, dependiendo de la
naturaleza de la serie, pueden resultar buenos modelos a la hora de estimar el VaR.
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VI Capítulo 0. Resumen

El último enfoque clásico son los modelos basados en teoría de valores extremos. Se presentan dos
metodologías diferentes para abordar el problema: el análisis de máximos (o mínimos) y los excesos
sobre umbral.

En la primera de ellas, dada una muestra de retornos de longitud n, se escoge una constante q,
denominada longitud de bloque, que determina el número de retornos en cada subgrupo de la muestra,
de manera que se tiene un total de n/q subgrupos. La muestra de valores utilizada para la estimación
de la función de distribución de máximos (mínimos), denominada distribución de valores extremos
generalizada (GEV, por sus siglas en inglés), es el conjunto de máximos (mínimos, respectivamente) de
cada uno de los subconjuntos. Por lo tanto, el longitud muestral es n/q. En el caso de que n/q no sea
entero, se eliminan las correspondientes primeras observaciones de la muestra.

El método de excesos sobre umbral considera como valores extremos aquellos retornos que excedan
un límite (o umbral) fijo. La distribución de los excesos se denomina Pareto Generalizada. Una dificultad
que puede encontrarse en este modelo es la elección del umbral. En el caso de que el umbral no sea
adecuado, puede suceder que no haya suficiencia muestral para el ajuste del modelo, o bien se consideren
como extremos valores que realemnte no lo son. En series financieras, es habitual encontrar la selección
del umbral a partir de los cuartiles de la muestra. Es decir, dado un porcentaje de población p, se toma
como umbral el p-cuantil de la serie de retornos, de manera que se consideran como extremos un 1− p
por ciento de la población.

Como método alternativo a los modelos clásicos de estimación del Valor de Riesgo, el tercer capítulo
ofrece una introducción y visión global a la regresión cuantil. Dada X variable aleatoria, y F su función
de distribución, el cuantil de orden τ de X , qτ se define como el valor que satisface

℘(X ≤ qτ)≥ τ

y
℘(X ≥ qτ)≥ 1−τ

En el caso de una muestra, x1, . . . ,xn, los cuantiles de la muestra pueden encontrarse como la solu-
ción de un problema de optimización. El valor óptimo del problema, x̂, responde a la la ecuación:∫

ρτ (x− x̂ )dFn(x) = n−1
n

∑
i=1

ρτ (xi− x̂ )

donde ρτ es la función de pérdida descrita por

ρτ(u) = u(τ− I(u < 0))

Por lo tanto, el problema de encontrar el cuantil de una distribución dada una muestra, se puede
reducir a un problema de optimización lineal. Dada una muestra {(X1,Y1) , . . . ,(Xn,Yn)}, el regresor
cuantil β̂τ de orden τ se define como

β̂τ = mı́n
β∈Rd

n

∑
i=1

ρτ

(
Yi−XT

i β
)

El principal método de estimación de este problema es planteado en el capítulo. La definición formal
del problema de optimización como un problema de función objetivo con restricciones permite analizar
tanto este problema como su dual y resolverlo utilizando diferentes métodos: algoritmo Simplex, método
del punto interior, métodos de planos de corte, etc.

La regresión cuantil es un método robusto, es decir, no es sensible a datos atípicos o a ciertas
asumciones relacionadas con la población objetivo, al contrario que con lo que ocurre con la regresión
lineal clásica. Esto es debido a la naturaleza de la función objetivo del problema de minimización de la
regresión cuantil.

El modelo de estimación del Valor de Riesgo planteado en el tercer capítulo toma el nombre de
modelo de Valor de Riesgo Condicional Autoregresivo (CAViaR, por sus siglas en inglés). Desarrollado
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por Engle y Manganelli (see [21]), este modelo utiliza la regresión cuantil para estimar el VaR de una
muestra, es decir, en vez de estimar la función de distribución para calcular el VaR a partir del cuantil
de la distribución, estima el cuantil de la distribución. Además, el modelo está planteado en base a la
relación autoregresiva de las series de retorno.

Sea β un vector de parámetros desconocidos y sea qt(β ,α) ≡ qt(xt−1,β ) el tiempo t α-cuantil de
la distribución de retornos en t−1. El método general CAViaR se define de la siguiente forma:

qt(β ,α) = β0 +
s

∑
i=1

βiqt−i(β ,α)+
r+s+1

∑
j=s+1

β jl(xt− j)

dondep = s+ r+1 es la dimensión de β y l es la función que relaciona el cuantil del tiempo t con
un número finito de lags.

Finalmente, con el propósito de analizar la eficacia de este modelo frente a los métodos clásicos, se
estima el Valor de Riesgo para la serie de cambio de divisa Euro-Dolar, y las series de retorno de los
valores de cierre en bolsa de tres empresas del IBEX 35: Banco Santander, Endesa e Indra.

Las estimaciones realizas se comparan utilizando tests de rendimiento, como el test de Kupiec, el test
de Christoffersen o el Ratio de excesos, y funciones de pérdida como la función de Caporin. Además,
se presenta el test de Cuantiles Dinámicos (DQ), basado en la regresión cuantil.
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Chapter 1

Value at Risk: An introduction

Risk measurement in financial institutions has become an important area of research and modelling
for banks. This measurement ensures the solvency and the good functioning of financial institutions.
Since the instability of a single institution can affect the stability of the whole banking system, a reg-
ulatory framework has been developed by the Basel Committee on Banking Supervision. These rules
shall be followed by all banking institutions of the European Union.

The Market Risk can be defined as the risk taken from losses produced by changes in markets’
rates such as interest or stock returns. This risk is one of the most important types of risk. The Basel
Committee establishes a number of rules in order to measure this market risk. Different measures such
as the Value at Risk and the Expected Shortfall can be used. The confidence level for forecasting should
be at least of 99% and the period of historical observations (sample) used to forecast should be set at a
minimum of one year. In addition, EU institutions are suggested to test their forecasts with a backtesting
process.

As Prof. Tsay well explain in [44], Value at Risk can be defined as the maximal loss of a financial
position during a given time period for a given probability, that is, it is the loss that the investor is fairly
sure will not be exceeded in the case that the portfolio is held over some period of time. Thus, VaR
can be used to elaborate a financial contingency plan. This results to be very useful as EU supervisors
suggest financial institution to have a funding plan in case of a market crash.

1.1. Introduction

1.1.1. Motivation

Several large financial losses in this previous decades have led to the growth of extreme modelling
researching. But, how can risk be described in the first place?

The concept of risk has been historically debated from a lot of points of view. The existence of
different definitions of risk is a proof of this complexity. Taking risk can mean having the possibility of
suffering damage. It also can mean the possibility of loosing something or being at disadvantage against
something.

If the risk is measurable, it can also be modelled. This is known as Risk Management. In a financial
activity, a Market Risk appears. This kind of risk is the one which is going to be forecast and analysed
in this dissertation.

The Market Risk can be defined as the probability of having potential losses due to a negative
evolution of asset prices in which the trader has decided to invest. Three different risks can be found:
Interest rate risk, exchange rate risk and stock price risk. In order to minimise the impact of the market
risk in a trader’s portfolio, different measurements and models can be identified and controlled.

1



2 Chapter 1. Value at Risk: An introduction

1.1.2. History of VaR

The first studies related to measure risk are attributed to Francis Edgeworth in 1888. He made
important contributions to the statistical theory, using historical data as the basis to model future risky
events.

In 1952, Harry Markowitz (see [34]), who was awarded the Nobel Prize in Economics in 1990 for
his pioneering research in the area of portfolio theory, and independently three months later Arthur D.
Roy (see [41]) proposed VaR indicators, which were surprisingly similar. In their researches, both of
them tried to optimise the profit of a portfolio at a given level of risk.

During the 70th to 80th years many new financial products were created. This represented a new
challenge for modelling of risk. The new financial products did not have historical data, through which
the risk could be approximated. One option was to find approximately similar financial products and
try to derive the risk from them. For example, the abolition of the monetary system in 1971 has resulted
in a foreign exchange forward market. These new challenges stimulated the development of an easily
understandable and reliable indicator of risk.

The first regulatory measures that evoke Value at Risk, though, were initiated in 1980, when the
Securities and Exchange Commission (SEC) tied the capital requirements of financial service firms to
the losses that would be incurred, with 95% confidence over a thirty-day interval, in different security
classes; historical returns were used to compute these potential losses.

Although the first publications about predecessors of VaR date back to the 20th century, the credit
for the use of current VaR attributed mainly to US investment bank JP Morgan. This company was the
first one that introduced “Risk Metrics” in order to describe the measure of risk using financial data.
The origin of the name “Value at risk” is unknown. In the 90s the Value at Risk was also known as
“dollars at risk”, “capital at risk”, “income at risk”, “earnings at risk” or “money at risk”.

In 1994, J. P. Morgan published a technical document of this system. This was followed by the
mass acquisition of the system by many institutions. VaR was popularized as the risk measure of choice
among investment banks looking to be able to measure their portfolio risk for the benefit of banking
regulators.

The SEC requirements were not the only initiatives created in order to control financial risk. In 1974,
members of the G10 and Luxembourg founded the Basel Committee on Banking Supervision (BCBS).
At the present time, 27 countries, including Spain (full member of the committee since 2001), and three
observers are members of this committee. The committee formulates general supervision rules and
makes recommendations for banking supervision. Even though recommendations are not compulsory,
all the members (countries and authorities) tend to implement the suggestions made by the committee.
These global standards have been included in the Basel Capital Accords: Basel I (1988), Basel II (2004)
and Basel III (2016).

According to the Basel Committee, the VaR methodology could be used by financial institutions
to calculate capital changes with respect to their financial risk. Its intention was to provide a tool to
calculate a certain backup money in order to be able to affront non-payments and losses.

However, institutions soon realised that the VaR was useful not only to calculate previsions sugges-
ted by the Basel committee but also to manage other risk measures. Nowadays, the calculation of VaR
has been set up in lots of different aspects and business activities.

1.2. VaR definition and elements

According to Philippe Jorion (see [28]), “VaR measures the worst expected loss over a given horizon
under normal market conditions at a given level of confidence. For instance, a bank might say that the
daily VaR of its trading portfolio is $1 million at the 99 percent confidence level. In other words, under
normal market conditions, only one percent of the time, the daily loss will exceed $1 million.”

Notice that there can be two different views that can explain the VaR concept. On the one hand, VaR
can be seen as a measure of loss associated with an extreme event under normal market conditions. On
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the other hand, VaR is the minimal loss under extreme market conditions. Both approaches lead to the
same measure of VaR.

Value at Risk has two basic parameters:

The significance level: it represents the probability for which the VaR is expected.

The risk horizon: it is the period of time over which the Value at Risk (potential loss) is calculated.

The confidence level can be chosen by the trader, but also by an external agent. For example, in the
case of banks: Under Basel Accords, if a bank uses internal VaR models, the risk should be measured at
a determined confidence level (in Basel III, the confidence level was fixed at 0.99). Both the confidence
level and the Risk horizon are given by the Bank for International Settlements of Basel. Its purpose
is to ensure that financial institutions hold enough capital on account to meet obligations and absorb
unexpected losses.

The different methodologies developed to calculate the VaR can be presented in four different groups
(see [3]):

Parametric methods: GARCH and Risk-Metrics.

Non-parametric methods: historical simulations.

Monte Carlo simulations.

Semi-parametric methods: extreme value theory and CAViaR.

1.2.1. VaR elements

Definition 1.1 (Value at Risk). Let {rt}n
t=1 be the time series of portfolio returns and n denote the sample

size. The Value at Risk of the financial position at time t with confidence level 1−α for a given horizon
h, VaRt,α(h), is the value that satisfies

℘(rt+h ≤VaRt,α(h)|Ωt) = α

where Ωt is the information available at time t.
From the definition, one can tell that VaRt,α(h) is the α-quantile of the conditional distribution

rt+h|Ωt . Thus, the potential loss at time t +h is less or equal to VaRt,α(h) with probability α .
All VaR measurement approaches use a similar scheme:

1. Selection of basic parameters:

Time horizon (h): Period of time at which the VaR is calculated.

Confidence level (1−α): it is the probability of incurring to a loss which is at least lower
than the estimated Value at Risk.

Time units (t): in general, time is measured in days.

Data window: it is the number of time units which are used to estimate the VaR at a certain
time t. It determines Ωt , the information available for the given window. That is, the data
window indicates the set of observations known at time t, Ωt .

2. Selection of relevant market factors.

3. Risk mapping and VaR calculation.

4. Measurement of error and backtesting.
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1.2.2. Returns

As the definition of VaR suggests, it is the portfolio return in the worst scenario. Therefore, the
definition of the return of an asset is necessary in this occasion. The portfolio returns are the differences
between portfolio values. That is, ∆P = Pt+1−Pt , where Pt and Pt+1 are the values of the portfolio at
times t and t +1, respectively.

In general, the portfolio return is described by the rate of the return. Two different approaches to
this rate can be done: arithmetic and geometric (see [7]).

The arithmetic rate at time t, Ra,(t), can be described as the portfolio return divided by the original
portfolio value:

Ra,(t) =
Pt −Pt−1

Pt−1

The geometric return is defined as the logarithm of the price ratio, that is, the geometric return at time t,
Rg,(t), is of the form:

Rg,(t) = ln
(

Pt

Pt−1

)
Notice that, Rg,(t) = ln

(
1+Ra,(t)

)
. If the time horizon of the working data is short (e.g. one day),

the arithmetic rate of returns is near to 0. Therefore, by Taylor expansion:

Rg,(t) = ln
(
1+Ra,(t)

)
= Ra,(t)−

R2
a,(t)

2
+

R3
a,(t)

3
+ · · · ≈ Ra,(t)

Thus, both geometric and arithmetic returns shall be treated the same way and the arithmetic return
is used.

1.2.3. Expected Shortfall

The Expected Shortfall (ES) is known as tail Value at Risk or Conditional Value at Risk (CVaR).
The ES is defined as the expected loss of financial position after an extreme event.

Using Definition 1.1, the Expected Shortfall at time t for a time horizon h can be expressed as

ESt,α(h) = E(rt+h|Ωt s.t rt+h ≤VaRt,α(h))

From the definition above, it can be seen that ES is the expected loss of the conditional distribution
of returns given that the return exceeds its VaR.

1.3. Advantages and limitations of VaR

As Andreas Krause well explain in [32]: “The VaR measure has an obvious benefit because it is eas-
ily and intuitively understood by non-specialists. Thus, it can therefore be well communicated within a
company as well as between the company and regulators, investors, or other stakeholders. Furthermore,
it can address all types of risks in a single framework, which not only allows the aggregation of risks
but also further facilitates communication.”

It is true that VaR facilitates its use as a basis for performance-related pay and the decisions about
capital requirements and businesses for individual traders, divisions and companies. It also can help to
decide which type of risk should be reduced as an strategy.

But the truth is that VaR has some weaknesses.

Definition 1.2. [45, Section 1] A risk measure δ is said to be coherent if for any two loss random
variables X and Y , δ satisfies:

Subadditivity: δ (X +Y )≤ δ (X)+δ (Y ).

Monotonicity: If X ≤ Y a.s., then δ (X)≤ δ (Y ).
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Positive homogeneity: For c > 0, δ (cX) = cδ (X).

Translation invariance: For c > 0, δ (c+X) = c+δ (X).

It can be shown that VaR is coherent under normal distribution. However, it is not coherent in
general. Let X and Y be two normal distributed random variable. Without loss of generality, the mean
of the two variables are 0. Thus, X ∼ N(0,σ2

1 ) and Y ∼ N(0,σ2
2 ). The VaR at a given confidence level

1−α and time horizon h at time t are zασ1 and zασ2, respectively. Because of normal distribution
properties, the subadditivity property holds. It can be seen that,

σ
2
X+Y =Var(X +Y ) =Var(X)+Var(Y )+2Cov(X ,Y )≤ (σ1 +σ2)

2

Therefore, σX+Y ≤ σ1+σ2 and this implies that VaR of the random variable X +Y satisfies the subaddit-
ivity property. However, this property does not hold in general. Several counterexamples can be found
in [29]. The fact that Value at Risk does not satisfy the sudadditivity property has important effects from
a financial point of view. It implies that the Value at Risk does not favour portfolio diversification, that
is, investing in different assets and securities instead of in the joint portfolio, which is the handbook for
finance.

The Expected Shortfall is a coherent risk measure, even though it is derived from the Value at Risk,
which is not.

The Value at Risk is calculated in the conventional way for an individual security assuming elliptical
distributions such as normal, lognormal, etc. In the case of considering two or more securities, that is,
a portfolio, the correlation between them is a linear relationship between the variables and the Value at
Risk of the portfolio is the sum of VaR of the securities.

However, if non-elliptical distributions are considered, the Aggregate VaR for the portfolio can be
greater than the sum of VaR of each individual security in the portfolio due to correlations.

Also, Value at Risk estimation is subject to large errors, the estimate is downward biased, and these
shortcomings can be exploited by individuals within the company as well as the company as a whole.
Plus, the cost effectiveness assumptions or the history of data may not be appropriate for the time series.
Depending on the the time horizon, the estimation of VaR might be completely different and VaR can
be underestimated (small window) or overestimated (large window). However, these disadvantages do
not imply that VaR is not a useful tool in risk measurement.

VaR has proved to be a very useful and widely accepted measure, despite its weaknesses. But it is
exactly these shortcomings that limit the extent to which VaR can be used. The VaR estimate should not
be taken as a precise number, but it provides an indication as to how much risk is involved. It also aids
in detecting any trends in the behaviour of individuals, divisions, or the company as a whole.

Even though that not a single measure can replace the knowledge and experience of managers and
those using it should be aware of its limits, the benefits of the simplicity of VaR cannot be underes-
timated. This field is suffering constant changes and new methods and ways to model errors are being
developed.

Currently research is under way to improve the estimation procedure for VaR so as to overcome
some of the above-mentioned problems. Alternatives to VaR have been developed that employ a similar
idea, but provide a better risk measure. One proposed measure is expected shortfall (ES). It thus includes
more information on the distribution of losses than the VaR and can be shown to be a coherent risk
measure.

However, an inconvenient of these measures is that they model risk of securities in a separated way.
At present, due to the high interconnection level of markets, researchers are working on developing the
so-called systemic risk measures. These measures try to model events which affect to several securities,
producing a contagious effect.

In conclusion, the appropriate use of VaR with full awareness of its limitations can improve decision
making in companies.



6 Chapter 1. Value at Risk: An introduction

1.4. Approaches to estimation

From Definition 1.1, one can tell that there are two different methods to estimate the VaR (see [2]):

1. Inverting the distribution function of financial returns.

2. Inverting the distribution of innovations.

Thus, VaR with confidence level 1−α at time t +h with time horizon h can be estimated as:

VaRt,α(h) = F−1
t (α) = µt+h|t +σt+h|tG

−1
t (α) (1.1)

where Ft is the conditional distribution function of financial returns, Gt is the conditional distribution
of innovations, µt+h|t = E[rt+h|Ωt ] and σt+h|t = Deviation[rt+h|Ωt ].

In the next chapter, different methods to estimate VaR are presented and it can be seen that the two
approaches are used depending on the method.



Chapter 2

VaR classical estimation and testing
methods

Many people have along the years tried to reach to a financial model which could be capable to
gather different types of behaviour of financial series of assets’ information. The importance of the
measure and knowledge of the VaR has caused the development of several methods of estimation. Some
of them are presented in this chapter.

Two classical models are firstly proposed: the historical model and the Variance-Covariance method,
also known as the Delta method. These two models show simple approaches to VaR calculations.

The GARCH model is proposed in the third place. This model is developed in order to be able to
model volatility of returns. A simple model is firstly shown, the ARCH model, and later the GARCH
model and its extensions are explained. The MLE method is used in order to estimate the parameters of
the model.

Finally, extreme value models are presented.The VaR method explains extreme events in data with a
certain probability and a certain value. The Extreme Value approach, which estimates shocks of markets
and crisis as extreme events, can be modelled as a Generalized Extreme Value distribution and by the
Peaks over Threshold method.

Some validation methods are introduced in the last section of the chapter. These tests allow any
trader to know the effectiveness of the VaR estimation and to find the model that best fits the returns of
a series of asset values.

2.1. Historical method

The historical method is a widely used model to estimate VaR because of its simplicity. This method
is based on the belief that the behaviour of returns of an asset in the future will follow the same distri-
bution as returns in the past.

Unlike many parametric models such as GARCH models or the Delta method (fully explained in
the following sections), this method does not have to make assumptions about the parametric form of
the distribution of the asset returns and the VaR is directly inferred from the sample.

However, the main limitation of the model is the varying VaR due to choice of the sample size
and the frequency of data. To avoid unstable VaR when the model is re-estimated day after day, a
considerable amount of historical data is required.

According to C. Alexander (see [4] ), the steps which shall be followed in order to implement the
historical VaR are the following:

1. Obtain a sufficiently long period of historical data: the choice of the number of observations
which will be used in the model can be complicated. On the one hand, if the window is too short,
some particular events of the past might not be taken into account. An underestimation of the
VaR is not at all desirable.

7
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On the other hand, a large window might lead to an overestimation of the VaR and institutions
and companies could be saving more money than the real needed quantity. This practise leads to
losses at the companies because all the money they are saving is not being reinvested.

2. Adjust the observed portfolio returns to reflect the current market conditions: in order to obtain
the VaR given a sample, the returns are given and disposed in ascending order.

3. Fit the empirical distribution of returns.

4. Derive the VaR for the relevant significance level and risk horizon: for a given significance level
α (the confidence level is equal to 1−α), the VaR corresponds to the α-quantile of the sample
returns.

2.2. Variance-Covariance model

The Variance-Covariance method, also known as the Delta-Normal method, consists in assuming
that returns of an asset are i.i.d. and have a normal distribution.

This method is very simple as, in order estimate the VaR, the expected return and the standard
deviation of the sample are the only required elements. The VaR of a sample of returns with confidence
level 1−α at time t for a time horizon h is given by:

VaRt,α(h) = r̄t+h|t +Φ
−1(α) · σ̄t+h|t

where r̄t+h|t and σ̄2
t+h|t are the sample mean and variance for the information available at time t

(calculated using the sample given by the chosen window length), respectively, and Φ is the standard
normal distribution function.

Although this method seems useful, the reality is that in many occasions the assumption of nor-
mality is not satisfied by the sample. If the sample presents a high frequency, the distribution might be
heavy-tailed or light-tailed. In this cases the hypothesis of normal distribution of data is rejected. There-
fore, similar methods using the t-Student distribution for heavy-tailed distributions and the Generalized
Exponential distribution (GED) have been developed as well.

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal dis-
tribution. That is, data sets with high kurtosis tend to have heavy tails, or outliers. Data sets with low
kurtosis tend to have light tails, or lack of outliers. A uniform distribution would be the extreme case.

In the case of the t-Student distribution, the degree of freedom parameter is related to sample kurtosis
coefficient t as the kurtosis coefficient is calculated as the fourth moment of a distribution divided by
the square of the second moment.

The kurtosis coefficient , k, shall be used to know the behaviour of the tails of the sample and
indicates the degrees of freedom that shall be used in order to fit a given sample. Let v be the number of
degrees of freedom of the t-student distribution. The kurtosis coefficient can be calculated as:

k =
µ4

µ2 = 3+
6

v−4

The normal distribution is often used as a benchmark. As k = 3 for a normal distribution, distribution
such that k> 3 are called leptokurtic, that is, these distributions have fatter tails than Normal distribution.

2.3. GARCH Model

The usage of econometric models which are able to model volatility of the return of an asset is an
important factor to improve approaches to value at risk models, understand the time-varying behaviour
of the assets and improving the accuracy of forecasts.
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Although AutoRegressive Moving Average (ARMA) time series models are very useful for model-
ling the trend and seasonality of series and their usage is widespread, they assume a constant volatility
(see [44]). ARMA models are used to model the conditional expectation of an observation by using the
previous observations. They do this by modelling the observations as a linear function of the trend, the
seasonal component and a white noise term. Therefore, the conditional variance of the observations is
constant.

In order to solve this issue, the AutoRegressive Conditional Heterocedasticity (ARCH) and, in a
more general way, the Generalized AutoRegressive Conditional Heterocedasticity (GARCH), models
are presented in this section.

2.3.1. Set-up

Let rt be the return of a financial asset at time t. The variance of rt is constant if it satisfies that
Var(rt |X1,t , . . . ,Xp,t) = σ2 for some variables X1,t , . . . ,Xp,t . The general form of the regression of rt

using past returns rt−1, . . . ,rt−p is given by

rt = f (rt−1, . . . ,rt−p)+ εt (2.1)

where E(εt) = 0 and Var(εt) = σ2. In general, the function f is linear.
Notice that the model can be modified so that it allows a non-constant conditional variance. In this

case, Equation (2.1) can be written as

rt = f (rt−1, . . . ,rt−p)+σ (rt−1, . . . ,rt−p)εt

These models are called "variance function models".

2.3.2. ARCH(q) Models

The AutoRegressive Conditional Heterocedasticity model is a special case of variance function mod-
els (see [42, Section 12.3]). Proposed by R. F. Engle in 1982 (see [19]), these model are mean 0, serially
uncorrelated processes with nonconstant variances conditional to the past, but present constant uncon-
ditional variances.

Definition 2.1. A process ε1,ε2, . . . is called a Gaussian white noise with unit variance if it satisfies that
the process is independent N(0,1) and therefore,

E (εt |εt−1, . . .) = 0

and
Var (εt |εt−1, . . .) = 1

Using this definition, the ARCH(q) model can be defined as follows.

Definition 2.2 (ARCH(q) model). Let εt be a Gaussian white noise such that its variance is equal to 1.
Then, at is an ARCH(q) process if

at = εt

√
α0 +

q

∑
i=1

αia2
t−i

The process can be also written as at = εtσt , where σt is the conditional standard deviation of at given
past values.

It can be seen that the basic idea of the ARCH(q) model is that the mean-corrected asset return
is uncorrelated, but dependent, and that dependence is described by a quadratic function of its lagged
values.
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To understand the ARCH models, the ARCH(1) model is studied in detail. Thus, the ARCH(1)
model is given by

at = σtεt , σ
2
t = α0 +α1a2

t−1, (2.2)

where α0 ≥ 0 and α1 ≥ 0. The conditional mean of at is clearly equal to 0 since εt is an independent
process. Knowing that E(ε2

t ) = Var(εt) = 1, and using (2.2), the conditional variance of at is of the
form,

Var (at |at−1, . . .) = E
{(

α0 +α1a2
t−1
)

ε
2
t |at−1, . . .

}
=
(
α0 +α1a2

t−1
)

E
{

ε
2
t |at−1, . . .

}
= α0 +α1a2

t−1

Notice that ARCH (q) processes are uncorrelated and have constant mean and a constant uncondi-
tional variance, but their conditional variance is non constant.

ARCH(q) postulates that the conditional variance is a linear function of the past q squared innova-
tions,

σ
2
t = a0 +

q

∑
i=1

αia2
t−i = a0 +α(L)a2

t−1

Let vt = a2
t −σ2

t , the ARCH(q) model can be written as

a2
t = a0 +α(L)a2

t−1 + vt

Since Et−1(vt) = 0, the model corresponds directly to an AR(q) model for the squared innovations.

2.3.3. Weaknesses of ARCH models

Although ARCH models present numerous advantages, they also have some weaknesses:

The model assumes positive and negative stocks to have the same effects on volatility, as it de-
pends on the square of previous values so the sign is not taken into account. This is clearly not
true in financial series, as the response of assets is different depending on the sign of the shock.

ARCH coefficients’ values are quite restrictive. For example, the conditional variance of the
ARCH(1) model is finite if α1 ∈ [0,1].

In general, ARCH models respond slowly to sudden shocks to the return of a series, so they tend
to overpredict the volatility of series.

2.3.4. General ARCH(p,q) Model

In 1986, T. Bollerslev (see [9]) introduced the Generalized Autoregressive Conditional Heteroce-
dastic Model, which is based on the work of Engle in ARCH models, with a more flexible lag structure.

Definition 2.3. Generalized Autoregressive Conditional Heterocedastic Model with parameters p and
q, GARCH (p,q), can be represented as

at = εtσt

where εt is the white noise term and

σt =

√√√√α0 +
q

∑
i=1

αia2
t−i +

p

∑
j=1

β jσ
2
t− j

defines the conditional variance.
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GARCH models include ARCH models as a special case. It has been tested that GARCH processes
present heavy tails. This means that they tend to have more extreme values than expected from a normal
distribution. Therefore, this type of processes is useful both to model conditional heterocedasticity and
heavy-tailed series.

Notice that the GARCH(p,q) is defined as

σ
2
t = ω +

q

∑
i=1

αia2
t−i +

p

∑
j=1

β jσ
2
t− j = ω +α(L)a2

t−1 +β (L)ω2
t−1

Let vt = a2
t −σ2

t . The model can by rewritten as

a2
t = ω +[α(L)+β (L)]a2

t−1−β (L)vt−1 + vt

which defines an ARMA[max(p,q),p] model for the squared innovations, a2
t .

2.3.5. Parameter estimation

In order to obtain estimations of parameters of a general ARCH model, the maximum likelihood
estimation method is applied.

Let {x1, . . . ,xn} be a sample of n independent and identically distributed observations, with distri-
bution function f (x). Let θ be an unknown vector of parameters. The likelihood distribution function
θ given {x1, . . . ,xn} is of the form

L(θ |x1, . . . ,xn) = f (x1, . . . ,xn|θ) =
n

∏
i=1

f (xi|θ)

The log-likelihood function is defined as l(θ) = log(L(θ)) From the maximum likelihood problem, it
is known that

θ̂ = argmaxθ∈Θ L(θ)

Using Newton’s optimization method, it is easy to obtain approximated values of θ at iteration k, θk, by
applying the following equation:

θk+1 = θk− J−1(θk)∇L(θk)

where L is the Fisher Information matrix and

∇L =
∂L
∂θ

Let at be a GARCH model as in Definition 2.3, with normal distribution with mean 0 and conditional
variance equal to σt . The log-likelihood function of parameter vector θ = (α0,α1, . . . ,αq,β1, . . . ,βp)

T

is of the form (see [48, Section 2.3]),

l(θ) =
n

∑
t=q+1

(
− ln(2π)

2
− ln(σ2

t )

2
− a2

t

2σ2
t

)

2.3.6. The GARCH Model in Finance

Some financial models such as CAPM or the Black-Scholes model make the assumption that the
conditional variance is constant. It has been proven that this kind of hypothesis usually lead to serious
errors.

For this reason, the use of ARCH and GARCH processes in modelling errors of series has become
a widespread research topic (see [10]), because while returns are usually uncorrelated, absolute returns
are not. That is, large changes in time series tend to be followed by large change, and small changes
tend to be followed by small changes. This phenomenon is denoted by volatility clustering.
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Therefore, ARCH and GARCH models aim to describe this type of behaviour, as their main concept
is that volatility is dependent upon the past. Plus, GARCH models are also useful to model series with
heavy tails and an extreme value approach to the model can be done.

In [20], an example of risk measurement that could be the input to a variety of economic decisions is
presented. The analysis of ARCH and GARCH models and their many extensions provides a statistical
stage on which many theories of asset pricing and portfolio analysis can be exhibited and tested.

2.3.7. VaR estimation

In order to calculate the VaR using a GARCH model, the evolution of returns and their volatility
can be presented as the following system:

rt = µ + εt

εt |Ωt−1 ∼ D(0,σ2
t )

σ2
t = α0 +∑

q
i=1 αiε

2
t−i +∑

p
j=1 β jσ

2
t− j

where D is the chosen distribution with mean 0 and variance σ2
t . Normally, D is the Normal or the

t-Student distribution.
Notice that the process is covariance stationary, that is, has unconditional finite variance, if ∑

q
i=1 αi+

∑
p
j=1 β j < 1. In this case, the unconditional variance is

σ
2 =

α0

1−∑
q
i=1 αi−∑

p
j=1 β j

Therefore, the estimation of Value at Risk at time t for a given time horizon h at a confidence level
1−α is given by

VaRt,α(h) = µt+h|t +D−1(α) ·σt+h|t

where µt+h|t and σt+h|t are the mean and deviation of the sample within the information at time t and D
is the distribution function of errors. It shall be notice that, in GARCH models, the mean is considered
to be constant.

2.3.8. Extensions and modifications of GARCH

The are several modifications of the GARCH model that are commonly applied in finance (see [2]
for more examples). Essentially these models change the way to calculate the volatility, that is, σt . The
most widely used models are shown in this section.

IGARCH

Integrated GARCH models are useful to model series that present persistent changes in volatility. A
GARCH(p,q) model is called an IGARCH model if it satisfies

q

∑
i=1

αi +
p

∑
i=1

βi = 1

The conditional variance properties of the IGARCH model are not very attractive from the empirical
point of view due to the very slow phasing out of the shock impact upon the conditional variance.

The Exponentially Weighted Moving Average (EWMA) is a special case of the IGARCH family.
This model was firstly used by RiskMetrics, when this company introduced the concept of VaR as a risk
measure. It shall be noticed that the EWMA is a GARCH(1,1) model in which α1 +β1 = 1 and α0 is
equal to 0.

Thus, the model calculates the return variance using the following recursive formula:

σ
2
t = λσ

2
t−1 +(1−λ )ε

2
t−1
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GJR-GARCH

Despite of being uncorrelated, the errors of the series εt do not need to be independent necessarily.
Thus, the Glosten-Jagannathan-Runkle (GJR) GARCH model, proposed by Glosten, Jagannathan and
Runkle in 1993 (see [23]) assume a specific parametric form of this conditional heterocedasticity.

This model is considered as it is capable of explain the leverage effect of a series, that is, the
asymmetry of the errors of the series of returns. The leverage effect is caused by the fact that the
negative returns have a different influence on future values of the series than positive returns, that is, the
influence of positive and negative returns is not symmetric.

For any time t, the return variance is calculated as follows:

σ
2
t = α0 +(α1 + γ It−1)ε

2
t−1 +β1σ

2
t−1

where It−1 is the indicator function:

It−1 =

{
0 i f rt−1 ≥ µ

1 i f rt−1 < µ

E-GARCH

The Exponential-GARCH process, proposed by D. Nelson in 1991 (see [36]), is used to model the
leverage effect.The leverage effect explains an investor’s return in terms of its return on capital employed
and debt. It occurs when an asset’s return become more volatile as its price decreases.

The E-GARCH (p,q) models the return variance, σt , as follows:

ln(σ2
t ) = α0 +

q

∑
i=1

(
αi|

εt−i

σt−i
|+λi

εt−i

σt−i

)
+

p

∑
j=1

β j ln(σ2
t− j)

In contrast to the GARCH model, the E-GARCH model does not need any restrictions due to the
logarithmic transformation.

The parameters λi allow for the asymmetric effect. If λ1 = 0 then a positive surprise, εt > 0, has
the same effect on volatility as a negative surprise, εt < 0. The presence of leverage effect can be
investigated by testing the hypothesis that λ1 < 0 (see [5]).

APARCH

The APARCH model, proposed by Ding, Granger and Engle in 1993 (see [18]), can be seen as a
generalization of the GARCH model. GARCH models try to model the variance of returns and gives no
special treatment to positive or negative shocks. As in the E-GARCH models, the leverage effect, that
is, the asymmetric effect of negative shocks in the market should have an impact in the estimation of
sigmat .

Thus, the Asymmetric Power ARCH model (APARCH) is presented. This method tries to model
the δ -power of the standard deviation of returns of an asset. Therefore, the δ -power of σt is modelled
by the following expression:

σ
δ
t = α0 +

q

∑
i=1

αi (|εt−i|− γiεt−i)
δ +

p

∑
i=1

β jσ
δ
t− j

where γ determines the sign of the asymmetric effect.

Note 2.4. It should be notice that these models estimate the variance of returns. Therefore, in order to
find the corresponding VaR, using Equation (1.1), the VaR with confidence level 1−α and time horizon
h at time t is estimated as:

VaRt,α(h) = µ +D−1(α) ·σt+h|t
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where µ is the mean of the distribution, σt+h|t is estimated using the previous methods with information
until time t and D−1(α) is the α-quantile of the distribution (usually normal or t-student distribution).

In addition, as µ ∼ 0, it can be assumed that the return of the asset at time t is approximately
equivalent to εt .

2.4. ARMA-GARCH Models

Let {rt}t be a time series of asset returns. Generally, this type of series can be decomposed as
follows:

rt = µt + εt

εt |Ωt−1 ∼ D(0,σ2
t )

where µt = E[rt |Ωt−1] and ε2
t =Variance[rt |Ωt−1].

It has been seen that GARCH methods can be useful in order to model the heterocedasticity of the
series and to study the relationship between the variability of returns and their lags.

The class of AutoRegressive-Moving-Average (ARMA) models is the most broadly utilized method
for modelling the mean of the series of returns.

Definition 2.5 ([47]). A process {rt}t is called an ARMA(p,q) process if there exist real coefficients
c,φ1, . . . ,φp,θ1, . . . ,θq where P and Q are integers, such that

rt −
P

∑
i=1

φirt−i = c+ εt +
Q

∑
j=1

θ jεt− j ∀t ∈ Z

where εt is the white noise (0,σ2)

2.4.1. ARMA(p,q)-GARCH(r,s) model

The ARMA-GARCH model is a combination of both ARMA and GARCH model in which a linear
ARMAmodel is used for modelling the mean behaviour and a GARCH model is used for modelling the
variance of the residuals from the ARMA model.

Therefore, the general form of an ARMA(q,r)-GARCH(r,s) model is:

rt −∑
P
i=1 φirt−i = c+ εt +∑

Q
j=1 θ jεt− j

εt |Ωt−1 ∼ D(0,σ2
t )

σ2
t = α0 +∑

s
i=1 αiε

2
t−i +∑

r
j=1 β jσ

2
t− j

Under this model, both the conditional mean and variance variance of rt depend on the previous
time steps.

In practice, in order to choose the right ARMA orders, the Autocorrelation function (ACF) for the
AR order and the Partial Autocorrelation function (PACF) for the MA order should me analysed. They
show the significant correlations between lags in the series. Thus, P and Q should be chosen according
to the significant values of both functions.

In order to fit a series of returns, ARMA-GARCH models offer a wide range of options because,
as it has been seen in previous sections, there exist several types of GARCH models to fit the heteroce-
dasticity of the series and a good fit of ARMA models can ensure the stationarity of residuals.
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2.4.2. Estimation of VaR

As it has been seen in Note 2.4, the Value at Risk depends on the estimation of the mean and the
variance (or standard deviation) of the series of returns and on the corresponding distribution of the
residuals.

In the case of the ARMA-GARCH models, both the mean and the variance of the series vary with
time. Therefore, for a given time t , a time horizon h and confidence level 1−α , the Value at Risk is
given by:

VaRt,α(h) = µt+h|t +D−1(α) ·σt+h|t

where µt+h|t and σt+h|t are estimated by the ARMA-GARCH model given in Section (2.4.1) with
information until time t and D is the distribution function of the residuals of the series.

2.5. Extreme value models

In this section, a non-parametric method is presented: the approach based on Extreme Value theory.
Because of the definition of VaR, it is important to understand the behaviour of extreme events and

tail distributions. Assuming that losses are serially independent with common CDF, F , an Extreme
Value Theory (EVT) application can be made. A review on EVT is presented (see [38]) and the applic-
ation to VaR estimation is discussed in this section using two methods: the first of which is based on the
extreme value distributions of the Gumbel, Fréchet or Weibull distributions (GEV), while the second is
based on the generalized Pareto distribution (GPD) and the Peaks Over Threshold (POT) approach.

2.5.1. Block Maxima Method Characterization

Let r1, · · · ,rn be iid finantial returns and let

Rn,n = max(r1, · · · ,rn) (2.3)

Let F be the distribution function of r1, · · · ,rn. The distribution function of Rn,n can be calculated
exactly for all values of n using the independence of the random variables as follows:

℘(Rn,n ≤ x) =℘(r1 ≤ x, · · · ,rn ≤ x) =℘(r1 ≤ x)×·· ·×℘(rn ≤ x) = (F(x))n

Although this may seem useful, there is a problem when calculating this if the distribution function
F is unknown.

When F is estimated, it is clear that there can be little discrepancies due to the lack of data. In
this case, some calculations are needed to obtain an estimation of Fn, but as n increases to infinity, Rn,n

becomes degenerated to a point mass.
Extreme theory seeks norming constants (σn > 0) and (µn) and a nondegenerate G such that

℘

(
Rn,n−µn

σn
≤ x
)
−→ G (2.4)

where G is an extreme value distribution function and F is said to be in the domain of attraction of G.
This allows to study the behaviour of the normalized function, G, instead of Rn,n, which will be

useful in order to explain the general extreme value theory.

2.5.2. GEV distribution

The following theorem contains the most important result about extreme value distribution functions
(see [25]). Fisher and Tippett started the research in 1928, and later, Gnedenko formalized it in 1948. It
formalizes the limiting distribution of Equation (2.4).
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Theorem 2.6 (Fisher - Tippett - Gnedenko theorem). [16, Section 3.1.2] If there exist sequences of
constants (σn > 0) and (µn) such that

lim
n→∞

℘

(
Rn,n−µn

σn
≤ x
)
= G(x)

where G is a non-degenerate distribution function, then G belongs to one of the following families

I: G(x) = exp
(
−exp

(
−
( x−µ

σ

)))
, −∞ < x < ∞ (Gumbel distribution)

II: G(x) =

{
exp
(
−
(
1+ξ

( x−µ

σ

))−1/ξ
)

x >−1/ξ

0 otherwise
(Fréchet distribution)

III: G(x) =


exp
(
−
(
1+ξ

( x−µ

σ

))−1/ξ
)

x <−1/ξ

1 otherwise

(Weibull distribution)

for a scale parameter σ > 0, a location parameter µ and a shape parameter ξ .

This theorem shows that the only possible limiting distribution for G given Rn,n and sequences
(σn > 0) and (µn), is one of these three types. In some way, this theorem gives an extreme value
analogue of the central limit theorem, as G is the normalized distribution of Rn,n.

Notice that the three distribution can be written as a single Generalized Extreme Value Distribution
where the Fréchet family corresponds to ξ > 0, the Gumbel family with ξ = 0 and the Weibull family
with ξ < 0.

Therefore, the algebraic expression for the generalized distribution can be expressed as follows:

Gξ ,µ,σ (x) =


exp
(
−1+ξ

( x−µ

σ

))−1/ξ
ξ 6= 0 and (1+ξ (x−µ)/σ)> 0

exp
(
−exp

(
−
( x−µ

σ

)))
ξ = 0

Given n observations, the Value at Risk is calculated depending on the value of ξ as follows:

V̂aRα =


µn− σ̂n

ξ̂n

(
1− (−n ln(α))−ξ̂n

)
i f ξ̂n 6= 0

µ̂n− σ̂n ln(−n ln(α)) i f ξ̂n = 0

and the estimation of the parameters of the GEV models is obtained using maximum likelihood
estimation methods (see [38, Section 1.2.]).

In most situations, in order to obtain the VaR at certain time t for a given sample of historical returns,
the length of the window of data of returns with which the VaR is calculated is selected in such a way
that the length matches a year interval and n is the number of observations within that year period (width
of the window).

Note 2.7. It shall be noticed that the generalized extreme value model for Block Maxima (or minima)
can be approached in two ways: firstly, given the return level estimation, the return period can be
calculated, while in the second, the return level can be estimated for a given return period.

If a daily return period is chosen, the sample used to fit the GEV distribution’s values are the
maximum daily observation of the considered data frame. Other periods such as weeks, half months
or months can be considered. If weekly periods are chosen, each observation of the Block Maxima
is the maximum return of each week (5 working days). That is, given a length of block of returns,
b, each observation of the block maxima series is the maximum value of the returns within b days of
observations.
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The return level for a given distribution Gξ ,µ,σ of Block Maxima is defined as:

Rk
n = G−1

ξ ,µ,σ

(
1− 1

k

)
The return level Rk

n is explained as the value expected to be exceeded in one out of k periods of length
n. Therefore, this is a conservative measure of Value at Risk.

In practice, in order to obtain the Value at Risk for high confidence levels, the Block Maxima of the
minus returns is considered.

2.5.3. Peaks over thresholds

The method of peaks over threshold (POT) is based on the fact that excesses over a fixed value u
have a generalized Pareto distribution and the occurrence of these excesses is a Poisson process. As a
matter of fact, the GEV distribution for maxima can be obtained in terms of Poisson processes.

Let r1,r2, · · · be a sequence of independent returns with common marginal distribution function, F .
It can be intuitive to say that ri is an extreme event if it exceeds some fixed threshold, u (e.g. shock of
market or crisis). A theoretical description for this behaviour can be given by the following conditional
probability.

Definition 2.8 (Excess distribution function). Let X be a random variable with distribution function F.
For a fixed u,

Fu(x) =℘{X−u≤ x|X > u}, x≥ 0 (2.5)

is the excess distribution function of the random variable X over the threshold u.

Using this definition we have the following equality,

℘{X > u+ x|X > u}= 1−F(u+ x)
1−F(u)

= 1−Fu(x) (2.6)

If the distribution function F was known there would be no problem in calculating that probability and
obtaining a formula for the distribution. As this is usually not the case, under the same conditions where
the GEV distribution function can be used as an approximation to the distribution function for maxima
of long sequences, an explicit expression of (2.5) can be obtained by substituting the distribution given
in Theorem 2.6 for the distribution function for maxima, Fn,n.

The main Pareto distribution result is given in the following theorem.

Theorem 2.9 (Pickands (1975) [39], Balkema and de Haan (1974) [6]). Let r1,r2, · · · be a sequence of
returns with common distribution function F, and let

Rn,n = max{r1, · · · ,rn}.

Denote an arbitrary element in the sequence as R, and suppose that F satisfies Theorem 2.6. Then for
large enough u, the distribution function of (R−u), conditional on R > u, is approximately

Hξ ,σ (x) = 1−
(

1+
ξ x
σu

)−1/ξ

(2.7)

defined on {x : x > 0, (1+ξ x/σu > 0)} where σu = σ +ξ (u−µ).

This distribution is called the generalized Pareto distribution (GPD) where σu is the scale parameter
and ξ is the shape parameter.

Assuming that the distribution of excesses losses over the threshold u is a Generalised Pareto Dis-
tribution, let n be the total number of observations and Nu the number of excesses over the threshold u.
Using (2.6), the distribution of the returns can by given as follows:
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F(x) = [1−F(u)]Fu(x)+F(u) (2.8)

In order to construct a tail estimator from (2.8), the estimation of F(u) must be given. Thus, using
the empirical approximation to the estimation of F(u), (u−Nu)/u, the tail estimation is of the form:

F(x) = 1− Nu

n

[
1+

ξ̂

σ̂u
(x−u)

]−1/ξ̂

(2.9)

Given a probability α , the VaR with probability α (confidence level 1−α) can be obtained by
inverting the tail estimator given in Equation (2.9) as follows:

V̂aR(α) = u+
σ̂u

ξ̂

[ n
Nu

(1−α)

]−ξ̂

−1

 (2.10)

In a similar way, Expected shortfall is fitted for ξ < 1 using Equation (2.10) , obtaining (see [43]):

ÊSα =
1

1−α

∫ 1

α

V̂aR(x) dx =
V̂aR(α)

1− ξ̂

+
σ̂u− ξ̂ u

1− ξ̂

It shall be noticed that the choice of the threshold is essential in order to obtain the Value at Risk
for a given sample. In practice, for a given set of financial returns, the threshold is selected as the p-
quantile of the sample, where 1− p is the proportion of sample which the investor decides should not
be considered as extreme.

There are other techniques in order to choose the adequate threshold such as the analysis of the
linearity of the mean excess function. If the selected threshold is too high, there is a lack of data and the
fitted Pareto distribution is not adequate for the given sample. On the other hand, if the threshold is too
low, some excesses might not be real extreme values.

As for GEV distribution, in practice, the GP distribution is usually fitted to the minus series of
returns for high confidence levels. The Value at Risk in these cases is the -VaR obtained from the
obtained Pareto distribution.

In POT method, all the parameters of the excess distribution are fitted using Maximum Likelihood
Estimation and confidence intervals are calculated using profile likelihood (see [22] for more details).
Once the parameters are fitted, VaR can be calculated.

These methods are known as Unconditional Extreme Value Theory methods. Given the conditional
heteroscedasticity characteristic of most financial data, a new methodology to estimate the VaR can be
proposed. This method combines the Extreme Value Theory with volatility models and it is known as
the Conditional Extreme Value Theory.

The CEVT proposes GARCH models to estimate the current volatility and Extreme Value Theory
to estimate the distributions tails of the GARCH model shocks. Therefore, the VaR can be estimated
using Equation (1.1) knowing that, in this case, the errors of the series follows a Pareto distribution.
Therefore, VaR at time t with confidence level 1−α at a given time horizon t is given by:

VaRt,α(h) = µt+h|t +σt+h|t ·H−1
ξ ,σ (α)

where σ2
t+h|t is the variance of returns estimated by GARCH models and H−1

ξ ,σ
(α) is the α-quantile of

the Generalized Pareto Distribution calculated as in Equation (2.10).

2.6. Validation and testing

For a given sample of returns, r1, . . . ,rn, there exist different methodologies capable of evaluate the
accuracy of the methods exposed in this chapter.
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In order to check whether Value at Risk forecasts fulfil regulatory requirements (specified in the
Basel Accords) and are adequate and effective, this section presents a wide range of methods and tests
to select the best model for the given sample of returns (see [11]).

2.6.1. Performance tests

Several procedures based on statistical hypothesis testing have been proposed, and researchers usu-
ally select one or more tests to evaluate the accuracy of VaR models in order to compare them and select
the best model for every return series VaR forecast values. Thus, the standard tests about the accuracy
VaR models are presented down below.

In order to implement these tests, given a sample of returns r1, . . . ,rn and a confidence level 1−α ,
an indicator function must be defined as follows:

It =
{

1 i f rt <VaR(α)
0 i f rt ≥VaR(α)

(2.11)

Thus, it shall be noticed that It = 1 when the Value at Risk at time t with a certain probability α is
greater than the return at time t, that is, when the VaR prediction fails and the loss at time t is greater
than the estimated maximum loss with a given probability α .

Excess Ratio

The Excess Ratio (ER) can be described as:

ER =
∑t It

n
where n is the number of VaR forecasts and It is the indicator function described in Equation (2.11). One
can tell that if It = 1 for a certain value t, an exception is given. This means that the modelled VaRt,α

has been exceeded by the return of the asset at time t. Thus, the Excess Ratio represents the percentage
of model failure. In theory, the ER should be equal to the significance level α .

Traffic light test

The Basel Committee has created the traffic light test . This test is created based on the Excess
Ratio value. If the probability of an exception is assumed to be constant, the number of exceptions is
expressed as a random variable X =∑t It . This variable X follows a binomial distribution B(n,α), where
n is the number of observations (see [1]).

In this test, the measure of VaR forecast quality is made based on the attribution of lights assigned
on the basis exceeding the next threshold of ER. Thus, depending on the performance of the model, a
color (level) describes the model and measures whether the quality of the model is adequate, the model
needs supervision or the quality of the model is not good enough to be considered. The three lights are:

Green: No problems with the forecast quality. The model considered is valid.

Yellow: A supervision of the model shall be considered. The yellow zone begins at the point
where the cumulative binomial distribution is greater or equal to 0.95.

Let B(n,α) be the cumulative binomial distribution where n is the sample size and 1−α is the
VaR confidence level. The value, kY , at which the border between the green and yellow zone of
the Basel traffic light test begins is given by

kY = sup
x

℘(B(n,α)≤ x)< 0.95

Red: The model generated the VaR forecasts of bad quality. The red zone begins at the point, kR,
where the cumulative binomial distribution is greater or equal to 0.9999, that is,

kR = sup
x

℘(B(n,α)≤ x)< 0.9999
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Unconditional coverage

It is easy to see that an accurate VaR measure with probability α should produce an unconditional
coverage, that is,

α̂ =
∑t It

n
should be equal to α .

The Basel light test does not take into account the overestimation of the model, that is, the expected
proportion of excesses corresponds to the α level of the VaR but the traffic light test assumes that a
forecast with a lower proportion of exceedances is a good model.

Therefore Kupiec (see [33]) developed the unconditional coverage test, in which the deviation from
both sides of the assumed number of excesses is taking into account.

This tests measures the significant departure of α̂ from α . Kupiec showed that if the probability of
an exception is constant, then the number of exceptions follows a binomial distribution, B(n,α). The
test for the significance of the departure of α̂ from α is carried out using the z-statistic which follows
an asymptotic normal distribution:

Z =
nα̂−nα√
nα(1−α)

It asymptotically follows a N(0,1) distribution.
The test evaluates VaR forecasts by checking how a VaR forecast model performs over a period. It

prevents underestimation of VaR and not only ensures that a financial institution carries significantly
high capital, but it also reduces overestimation of VaR, which could lead to excessive conservatism.

The unconditional coverage test is justified with a null hypothesis, H0 : α̂ = α , and a likelihood ratio
statistic satisfying:

LRuc = 2
[
log(α̂x(1− α̂)N−x)− log(αx(1−α)N−x)

]
∼ χ

2(1) (2.12)

It shall be noticed that this test assumes that the exceptions are independent, which could be a false
statement in some cases.

Conditional coverage

Christoffersen and Pelletier (see [15]) proposed a new test in order to solve the posed problem that
unconditional coverage does not cover, that is, the assumption of independent exceptions. This new test
is the conditional coverage test.

Thus, the null hypothesis of this test is the hypothesis of the unconditional coverage test (H0 : α̂ =α)
and in addition, the independence of excesses of VaR forecasts.

Let Ni j the number of observations at state i that change to state j, where i, j ∈ {0,1}, where 0 means
not an exceedance and 1 means exceedance.

Therefore, probabilities of changes can be defined as

π01 =
N01

N00 +N01
; π11 =

N11

N10 +N11

where π01 is the probability of exceedance provided the lack of exceedance in the previous period
and π11 is the probability of exceedance provided the exceedance in the previous period.

It shall be noticed that Ni j can be expressed in terms of It as follows:

N00 =
n

∑
t=2

[It = 0|It−1 = 0] ; N01 =
n

∑
t=2

[It = 1|It−1 = 0]

N10 =
n

∑
t=2

[It = 0|It−1 = 1] ; N11 =
n

∑
t=2

[It = 1|It−1 = 1]
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The likelihood ratio statistic corresponds to:

LRcc = LRuc +LRind

and it is asymptotically distributed χ2(2).
The LRuc statistic is the same one as in Equation (2.12). The LRind is the likelihood ratio statistic

for the hypothesis of serial independence against first order Markov dependence. The idea behind the
alternative hypothesis is that clustered exceptions is a signal of risk model misspecification.

The LRind statistic is of the form

LRind = 2(logLA− logL0)∼ χ
2(1)

where
LA = (1−π01)

N00 π
N01
01 (1−π11)

N10 π
N11
11

and
L0 = (1−π)N00+N01π

N01+N11

Thus, the conditional coverage tests the null hypothesis about the independence of excesses, against
the alternative hypothesis the the excesses are characterised by the first order Markov chain.

Notice that the LRcc test only takes into account the first order autocorrelation of the sequence of
exceptions.

2.6.2. Evaluation via cost functions

In the Basel committees, supervisors shows their concern not only to the number of exceptions
exceeding an estimated VaR, but to the magnitude of these excesses.

Therefore, the loss functions examine a magnitude between the observed returns and the forecasted
VaRt,α for each time t. The basic loss function (BLF), l f , is of the form

l ft =
{

(rt −VaRt,α)
2 i f rt <VaRt,α

0 i f rt ≥VaRt,α

By using this loss function, the VaR measure is penalized with the square distance. Therefore, the
best model will be the one that has lower mean loss value, which is the mean of the penalty scores
(∑n

t=1 l ft/n).
The BF focuses on the penalty of excesses. A cost function is called a firm function if the cost of

no exceedances is taken into consideration in order to punish too high capital protection (contingency
plans). A cost fuction that is often used in these cases is the Caporin firm’s cost function. For each time
t, the function is described as:

FCt = |rt −VaRt,α | , ∀rt

The result of the function given a sample of n observations and their fitted VaR estimations is the
average Caporin cost function, FC = ∑

n
i=1 FCi/n.

Another statistical loss function is the one given by González-Rivera et al. (see [24]). For a given
probability value α , the loss function Q is the loss function used in quantile estimation and is given by:

Q =
1
n

t

∑(α−dα
t )(rt −VaRt,α)

where dα
t ≡ I (rt <VaRt,α). As Gonzalez-Rivera stress in the article, this is an asymmetric loss

function that penalizes more heavily with weight (1−α) the observations for which r−VaRα < 0 for
high confidence levels whereas the observations for which r−VaRα ≥ 0, are weighted by α . The best
model is the one that minimize the value of Q.

Therefore, for high confidence levels, the weight given to returns such that the Value at Risk predic-
tion is lower than the return (that is, there is no exceedance at that point) is less than the weight given



22 Chapter 2. VaR classical estimation and testing methods

to exceedances. Thus, the value of the loss function Q increases when more exceedances are produced.
However, if two models predictions of Value at Risk have the same number of exceedances, the best
model is the one for which the difference between the series of returns and the VaR predictions is lower,
that is, the VaR predictions fit better to the series of returns.

It should be noticed that the loss function Q is not differentiable due to the indicator function. In
empirical works, the prediction period should be smaller than the estimation period in order to obtain
reliable results of the test in the case that parameter estimations are involved in the decided used model.
In this case, the rolling method applied in the practical example, obtains predictions for one day using
data from a year. Thus, asymptotic trustworthy results are given.

In order to obtain a differentiable loss function, a smoothed loss function Q̃ can be described. In
this case, the indicator function, which causes the non differentiability, is replaced by a continuous
differentiable function. It is defined as follows:

Q̃ =
1
n

t

∑(α−mδ (rt ,VaRt,α)) · (rt −VaRt,α)

where mδ (a,b) = [1+ exp{δ (a−b)}]−1. The parameter δ controls the smoothness and a higher value
of δ makes Q̃ closer to Q. If δ > 10 the loss values of both functions are very similar. Different
considerations can be made in order to fit the best model by varying the value of δ .



Chapter 3

Quantile regression: a new approach to
asset pricing estimation

It is curious that the first trials in doing regression are so closely related to the notions of quantile
regression. The first publications about the least-square method is dated 1805, while Boscovich’s initial
work on regression, and the first approximation to quantile regression, was published in the XVIII
century. The object of interest was the study of the ellipticity of the earth.

Boscovich’s proposal to the problem was later named the ’method of situation’, and it is a bend of
mean and median ideas. In 1888, Edgeworth revived these ideas, which had been neglect for over a
century. He observed that if observations of a sample were discordant, the median could be superior
to the mean, that is, the median had smaller asymptotic variance than the mean. This approach started
to be developed considerably later, with the use of linear programming as an efficient computational
method.

Regression quantile methods went through an enormous development in the early 80s, with the first
results in Robust Statistics. The contributions of Huber and Hampel in Theory of Robustness in 1981
and 1986 respectively and, later, Koenker (see [30]) who is considered the author par excellence of
quantile regression theory and has been developing his theory from the 70s until the present, are still in
use nowadays.

3.1. Introduction to Quantile Regression

3.1.1. Definition of quantile

Let X be a random variable. The distribution function of X , F , can be defined as follows:

F(x) =℘(X ≤ x)

Definition 3.1 (Quantile). Let X be a random variable. For any 0 < τ < 1, the quantile of order τ, or
τth-quantile, which will be named as qτ, is the value that verifies:

℘(X ≤ qτ)≥ τ

and
℘(X ≥ qτ)≥ 1−τ

It should be mentioned that if X is a continuous random variable, then

℘(X ≤ qτ) =℘(X < qτ) = τ

Therefore, the quantile function of a random variable can be defined as the inverse of its distribution
function.

Depending on the nature of X , two cases can be distinguished:

23
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1. If the distribution function, F : R −→ (0,1), is continuous and strictly monotonous, the quantile
distribution, F−1, gives a value that satisfies:

℘(X ≤ x) = τ

2. If F is a discrete distribution function, the inverse function is not well defined and therefore it
shall be defined as follows:

Q(τ) = F−1(τ) = inf{x ∈ R|τ≤ F(x)}

3.1.2. The loss function

Given a random variable and its distribution function, F , the quantiles of the distribution can be
calculated as the solutions of an optimisation problem. For any 0 < τ < 1, the “loss function”, also
called the “check function”, is defined as:

ρτ(u) = u(τ− I(u < 0))

This function can be illustrated for a general value of q, obtaining:

Figure 3.1: Quantile Regression Loss function [30]

The problem focuses on finding a value, x̂, such that it minimizes the expected loss. Thus, the
function which shall be minimized with respect to x̂ is:

E [ ρτ (X− x̂) ] = (τ−1)
∫ x̂

−∞

(x− x̂ )dF(x)+τ

∫
∞

x̂
(x− x̂ )dF(x) (3.1)

In order to find the optimum, Equation (3.1) is derived with respect to x̂, obtaining:

0 = (1−τ)
∫ x̂

−∞

dF(x)−τ

∫
∞

x̂
dF(x) = F (x̂)−τ

Thus, any element of {x|F(x) = τ} minimizes the expected loss. The smallest element of this set
must be chosen as the solution of the optimisation problem.

3.1.3. Empirical quantiles

Let X be a random variable taking values {x1, . . . ,xn}. The empirical distribution function is of the
form:

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x)
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In this case, the quantiles can be found as solutions of optimisation problems as well. The optimum
value will be the value of x̂ for which the minimum of the expected loss is found:

∫
ρτ (x− x̂ )dFn(x) = n−1

n

∑
i=1

ρτ (xi− x̂ ) (3.2)

Thus, the quantile of order τ of the sample is found, an will be denoted by, cτ. Again, the optimisa-
tion problem may have multiple solutions, but there is no repercussion in practice.

3.2. Optimisation via Linear Programming

3.2.1. Regression quantiles

From the section above, it shall be noticed that the problem of finding the τth sample quantile has
been transformed into finding the solution to a simple optimisation problem.

Recalling Equation (3.2), the linear optimisation problem of searching for the sample quantiles is
given by the following objective function:

min
β∈R

n

∑
i=1

ρτ (Xi−β ) (3.3)

In order to obtain estimation for quantiles in a model from a sample, the linear regression quantile
shall be defined.

Definition 3.2. Let Y be the response variable of the problem depending on d covariables, X, for which
a sample {(X1,Y1) , . . . ,(Xn,Yn)} is known.

The regression quantile β̂τ of order τ is defined as:

β̂τ = min
β∈Rd

n

∑
i=1

ρτ

(
Yi−XT

i β
)

(3.4)

It should be notice that, in Definition 3.1, the quantile qτ was a number, that is, its dimension was
equal to one. In the quantile regression model described in Definition 3.2, the regression quantile, βτ, is
a vector with dimension d.

3.2.2. The linear programming problem

The quantile regression problem can be extended to a linear programming (LP) problem if 2n ar-
tificial variables, {ui,vi : i = 1, . . . ,n} are added to the problem. Koenker (see [30]) and Davino et al.
(see [17]) give wide explanations and details of all the necessary calculations of this problem. A brief
presentation is given in this section.

Let u = [Y − Xβ (τ)]+,v = [Xβ (τ)−Y ]+ the two vectors of artificial variables representing the
positive and negative parts of [Y − Xβ (τ)], where Y = (Y1, . . . ,Yn) and X = (X1, . . . ,Xn) and τ is a
generic conditional quantile. For simplicity of notation, β will be used to refer to β (τ)

The optimisation problem can be reformulated as follows:

min
β

{
1T

n u+1T
n v|Y = Xβ +u− v,{u,v} ∈ Rn

+

}
where 1n represents an n-vector of ones.
Furthermore, let

B = [X−X · I− I]
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and

ψ =


[β ]+
−[β ]−

u
v



s =


0n

0n

1n

1n


where [β ]+ is the vector for which each component i takes value βi if βi > 0 and 0 in other case, and

[β ]− = [β ]+−β .
The reformulation presents a standard LP problem:

min sT ψ

subject to Bψ = Y
ψ ≥ 0

The dual formulation of the problem is given by:

max Y T z
subject to BT z≤ s

which can be simplified as

max
z

{
Y T z|XT z = 0,z ∈ {−1,1}n}

In order to solve the problem and find the optimal solution, different methods can be applied. Some
of them are:

1. Simplex algorithm:

This method, proposed by Dantzig in 1947, is the most popular method for solving linear pro-
gramming problems. The simplex is based on iterations. In a linear programming problem, if the
optimal solution exists, the optimal vector occurs in one of the vertices of the feasible set. Thus,
the Simplex algorithm consists on movements along the edges of the feasible set until it finds the
optimal solution, that is, the solution associated with the minimum value of the objective function.

Although the Simplex algorithm is commonly used, it can not be very efficient for big optimisa-
tion problems.

2. Interior point method:

This iterative method consists on finding the optimal solution from the interior of the feasible
set. Introduced by Karmakar in 1984, it has been proved to be more efficient with respect to the
Simplex method, specially on very large problems.

3. Cutting plane method:

Let f be the general quantile regression function, f = ∑
n
i=1 ρτ(Yi− β T Xi). The cutting plane

method uses the subgradients of f so that the feasible set is cut by new planes (restrictions) and
the size of the feasible set is reduced until the optimum is found.

Let γ be the subgradient of f . The method constructs new points (solutions) β 1,β 2, . . . ,β k, . . . ,
where the solution of iteration k, β k+1, is the solution of the following optimisation problem:
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min z
subject to γ( f ,β 1)T β − z≤ γ( f ,β 1)T β 1− f (β 1)

γ( f ,β 2)T β − z≤ γ( f ,β 2)T β 2− f (β 2)
...
γ( f ,β k)T β − z≤ γ( f ,β k)T β k− f (β k)

It is usual to find the Simplex algorithm combined with the Cutting plane method. The search of
the solution is easier in this case than in the original Simplex because the feasible set becomes
smaller in each iteration of the cutting plane algorithm and therefore less iterations are needed in
the Simplex.

See [35] for more details.

4. Finite smoothing algorithm:

Numerical comparison shows that the finite smoothing algorithm significantly outperforms the
simplex algorithm in computing speed for relatively large datasets (n > 3000 or d > 50). For small
to moderate datasets, it is competitive. In addition, it is significantly faster than the interior point
algorithm when the design matrix in quantile regression has a large number of covariates.

The algorithm’s aim is to approximate the function ∑
n
i=1 |Yi−Xiβ | by a smooth function Dγ(β ),

which depends on a threshold γ , where

Dγ(β ) =
n

∑
i=1

Hγ(Yi−XT
i β )

and

Hγ(t) =
{

t2/(2γ) i f |t| ≤ γ

|t|− γ/2 i f |t|> γ

The difference between the function ρτ and its smooth function can be seen in Figure 3.2.

Figure 3.2: Objective functions Hγ,τ and ρτ

In this case, the general quantile regression, ∑
n
i=1 ρτ(Yi−XT

i β ), is approximated by the following
smooth function:

Dγ,τ(β ) =
n

∑
i=1

Hγ,τ(Yi−XT
i β )

where

Hγ,τ(t) =


t(τ−1)+ 1

2(τ−1)2γ i f t ≤ (τ−1)γ
t2

2γ
i f (τ−1)γ ≤ t ≤ τγ

tτ− 1
2τ

2γ i f t ≥ τγ

See [13] for more details.
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3.3. Robustness of QR

Saying that a method is “robust” (see [26]) means that it is insensible to outliers or to the omission
of model assumptions concerned to the data (sample).

It shall be noticed that under the Linear Regression Model (LRM), estimates can be sensitive to
outliers. In contrast, the Quantile Regression Model (QRM) estimates are not sensitive to outliers. This
robustness is due to the nature of the function that is minimized. If the value of the response variable for
a data point lying above (or below) the fitted quantile-regression line is modified, as long as that data
point remains above (or below) the line, the fitted quantile-regression line does not change. In other
words, if the values of the response variable are modified without changing the sign of the residual, the
fitted line remains the same. In this way, the influence of outliers is quite limited.

This behaviour seems logical as soon as the definition of sample quantile is remained. If the sign
does not change, the proportion of the sample above (or below) the fitted quantile does not change and
therefore, the quantile and the model do not change.

In addition, since the covariance matrix of the estimates is calculated under the normality assump-
tion, a violation of the normality assumption could be thought to cause inaccuracy in standard errors.
However, the QRM is robust to distributional assumptions because the estimator weighs the local beha-
viour of the distribution near the specific quantile more than the remote behaviour of the distribution.

3.4. Estimation and inference

There are numerous approaches to inference for quantile estimation in the literature. The ideal result
would be having a finite-sample estimation of parameters. The reality is that, in general, this result
cannot be found due to the amount of assumptions that shall be made and the exhausting computational
effort (see [30, Chapter 3]).

Therefore, asymptotic estimations are provided. An important issue which cannot be forgotten is:
even though some asymptotic results are found and explicitly calculated, do the results converge in some
appropriate sense?

Suppose that the τ-th conditional quantile function of Y given X = x takes the parametric form
QY (τ|X = x) = g(x,β ). As it has been seen in previous sections, the estimator of β , β̂n in the linear
quantile regression problem, is given by Equation (3.4). The question is: under what circumstances
does the estimator β̂n converge to β as n−→ ∞?

Estimations and rates of convergence are given in this section.

3.4.1. Linear Quantile Regression

Let Y1,Y2, . . . be independent random variables with distribution functions F1,F2, . . . and let the τth
conditional quantile function be

QYi(τ|X) = xT
β (τ)

Thus, the conditional quantile function is linear. Let Fi be the conditional distribution function of Yi and
let

QYi(τ|X) = F−1
i (τ|X) = ξi(τ)

In order to obtain results of asymptotic behaviour of convergence of β̂ , two Conditions shall be given:

Condition A1: The distribution functions {Fi} are absolutely continuous, with continuous densit-
ies fi(ξ ) uniformly bounded away from 0 and ∞ at the points ξi(τ).

Condition A2: There exist positive definite matrices D0 and D1(τ) such that

1. limn→∞ n−1
∑xi xT

i = D0.

2. limn→∞ n−1 fi(ξi(τ))∑xi xT
i = D1(τ).
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3. maxi=1,...,n||xi||/
√

n→ 0.

Theorem 3.3 ([30]). Under Conditions A1 and A2,

√
n
(

β̂τ−β

)
−→ N

(
0,τ(1−τ)D−1

1 D0 D−1
1

)
In the case of iid error model,

√
n
(

β̂τ−β

)
−→ N

(
0,ω2D−1

0

)
where ω2 = τ(1−τ)/ f 2

i (ξi(τ)).

3.4.2. Non-linear Quantile Regression

Linear quantile models are the usual choice for many applications and practical cases because of
the simplicity of the model (comparing to other QR models) and the knowledge in the field of linear
QR estimation, as it has been seen in Section 3.4.1. However, there is also a certain interest to offer the
analogous asymptotic approach in the case of non-linear quantile regression models.

The conditional quantile model with nonlinear parameters is expressed as:

QYi(τ|X) = g(X ,β )

where g is a nonlinear function. The nonlinear quantile regression estimator, β̂τ is given by

β̂τ = min
b∈B

n

∑
i=1

ρτ

(
Yi−g

(
XT

i ,b
))

where B ∈ Rp is compact. Condition A1 presented in the previous Section is maintained in order to
obtain asymptotic results, with ξi(τ) = g(Xi,β ). Other assumptions related to the function g shall be
made (see [30]):

Condition G1: There exist constants k0, k1 and n0 such that, for β1,β2 ∈ B and n > n0,

k0||β1−β2|| ≤

(
n−1

n

∑
i=1

(g(Xi,β1)−g(Xi,β2))
2

)1/2

≤ k1||β1−β2||.

Condition G2: There exist positive definite matrices D0 and D1(τ) such that, with ġi = ∂g(Xi, β̇ )/∂ β̇ |
β̇=β

,

1. limn→∞ n−1
∑ ġi ġT

i = D0.

2. limn→∞ n−1 fi(ξi) ∑ ġi ġT
i = D1(τ)

3. maxi=1,...,n||ġi||/
√

n−→ 0

Under these conditions, the estimator of β satisfies

√
n
(

β̂τ−β

)
−→ N

(
0,τ(1−τ)D−1

1 D0 D−1
1

)
As in the linear context, a uniform linear representation can be made, but, in contrast to the linear

quantile regression estimation, the computation of the process is considerably more tedious.
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3.4.3. Scalar Sparsity Estimation

The sparsity function can be defined as the reciprocal function of the density quantile function. That
is, given the density quantile function φ(τ) = f

(
F−1(τ)

)
, the sparsity function is given by

s(τ) =
1

f (F−1(τ))

In the case of iid error quantile regression models, the sparsity is analogous to the standard deviation
of the least square errors of the iid errors of a regression model. The precision of quantile estimates
should depend on the sparsity since it reflects the density of observations near the quantile of interest. If
the data is very sparse at the quantile of interest it will be difficult to estimate. On the other hand, when
the sparsity is low, so observations are very dense, the quantile will be more precisely estimated.

Since s(τ) = dF−1(τ)/dτ, it is natural to consider that a good an estimator of s(τ) can be a simple
difference quotients of an empirical quantile function:

ŝn(τ) =

[
F−1

n (τ+hn)−F−1
n (τ+hn)

]
2hn

The optimal hn which minimize the mean squared error of the expression above was obtained by E.
Bofinger (see [8]) and is of the form:

hn = n1/5
[

4.5s2(τ)

s′′(τ)

]1/5

Once hn is chosen, F−1
n can be estimated by the empirical quantile function of the residuals from

the quantile regression fit. Therefore,

F−1
n (t) = û(i) , t ∈ [(i−1)/n, i/n)

where ûi = yi− xT
i β̂ . Thus, for t ∈ [0,1], the function F is defined from the ordered regression quantile

estimations.

3.5. QR approach to VaR: CAViaR model

Engle and Manganelli (see [21]) proposed an approach to Value at Risk based on quantile estimation.
That is, instead of trying to model the entire distribution, they focused on modelling the quantiles of the
distribution.

Empirical results show that the distribution of the volatility of stock market returns is autocorrelated
over time. As VaR is closely related to the standard deviation of this distribution, it should experiment a
similar behaviour. Therefore, an autoregressive behaviour is expected. The Conditional Autoregressive
Value at Risk model (CAViaR) was developed under this premise.

3.5.1. The CAViaR method

Definition 3.4 (CAViaR process). Let {rt}T
t=1 be a vector of observed portfolio returns, let α be the

probability associated to VaR and xt a vector of observable variables at time t, which represents the
information set at time t. Let β be a vector of unknown parameters and let qt(β ,α) ≡ qt(xt−1,β )
denote the time t α-quantile of the distribution of portfolio returns formed at time t− 1. The generic
CAViaR specification is of the form:

qt(β ,α) = β0 +
s

∑
i=1

βiqt−i(β ,α)+
r+s+1

∑
j=s+1

β jl(xt− j) (3.5)

where p = s+ r+1 is the dimension of β (vector of β s to be estimated) and l is the function of a finite
number of rates of return (number of lagged values of observables, that is, the function connecting Value
at Risk with the data set).
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The second term of the expression, ∑
s
i=1 βiqt−i(β ), is autoregressive and enables smooth transition

of the quantile over time. Engle y Mananelli (2004) (see [21]) say that the first order is sufficient for
practical use.

It is true that the behaviour of the dependence of VaR on lagged returns could be thought as similar
for negative and positive returns. GARCH models suggest that if the return rt−1 reaches a very negative
value, the absolute value of VaR is expected to decrease in case another crash happens.

On the other hand, very positive returns could decrease this value as well. The reason is that if an
extreme positive return is given at time t, that is, the value of the asset suffers a significant increase, it
is highly probable that the value of the asset at time t +1 is lower than the value at time t. The reason
is that if the value of the asset at time t is higher than expected, the value at time t +1 does not usually
keep these high values. Therefore, the return at time t + 1 is negative as Pt+1−Tt < 0. In these cases,
the VaR decreases.

Engle and Manganelli propose different objective functions, l, giving various alternatives to the
CAViaR model:

1. Adaptative:

qt(β ) = qt−1(β )+β

{
[1+ exp(G(rt−1−qt−1(β )))]

−1−α

}
where G is a positive finite number. If G−→∞, then qt(β1) tends to the indicator function almost
surely.

2. Symmetric Absolute Value (SAV):

qt(β ) = β0 +β1qt−1(β )+β2|rt−1|

3. Asymmetric Slope (AS):

qt(β ) = β0 +β1qt−1(β )+β2(rt−1)
++β3(rt−1)

−

4. Indirect GARCH(1,1):

qt(β ) =
(
β0 +β1q2

t−1(β )+β2r2
t−1
)1/2

Notice that the SAV and the Indirect GARCH models do not distinguish the magnitude by which
the VaR is exceeded. Thus, when it is exceeded by a large value, VaR is simply increased by the same
amount in the same way as it would have been a small margin (see [12]) and they respond equally to
positive and negative returns. Plus, the Indirect GARCH model returns positive values only. Therefore,
in practice, for high confidence levels 1−α , the estimation of the minus series of returns is used to
calculate the 1−α Value at Risk, which is equivalent to −VaRα of the original series of returns.

In the case of the AS model, the positive and negative returns are treated separately and therefore,
the model allows the responds to positive and negative returns to be different.

The CAViaR method can be used when the error distributions are not independent and identically
distributed, or volatilities or error distributions change.

Note 3.5. It should be notice that once the definition of the CAViaR model is defined, the VaRt,α(h) is
given by the value −qt(xt−1,β ). This fact is trivial from the definition of VaR at certain time t and time
horizon h with probability α and the definition of the function q.

Therefore, Equation (3.5) can be also written as follows:

−VaRt,α(h) = β0 +
s

∑
i=1

βi · (−VaRt−i,α(h))+
r+s+1

∑
j=s+1

β jl(xt− j)
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3.5.2. Parameter estimation

The parameters of the CAViaR models are estimated by regression quantiles. Let xt be a vector of
regression quantiles of dimension p and consider the following system:

rt = x′tβ + εα,t , q(εα,t |xt) = 0 (3.6)

where q(εα,t |xt) is the α-quantile conditional function of εα,t given xt .
Now, let qt(β ) ≡ xtβ . The α-regression quantile is given by any solution β̂ of the following min-

imization problem:

min
β

1
n

n

∑
t=1

[α− I(rt < qt(β ))] [rt −qt(β )] (3.7)

Regression quantiles are estimated and solved using least absolute deviation models. These types of
models are consistent and more robust than least square methods, specially when a fat-tailed distribution
of errors is given.

Consider the model given in Equation (3.6). This model can be rewritten using qt as follows:

rt = f (rt−1,xt−1, . . . ,r1,x1;β )+ εα,t ≡ qt(β )+ εα,t t = 1, . . . ,n (3.8)

where q(εα,t |xt) = 0, as qt is a linear combination of rt−1,xt−1, . . . ,r1,x1 depending on the vector
of parameters β . Let β̂ be the estimator of β , that is, the parameter vector that minimizes the objective
function given in Equation (3.7). It can be shown that this estimator is consistent and asymptotically
normal. These results are explained in the following theorems.

Theorem 3.6. Let the model in Equation 3.8 be under the following assumptions ([21, Appendix A]):

1. (Ω,F,P) is a probability space in which the random vectors {εt,α ,xt}, t = 1, . . . ,n, are allocated.

2. The function qt is such that for each compact β ∈ B, qt(β ) is measurable and qt is continuous in
B, for the given information at time t, Ωt and t = 1, . . . ,n.

3. The conditional error εt,α given past information, Ωt , forms a stationary process with continuous
conditional density function ht(ε|Ωt).

4. There exists h > 0 such that ∀t,ht(0|Ω)≥ h.

5. There exists a stochastic function of variables that belong to the information set with upper-
bounded expectation, K(Ωt), such that |qt(β )|< K(Ωt)

6. The expectation of the absolute values of the errors at time t is finite for all t.

7. The function {[α− I(rt < qt(β ))][rt −qt(β )]} obeys the law of large numbers.

8. For every ξ > 0, there exists a τ > 0 such that if ||β ′−β || ≥ ξ then liminfn→∞ n−1
∑P[|qt(β

′)−
qt(β )|> τ]> 0

Then, β̂
p−→ β , where β̂ is the solution to the minimization problem given in Equation (3.7).

Theorem 3.7. Under asymptotical normality assumptions given in [21, Appendix A] and the conditions
in Theorem 3.6, √

nA−1/2
n Dn

(
β̂ −β

)
d−→ N(0, I)

where An and Dn are given as follows:

An ≡ E

[
n−1

α(1−α)
n

∑
t=1

∇
′qt(β )∇qt(β )

]
,
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Dn ≡ E

[
n−1

n

∑
t=1

ht(0|Ωt)∇
′qt(β )∇qt(β )

]
where ∇qt(β ) is the gradient of qt(β ).

The last estimator that shall be mentioned is the Variance-Covariance matrix estimator. This type
of estimations is very popular in literature (see [30]). Thus, the Variance-Covariance matrix can be
estimated using regression quantiles as follows.

Theorem 3.8. Let An and Dn be matrices as in Theorem 3.7 and let the conditions of Theorems 3.6 and
3.7 be satisfied. Under the following assumptions:

there exists two matrices Ân and D̂n such that Ân−An
p−→ 0 and D̂n−Dn

p−→ 0, where

Ân = n−1
α(1−α) ∇

′q(β̂ ) ∇q(β̂ )

D̂n = (2nĉn)
−1

n

∑
t=1

I
(
|rt −qt(β̂ )|< ĉn

)
∇
′qt(β̂ ) ∇qt(β̂ )

and ĉn satisfies:
ĉn

cn

p−→ 1 , cn = o(1) and c−1
n = o(n1/2)

The matrix ∇q(β̂ ) is a n× p matrix with typical row ∇qt(β̂ )

Other assumptions of the estimation problem can be found in [21].

3.5.3. A new test and validation method

The dynamic quantile (DQ) proposed by Engle and Manganelli in [21], is a test for the evaluation
of the alternative specifications and has better power properties than other existing tests.

Let
Hitt(β )≡ I(rt < qt(β ))−α

be the so called Hit function. It shall be noticed that this function takes a value (1−α) if the return of
the sample at time t is less than the quantile and −α otherwise. It is clear that both the expected value
and the conditional expectation of Hitt(β ) is 0 and the function is uncorrelated with its lagged values
and with qt(β ).

Therefore, a natural test in order to measure the goodness of fit of the model is to check whether
the test statistic n1/2X(β̂ ) Hit(β̂ ) is significally different from 0, where Xt(β̂ ), t = 1, . . . ,n, is the typical
row of X(β̂ ) and Hit(β̂ ) = (Hit1(β̂ ), . . . ,Hitn(β̂ ))′.

Let
Mn ≡ X ′(β )−E

[
n−1X ′(β ) H ∇q(β )

]
D−1

n × ∇
′q(β )

where H is the diagonal matrix with typical entry ht(0|Ωt) and ht is the function obtained as in Theorem
3.6. The two tests proposed by Engle and Manganelli are the in-sample Dynamic Quantile test and the
out-of-sample Dynamic Quantile test.

In this practical case, the in-sample DQ test is the useful case of study. The in-sample method is a
specification for CAViaR process under study and it can be found very useful for model selection. In
the case of the out-of-sample test, it can be used by external regulators of the model to check whether
the VaR estimates submitted are good enough and satisfy certain conditions.

Therefore, the in-sample method is the useful one in the later empirical study. Using assumptions
proposed in [21, Appendix A], the test holds.
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Theorem 3.9 (In-sample Dynamic Quantile test). Under assumptions of Theorem 3.6, Theorem 3.7 and
[21, Appendix A], the DQ satisfies:

DQ≡ Hit ′(β̂ )X(β̂ ) (M̂nM̂n
′
)−1 X ′(β̂ )Hit ′(β̂ )

α(1−α)
∼ χ

2
q as n−→ ∞

where

M̂n ≡ X ′(β )−

{
(2nĉn)

−1
n

∑
t=1

I
(
|rt −qt(β̂ )|< ĉn

)
× X ′t (β̂ )∇qt(β̂ )

}
D̂n∇

′q(β̂ )

Thus, the aim of this test is to check the occurrence of autocorrelation among the exceedances of the
VaR forecasts and also verify whether the number of exceedances agrees with the expectation (α-level).

The null hypothesis of the DQ test is that, all the coefficients of the following quantile regression

Hitt = β0 +
p

∑
i=1

βiHitt−i +
q

∑
j=1

µ jrt− j + εt ,

are zero, and the alternative hypothesis is that at least one of the coefficients is significantly different
from zero.

Theorem 3.10 (Out-of-sample Dynamic Quantile test). Let TR be the number of in-sample observations
and NR the number of out-of-sample observations. Under assumptions of Theorem 3.6, Theorem 3.7 and
[21, Appendix A], the DQ satisfies:

DQ≡
N−1

R Hit ′(β̂TR) X(β̂TR)
[
X ′(β̂TR) ·X(β̂TR)

]−1
×X ′(β̂TR) Hit ′(β̂TR)

α(1−α)
∼ χ

2
q as R−→ ∞

The principal advantage of the out-of-sample DQ test is that it does not depend on the estimation
procedure, that is, in order to implement it, the evaluation consists only on comparing the sequence of
the obtained VaR forecasts at echa time t and the corresponding values of the return at time t for each
VaR.



Chapter 4

Practical example: VaR estimation for
historical series of returns

This chapter will show a practical example of how to fit different methods, including quantile re-
gression models, to a data set in order to estimate the daily VaR for a range of dates. The data sets that
has been used are daily rates of returns calculated based on the formula:

rt =
Pt −Pt−1

Pt−1

Due to the desire of analysing VaR forecasting in the Spanish Market, three companies from the
IBEX35 has been selected. The data series can be found in [27]. Each of them belongs to a different
economic sector:

Banco Santander: it belongs to the Financial sector and it has been selected in this analysis
because the behaviour of its returns is very similar to the IBEX35 itself due its high weight of
15.48 in the IBEX35 calculation.

Endesa: it belongs to the sector of Energy and it has a weight of 1.57.

Indra: this company belongs to the consultancy sector and has a weight of 0.41.

The analysis of the Euro-Dollar exchange rate has also been made. As not all the models are
expected to work well on the considered series, different sorts of data are studied in order to see the
accuracy of the predictions of each model depending on the nature of the observations. The difference
of behaviour in terms of length, scale, mean and deviation of data are described in Table 4.1 and Table
4.2.

In line with the regulatory suggestions made by the Basel Committee, Value at Risk forecasts have
been calculated at a confidence level of 99% and one-day ahead forecast.

The data will be analysed using the system for statistical computation and graphics, R. The R lan-
guage (see [40]) is worldwide used by mathematicians for the development of statistical software and
data analysis. The complete R code used in this chapter can be found in Appendix A.

4.1. Rolling Window and Backtesting criterion

In order to obtain a Value at Risk forecast for a given series of returns in this practical example, the
Rolling Window method and the Backtesting Criterion are applied for every chosen model.

Basing on [37], the application of the back-testing criterion can be given by the following steps:

1. Get adjusted n closing price and returns of stock data for any company.

2. Proceed as follows (see Figure 4.1):

35
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Series Beginning End Observations

Banco Santander January 2, 1996 July 31, 2018 5672

Endesa January 2, 1996 July 31, 2018 5667

Indra March 24, 1999 July 31, 2018 4853

Euro-Dollar May 15, 1997 July 31, 2018 6186

Table 4.1: General data of the four analysed series

a) Calculate VaRα on the basis of w days data (width of the window of observations) for the
next day of the last window observation.

b) Compare VaRα with actual loss of the next day.

Figure 4.1: Value at Risk forecast method of Rolling Window

c) Repeat these two steps n−w times, each time with a new window shifted by 1 day forward.

d) Measure the accuracy of the model forecasts and predictions with the Performance Tests
and Cost functions and compare it to the rest of the models considered in the analysis.

4.2. Data and exploratory analysis

For each of the considered series, the sample length and detailed dates can be found in 4.1.
The difference between the number of estimations can be explained by business decisions of com-

panies and by the number of closing and opening days markets have, specially in the case of the Euro-
Dollar series. The Returns of the considered series can be seen in Figure 4.2.

Some properties of the analysed series are given as follows:
In light of this descriptive analysis of the series, it can be seen that the behaviour of data is different

in terms of skewness and kurtosis, which may have an effect in model estimations. For this reason,
series from several sectors of the IBEX35 have been selected and analysed.

It shall be noticed that Kurtosis and Skewness coefficients of the first three series are considerably
higher than expected. This could be happening because of the presence of outliers.

Different methods in order to detect outliers are commonly used. In this case, all the series have
been analysed using the Outliers R package [31]. The first step of the method consists of detecting the
value or values which are the farthest from the mean of the series. If a lot of outliers are detected, the
median is a more robust measure. After removing the outliers, normality tests are applied and QQ-plots
are analysed in order to check the normality of the values of the sample. This method works for large
series, which is the case in this practical examples. All the notorious outliers detected in the series are
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(a) Banco Santander (b) Endesa

(c) Indra (d) Euro-Dollar

Figure 4.2: Returns of the analysed series

found in the years corresponding to the financial crisis (2008). Thus, these values do not interfere in the
estimation of the VaR given in Section 4.3.

It shall be remarked that in the case of GARCH models, as the mean of all the series of returns
remain approximately constant and close to 0, for each considered window of the rolling method, the
mean of the series is assumed to be constant.

4.3. Estimation of VaR and Evaluation of predictions

The evaluation of models in order to estimate the VaR for each considered series is presented in this
section.

Both the 5% and the 1% VaR are calculated in the case of the Euro-Dollar Exchange Rate series.
Once all the models are fitted, results of performance tests and cost function values are given. In the
light of the Basel Accords, the 1% VaR is fitted in the case of the IBEX35 series.

The models presented in this analysis are Historical Simulation, Variance-Covariance with nor-
mal distribution assumptions, GARCH(1,1) with both normal and t-Student error distributions, GJR-
GARCH and APARCH with t-Student error distribution, Extreme Value functions (Pareto and GEV)
and the four CAViaR models presented in Section 3.5.1.

In order to compare the goodness of fit of the models, performance tests has been applied. Thus,
the p-value of the Unconditional Coverage (UC), Conditional Coverage (CC) and DQ tests have been
obtained.

A model is considered to be accurate to the series if one can accept the three respective null hypo-
thesis, that is, their p-values are greater than 0.05. However, there exist some exceptions to this fact. If
the Excess Ratio (ER) differs from the α level, the UC and CC fail the null hypothesis. Although the
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Banco Santander Endesa Indra Euro-Dollar

Mean 6.501 ·10−5 5.255 ·10−4 1.156 ·10−4 2.108 ·10−5

Standard Deviation 0.027 0.022 0.023 0.006

Skewness −10.448 11.427 −5.822 0.131

Kurtosis 330.805 601.974 172.510 9.809

Minimum −0.877 −0.480 −0.683 −0.074

Maximum 0.232 0.932 0.192 0.079

Jarque-Bera p-value < 2.2 ·10−16 < 2.2 ·10−16 < 2.2 ·10−16 < 2.2 ·10−16

Table 4.2: Summary of Descriptive Measures of the analysed series

α Basel Light Test Num. Observations

0.05

Green 0≤ Obs≤ 61

Yellow 62≤ Obs≤ 76

Red Obs≥ 77

0.01

Green 0≤ Obs≤ 14

Yellow 15≤ Obs≤ 23

Red Obs≥ 24

Table 4.3: Frontiers of the Basel Light Test for 1000 observations and α = 0.01 and α = 0.05

ER is not equal to α this can happen because the number of excesses is lower than expected. In this
cases, the model is considered a good fit.

The Basel Light Test (BSL) is also applied in this case. As 1000 out-of-sample observations are
taken for each series, the BLT values, Green, Yellow and Red, depend on the α level, the number of
out-of-sample observations and the number of excesses using a cumulative Binomial distribution. In the
case of the 1% and 5% levels and 1000 observations, the number of observations delimiting each Zone
is detailed in Table 4.3.

Final conclusions about the performance of the CAViaR model in comparison with the rest of the
considered models for each series of returns is given at the end of this Section.

4.3.1. Euro-Dollar Exchange Rate VaR

In order to obtain the estimation of the Value at Risk for the returns of the Euro-Dollar exchange
rate series, different models have been considered.

In Chapter 2, classical methods have been explained. In order to obtain estimations from them, the
window length, w, shall be given by a fixed number. This width of the window is actually the number
of returns considered in the VaR estimation.

The Rolling window method is used and therefore, for each estimation, a length of 500 observations
has been considered. It corresponds approximately to two years of observations.

The analysis of results should begin with Historical Simulation, Variance-Covariance method with
Normal distribution, GARCH models and Extreme Value distributions. In the case of GARCH models,
different parameters have been selected in order to fit the series of returns.

In practice, it is not necessary to consider p and q greater than 1, where p and q are the parameters
of a GARCH model. This happens because, in financial return series, correlations of order greater than
two do not contribute to the better explanation of the series and the complexity of models grows very
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fast (as more parameters need to be estimated). Therefore, p and q are usually considered to be equal to
1, and estimation methods give estimated values for the parameters. The values of the parameters can
be analysed during time in order to study the real influence of a lag in the series of returns (in case any
of the parameters’ estimation is close to zero during time).

(a) Historical method (b) EWMA model

(c) GARCH-T distribution (d) Pareto distribution

Figure 4.3: Euro-Dollar VaR estimations with several methods for α = 0.01 (blue) and α = 0.05 (red)

Thus, estimations of one day ahead VaR forecasts for the 1000 last days (four years) of the series of
returns are given and orders of the models (e.g. p and q from GARCH) are calculated with the rest of
the sample.

In Figure 4.3a, estimations of VaR using the Historical method are given for α = 0.01 (blue) and
α = 0.05 (red) for the last 1000 days. For each observation, the previous 500 days have been taken in
order to calculate the parameters of the model and the VaR has been obtained from the fitted model.

Once the ACF and the PACF several types of models are proposed: a heterocedastic (GARCH(1,1))
model, a model which takes asymmetry into account as well as heterocedasticity (APARCH (δ = 2)),
a GJR-GARCH(1,1) and an EWMA(λ = 0.94) model. Different types of distributions have also been
considered for the series of errors: normal and t-student distributions.

The estimation of VaR for the last 1000 observations for the EWMA model with normal distribution
of errors is given in Figure 4.3b and the VaR estimations for the GARCH(1,1) with t-Student distribution
of errors is given in Figure 4.3c.

In the same line, GEV and Pareto distributions can also be fitted to the series of returns (see Figure
4.3d). The parameters of the GEV distribution are calculated using MLE for each observation using the
previous 500 days of the series and block maxima has been applied. The GEV distribution has been
fitted with a length block equal to 5. Thus, parameters are fitted using ta series where each observation
is the minimum return within 5 days (one week).

In the case of the Pareto distribution, a threshold shall be chosen. Therefore, data under the 15%
- quantile is considered as the extreme events of the series of returns for each sample of the rolling
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window.
It should be noticed that this series of exchange rate presents high volatility. Therefore, evaluation

of VaR in these circumstances usually results as a counter-productive process.
Once all the classical methods are applied and VaR estimations are obtained, a similar process can

be done with CAViaR methods. Therefore, the Value at Risk at 1% and 5% of the last 1000 observa-
tions with a window of length 500 has been taken for the Adaptative, GARCH, Asymmetric Slope and
Symmetric Absolute Value methods have been used.

(a) Asymmetric Slope (b) Symmetric Absolute Value

(c) GARCH (d) Adaptative

Figure 4.4: Euro-Dollar VaR estimations with CAViaR methods for α = 0.01 (blue) and α = 0.05 (red)

In Figure 4.4, it can easily be seen that CAViaR methods do not remain stable in high volatility
scenarios.

Once all the models have been analysed, results of all the tests are presented in Table 4.4. For
each model and confidence level (95% and 99%), the number of excesses, Excess ratio, Basel light test
and Conditional and Unconditional coverage and DQ tests’ p-values have been calculated. A model is
considered to fit the series if the p-values of the three tests are greater than the significance level of 0.05.
Cost function results (QL, FC and Basic Loss function) are also illustrated in this Table.

It can easily be seen that in the case of the 95% confidence level models, all of them are in the Green
Zone of the Basel Light Test but it does not mean that all of them are good fits. In general, CAViaR
models accept the null hypothesis for the three tests presented in the Table (p-value greater than 0.05).
Comparing the four models, the CAViaR GARCH can be seen as the best of them, as its cost functions
values are lower than in the rest of the CAViaR models.

However, GARCH models also have a good behaviour in general and the number of excesses of the
GARCH-T and the GARCH-GJR-T make the UC and the CC tests fail the null hypothesis. That is, the
ER is not similar to the α level, that is, the number of excesses obtained in the forecasts is lower than
expected (the expected number of excesses for the α level and a number of forecasts, n, is α · n). In
fact, they are the lowest in each considered series. For this reason, the UC and the CC tests fails the
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Euro-Dollar Exchange Rate

Model α% E ER LT UC CC DQ QL FC BLF

Hist. sim.
5 60 0.060 Green 0.159 0.349 0.000 6.5 ·10−4 0.0090 1.597 ·10−6

1 17 0.017 Yellow 0.043 0.074 0.007 1.90 ·10−4 0.0136 2.937 ·10−7

Delta
5 59 0.059 Green 0.204 0.428 0.000 6.64 ·10−4 0.0091 1.653 ·10−6

1 27 0.027 Red 0.000 0.000 0.000 2.27 ·10−4 0.0125 5.969 ·10−7

EWMA
5 53 0.053 Green 0.666 0.709 0.205 6.178 ·10−4 0.0091 1.208 ·10−6

1 19 0.019 Yellow 0.011 0.027 0.009 1.880 ·10−4 0.0126 4.664 ·10−7

APARCH-T
5 30 0.030 Green 0.000 0.000 0.023 6.416 ·10−4 0.0111 6.945 ·10−7

1 8 0.008 Green 0.510 0.755 0.378 2.064 ·10−4 0.0185 1.504 ·10−7

GARCH-N
5 52 0.052 Green 0.773 0.395 0.435 6.170 ·10−4 0.0092 1.184 ·10−6

1 21 0.021 Yellow 0.002 0.006 0.000 1.915 ·10−4 0.0128 4.222 ·10−7

GARCH-T
5 29 0.029 Green 0.000 0.004 0.013 6.551 ·10−4 0.0113 6.874 ·10−7

1 7 0.007 Green 0.313 0.573 0.792 2.099 ·10−4 0.019 1.120 ·10−7

GARCH-GJR-T
5 25 0.025 Green 0.000 0.000 0.021 6.479 ·10−4 0.011 7.081 ·10−7

1 6 0.006 Green 0.170 0.376 0.813 2.078 ·10−4 0.019 1.461 ·10−7

GEV
5 57 0.057 Green 0.320 0.384 0.000 6.563 ·10−4 0.0093 1.485 ·10−6

1 14 0.014 Green 0.231 0.204 0.005 1.891 ·10−4 0.0153 1.770 ·10−7

Pareto
5 56 0.056 Green 0.393 0.691 0.001 6.478 ·10−4 0.0093 1.417 ·10−6

1 17 0.017 Yellow 0.043 0.074 0.001 1.931 ·10−4 0.014 2.841 ·10−7

CAViaR SAV
5 51 0.051 Green 0.885 0.491 0.302 6.222 ·10−4 0.0096 1.114 ·10−6

1 16 0.016 Yellow 0.079 0.166 0.006 1.924 ·10−4 0.014 3.200 ·10−7

CAViaR AS
5 54 0.054 Green 0.566 0.847 0.010 6.394 ·10−4 0.0093 1.431 ·10−6

1 16 0.016 Yellow 0.079 0.112 0.029 1.975 ·10−4 0.014 3.055 ·10−7

CAViaR GARCH
5 46 0.046 Green 0.557 0.566 0.807 6.144 ·10−4 0.0096 9.996 ·10−7

1 14 0.014 Green 0.139 0.266 0.276 1.877 ·10−4 0.014 2.940 ·10−7

CAViaR Adap.
5 60 0.060 Green 0.159 0.362 0.000 6.476 ·10−4 0.0092 1.404 ·10−6

1 21 0.021 Yellow 0.002 0.007 0.000 1.846 ·10−4 0.013 2.877 ·10−7

Table 4.4: Test Results of Euro-Dollar Exchange Rate series: Number of Excesses (E), Excess Ratio
(ER), Basel Light Test (LT), Kupiec (UC), Christoffersen (CC) and DQ p-values, Quantile Loss (QL),
Caporin (FC) and Basic Loss function (BLF) cost functions’ values
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Banco Santander series of Returns

Model E ER LT UC CC DQ QL FC BLF

Historical sim. 14 0.014 Green 0.231 0.399 0.000 8.659 ·10−4 0.048 3.473 ·10−5

Delta method 16 0.016 Yellow 0.079 0.166 0.000 8.819 ·10−4 0.047 3.598 ·10−5

EWMA 17 0.017 Yellow 0.043 0.096 0.005 8.081 ·10−4 0.045 2.981 ·10−5

APARCH-T 5 0.005 Green 0.079 0.208 0.861 8.464 ·10−4 0.062 2.178 ·10−5

GARCH-N 13 0.013 Green 0.362 0.556 0.186 7.987 ·10−4 0.046 2.978 ·10−5

GARCH-T 6 0.006 Green 0.170 0.376 0.929 8.484 ·10−4 0.063 1.910 ·10−5

GARCH-GJR-T 7 0.007 Green 0.314 0.573 0.022 8.637 ·10−4 0.064 2.120 ·10−5

GEV 10 0.01 Green 1.000 0.904 0.002 1.708 ·10−3 0.054 3.014 ·10−5

Pareto 10 0.01 Green 1.000 0.904 0.002 1.605 ·10−3 0.054 3.040 ·10−5

CAViaR SAV 20 0.02 Yellow 0.005 0.013 0.002 8.354 ·10−4 0.051 2.414 ·10−5

CAViaR AS 20 0.02 Yellow 0.005 0.004 0.000 8.969 ·10−4 0.059 1.753 ·10−5

CAViaR GARCH 19 0.019 Yellow 0.012 0.027 0.006 8.501 ·10−4 0.053 2.327 ·10−5

CAViaR Adap. 16 0.016 Yellow 0.079 0.166 0.000 8.354 ·10−4 0.047 3.020 ·10−5

Table 4.5: Test Results of Banco Santander series: Number of Excesses (E), Excess Ratio (ER), Basel
Light Test (LT), Kupiec (UC), Christoffersen (CC) and DQ p-values, Quantile Loss (QL), Caporin (FC)
and Basic Loss function (BLF) cost functions’ values

null hypothesis of ER equal to α because the null hypothesis of both tests include to check whether the
number of excesses is approximately equal to the expected number of excesses. Thus, all the cases of
rejecting the null hypothesis are due to an excess of conservatism, that is, as the number of excesses is
lower than expected, the VaR forecasts are lower than it should be if their fits to the series of returns
were adequate. Although this could lead to high values for the cost functions, the truth is that, for the
considered GARCH models with t-student distribution of innovations, the values of the considered cost
functions are average or low comparing to other analysed models. Therefore, GARCH models might be
seen as a better choice in general.

In the case of the 99% confidence level, not all the tests are in the green zone of the Basel Light
Test. GARCH models with t-Student error distribution behave well in general. They accept UC, CC
and DQ null hypothesis and are in the Green Zone of the BL Test and their BLF values are lower than
for the rest of the models. However, the values of the FC and QL are, in general, higher than in the rest
of the models. The lowest FC values are found in the CAViaR models.

Notice that the CAViaR GARCH model accepts all the null hypothesis and also, the QL function,
and the other two functions in general, take low values. Thus, as it has been seen in the graphics above,
series with high volatility are well explained with GARCH models, and CAViaR models might not be
stable (except for the CAViaR GARCH model, which explains volatility using Quantile Regression).

4.3.2. IBEX35 Series VaR

According to the Basel Committee regulations, the Value at Risk at the significance level of 1% has
been calculated for 1000 one-day-ahead out of sample last observations of the returns of series of the
IBEX35 closing values of Banco Santander, Endesa and Indra. The obtained results are shown in Tables
4.5 to 4.7.

In VaR forecasts analysis, the GARCH(1,1) model with normal distribution function is considered
the reference point and basic benchmark. In the case of Banco Santander and Indra, the GARCH-N
model is qualified to the green zone of the Basel Light Test but in the case of Endesa, the model is in
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Endesa series of Returns

Model E ER LT UC CC DQ QL FC BLF

Historical sim. 10 0.010 Green 1.000 0.904 0.802 9.090 ·10−4 0.036 1.996 ·10−4

Delta method 6 0.006 Green 0.170 0.376 0.859 9.365 ·10−4 0.045 2.014 ·10−4

EWMA 20 0.020 Yellow 0.005 0.014 0.010 9.852 ·10−4 0.036 2.034 ·10−4

APARCH-T 3 0.003 Green 0.009 0.033 0.662 9.773 ·10−4 0.054 1.738 ·10−4

GARCH-N 20 0.020 Yellow 0.005 0.014 0.018 9.428 ·10−4 0.033 2.006 ·10−4

GARCH-T 2 0.002 Green 0.002 0.008 0.489 9.811 ·10−4 0.054 1.837 ·10−4

GARCH-GJR-T 3 0.003 Green 0.009 0.033 0.657 1.002 ·10−3 0.055 1.853 ·10−4

GEV 7 0.007 Green 0.314 0.573 0.989 9.055 ·10−4 0.041 1.990 ·10−4

Pareto 6 0.006 Green 0.170 0.376 0.965 9.125 ·10−4 0.042 1.984 ·10−4

CAViaR SAV 10 0.01 Green 1.000 0.904 1.000 9.066 ·10−4 0.038 1.928 ·10−4

CAViaR AS 11 0.011 Green 0.754 0.842 0.221 9.167 ·10−4 0.037 1.977 ·10−4

CAViaR GARCH 10 0.01 Green 1.000 0.904 0.241 9.426 ·10−4 0.037 1.974 ·10−4

CAViaR Adap. 12 0.012 Green 0.5378 0.715 0.294 9.206 ·10−4 0.037 2.066 ·10−4

Table 4.6: Test Results of Endesa series: Number of Excesses (E), Excess Ratio (ER), Basel Light Test
(LT), Kupiec (UC), Christoffersen (CC) and DQ p-values, Quantile Loss (QL), Caporin (FC) and Basic
Loss function (BLF) cost functions’ values

Indra series of Returns

Model E ER LT UC CC DQ QL FC BLF

Historical sim. 11 0.011 Green 0.754 0.842 0.111 7.704 ·10−4 0.049 1.33 ·10−5

Delta method 12 0.012 Green 0.538 0.715 0.046 7.838 ·10−4 0.052 1.187 ·10−5

EWMA 16 0.016 Yellow 0.079 0.166 0.009 7.952 ·10−4 0.049 1.413 ·10−5

APARCH-T 4 0.004 Green 0.030 0.094 0.000 9.300 ·10−4 0.082 3.989 ·10−6

GARCH-N 13 0.013 Green 0.362 0.556 0.022 8.118 ·10−4 0.053 1.396 ·10−5

GARCH-T 5 0.005 Green 0.079 0.208 0.001 9.288 ·10−4 0.084 3.159 ·10−6

GARCH-GJR-T 5 0.005 Green 0.079 0.208 0.001 9.902 ·10−4 0.086 5.352 ·10−6

GEV 10 0.010 Green 1.000 0.904 0.081 7.788 ·10−4 0.053 1.178 ·10−5

Pareto 9 0.009 Green 0.746 0.875 0.0785 7.792 ·10−4 0.054 1.152 ·10−5

CAViaR SAV 13 0.013 Green 0.362 0.556 0.009 8.895 ·10−4 0.060 1.231 ·10−5

CAViaR AS 17 0.017 Yellow 0.043 0.096 0.000 9.151 ·10−4 0.054 1.758 ·10−5

CAViaR GARCH 13 0.013 Green 0.362 0.243 0.000 8.587 ·10−4 0.058 1.159 ·10−5

CAViaR Adap. 11 0.011 Green 0.754 0.842 0.227 7.812 ·10−4 0.050 1.488 ·10−5

Table 4.7: Test Results of Indra series: Number of Excesses (E), Excess Ratio (ER), Basel Light Test
(LT), Kupiec (UC), Christoffersen (CC) and DQ p-values, Quantile Loss (QL), Caporin (FC) and Basic
Loss function (BLF) cost functions’ values
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the yellow zone. The number of excesses in the three cases is higher than expected, although for Indra
and Santander, the UC, CC and DQ tests accept the null hypothesis of uncorrelation and independence
of excesses. However, the loss function values are, in general, higher than in the rest of the considered
models but institutions need to keep savings for contingency plans and this model overestimate non-
excesses. Thus, the GARCH-N model cannot be considered as a potential model for VaR estimation.

Historical simulation and Variance-Covariance (Delta) models are classic approaches to VaR estim-
ation. The use of historical simulation in the three series leads to a classification in the green BLT zone
for the three considered series. It shall be noticed that in the case of Santander, the number of excesses
is higher than expected. In fact, the DQ test fails the null hypothesis. Also, the values of the QL and
BLF functions are, in general, higher than in order considered models.

The Delta method leaves the estimations for the Banco Santander series in the BLT yellow zone
and the DQ test fails the null hypothesis. It should be remarked that in Endesa, the number of excesses
is lower than expected and, in this case, the behaviour of estimations could lead to a good estimator.
However, the values of the cost functions are higher than in the rest of the models, that is, this model
underestimates the VaR.Similar conclusions can be obtained from the Indra series of returns.

Apart from the GARCH-N model, other GARCH models have been considered. Comparing the
performance of the GARCH-N model and the rest of them, it can be observed that the choice of t-Student
error functions lead to better forecasts. In the case of the APARCH-T, GARCH-T and GARCH-GJR-T
models, the number of excesses obtained in the forecasts is lower than expected (the expected number
of excesses for the α level and a number of forecasts, n, is α · n). In fact, they are the lowest in
each considered series. For this reason, the UC and the CC tests fails the null hypothesis of ER equal
to 0.01 because the null hypothesis of both tests include to check whether the number of excesses is
approximately equal to the expected number of excesses. For this reason, the considered cost functions
have large values (in the scale of each series).

Both GEV and Pareto distributions are fitted to the three series in order to analyse the performance
of Extreme Value functions in order to predict Value at Risk. In the case of the GEV distribution, Block
Minima method has been applied. Thus, the observations used to fit the series where the minimum
returns within 5 days. In the three series, the number of excesses obtained adequate to the confidence
level and the UC, CC adn DQ p-values are greater than 0.05. Plus, cost functions’ values are, in general,
average values (there are models with higher values and also with lower values).

The Pareto distribution belongs to the green zone of the BLT and p-values of the UC, CC and DQ
are greater than 0.05 except the DQ test of the Santader return series. As well as in the case of the
GEV distribution, cost functions’ values are average, even lower than the average values. Therefore, the
proposed Extreme Value models are assumed to fit well to the proposed series.

Finally, the four CAViaR model approaches have been calculated. In the 4 models for the Santander
series and the the Asymmetric Slope CAViaR of the Indra series, the forecasts belong to the yellow
zone of the BLT. In general, the UC and CC tests accept the null hypothesis, which means that excesses
are uncorrelated and independent. In the case of the Santander series, due to the high volatility, these
models are not as stable as in the other two series (as in the Euro-Dollar series of returns).

It shall be noticed that the value of cost functions for the CAViaR model are low, in general. This
means that, although these models have a higher number of excesses than the rest of the considered
models, they adjust better to the series of returns. Thus, the difference between the value of the returns
and the value of the estimated VaR is lower in the CAViaR models. This can also be seen in the case of
Extreme Value models, in general.

4.3.3. Conclusions

Even though each model has its strengths and weaknesses, non-basic GARCH models with t-Student
distribution have shown their predictive power. However, the values of their cost functions are higher
than in other considered models. This is caused by the excessive persistence in the models which make
high volatility periods more conservative in their Value at Risk estimations. That is, the VaR is lower
than expected and the number of excesses is low. However, the values of the considered cost functions
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might not be very good comparing to the rest of the models, as the difference between the return and
the VaR estimation is large.

In the Historical and Variance-Covariance models, the results obtained in the performance tests are
good in the case of the UC and CC models. However, the DQ test fails in the majority of the series and
cases, that is, the observed excesses can be fitted to a quantile regression function.

Although the CAViaR model can be though as a well predictive model, this analysis has shown that
the number of excesses of the VaR forecasts exceeds the Excess Ratio and therefore, the number of
excesses is larger than expected. However, if the series does not present periods of changing volatility
(increasing or decreasing volatility), the CAViaR adjustment to the series leads to low values of the cost
functions, which is essential in terms of defining a contingency plan for an institution.

Models with high quality forecasts are Extreme Value models. Therefore, Quantile Regression
estimations of VaR via Extreme Value Theory (EVT) could lead to accurate fits with a small number
of excesses and with low loss function values, that is, a model combining the strength of both the EV
models and the CAViaR. This type of models is gaining reputation day by day (see [14]). Quantile
regression is an important tool for estimation of conditional quantiles of a response Y given a vector of
covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but
also in the upper and lower tails. This modelling set-up combines restrictions of extreme value theory
with leading homoscedastic and heteroscedastic linear specifications of regression analysis.





Appendix A

R Code

A.1. Data and exploratory analysis Code

#libraries

library(readxl)

library(lubridate)

library(MASS)

library(sn)

library(e1071)

library(tseries)

library(extRemes)

library(evir)

library(rugarch)

library(GAS)

library(data.table)

source("caviar.R") #From Buzczynsky and Chlebus

dataset <- read_excel("series_returns.xlsx")

#create returns

dataset$Return<-NA

for(i in 2:length(dataset$Ultimo)){

dataset$Return[i]<-(dataset$Ultimo[i]-dataset$Ultimo[i-1])/dataset$Ultimo[i-1]

}

#basic statistics

mean(dataset$Return)

sd(dataset$Return)

skewness(dataset$Return)

kurtosis(dataset$Return)

min(dataset$Return)

max(dataset$Return)

jarque.bera.test(dataset$Return)

#define window and confidence level

w=500

conf_level<-c(0.95,0.99)

A.2. Functions for Value at Risk Estimation Code

# HISTORICAL METHOD #

hist_method<-function(dataset,w,conf_level){

hist_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){
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serie<-dataset$Return[(i-w+1):i]

quant<-quantile(serie,1-conf_level)

hist_var<-rbind(hist_var,quant)

}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))

}

colnames(hist_var)<-vec

hist_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

return(hist_var)

}

#hist_var(dataset,500,c(0.9,0.95,0.99))

# VARIANCE-COVARIANCE METHOD #

delta_method<-function(dataset,w,conf_level,distribution){

if(distribution=="normal"){

delta_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){

serie<-dataset$Return[(i-w+1):i]

quant<-(-(mean(serie)+(qnorm(conf_level,0,1)*sd(serie))))

delta_var<-rbind(delta_var,quant)}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))

}

colnames(delta_var)<-vec

delta_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

}

else if(distribution=="t-student"){

delta_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){

serie<-dataset$Return[(i-w+1):i]

fit<-fitdistr(serie,"t")

quant<-

fit$estimate[["m"]]-fit$estimate[["s"]]*qt(conf_level,df=fit$estimate[["df"]])

delta_var<-rbind(delta_var,quant)

}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))}

colnames(delta_var)<-vec

delta_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

}

else{delta_var<-"Error: revise los datos introducidos"}

return(delta_var)

}

#delta_method(dataset,500,c(0.9,0.95,0.99),"normal")

#delta_method(dataset,500,c(0.9,0.95,0.99),"t-student")

# EWMA MODEL (normal) #

ewma_model<-function(dataset,w,conf_level,lambda){

sigma2<-vector()

for(i in (w+1):(length(dataset$Return))){

if(i==w+1){

sigma2<-c(sigma2,var(dataset$Return[(i-w):(i-1)])) #inicializar con una ventana

temporal
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} else{

sigma2<-c(sigma2,((1-lambda)*dataset$Return[i-1]^2) + (lambda*sigma2[i-w-1]))

}

}

ewma_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){

serie<-dataset$Return[(i-w+1):i]

quant<-(-mean(serie)-qnorm(conf_level,0,1)*sqrt(sigma2[i-w+1]))

ewma_var<-rbind(ewma_var,quant)

}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))}

colnames(ewma_var)<-vec

ewma_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

return(ewma_var)

}

#ewma_model(dataset,250,c(0.9,0.95,0.99),0.94)

# GEV DISTRIBUTION #

gev_model<-function(dataset,w,conf_level,len_block){

gev_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){

serie<-dataset$Return[(i-w+1):i]

gev_dist<-gev(-serie,block=len_block)

quant<-(-(gev_dist$par.ests[["mu"]]-(gev_dist$par.ests[["sigma"]]

/gev_dist$par.ests[["xi"]])*(1-(-len_block*log(conf_level))^

(-gev_dist$par.ests[["xi"]]))))

gev_var<-rbind(gev_var,quant)

}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))}

colnames(gev_var)<-vec

gev_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

return(gev_var)

}

#gev_model(dataset,250,c(0.9,0.95,0.99),1)

# PARETO DISTRIBUTION #

gpd_model<-function(dataset,w,conf_level,porcentaje){

gpd_var<-data.frame()

for(i in w:(length(dataset$Return)-1)){

serie<-dataset$Return[(i-w+1):i]

fit<-gpd(-serie,threshold = quantile(-serie,(porcentaje/100)))

quant<-(-riskmeasures(fit,conf_level)[,"quantile"])

gpd_var<-rbind(gpd_var,quant)

}

vec<-vector()

for (i in 1:length(conf_level)){

vec<-c(vec,paste(as.character(conf_level[i]*100),"% VaR",sep=""))}

colnames(gpd_var)<-vec

gpd_var$Fecha<-dataset$Fecha[(w+1):length(dataset$Fecha)]

return(gpd_var)

}

#gpd_model(dataset,250,c(0.9,0.95,0.99),85)
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A.3. Application of models Code

hist_series<-hist_method(dataset,500,c(0.99))

delta_series<-delta_method(dataset,500,c(0.99),"normal")

ewma_series<-ewma_model(dataset,500,c(0.99),0.94)

#GARCH MODEL para un valor fijo de garch p,q

library(rugarch)

garch_var<-data.frame()

p=1

q=1

#normal

# 1. APARCH-N

spec_aparch<-ugarchspec(variance.model =

list(model="fGARCH",submodel="APARCH",garchOrder=c(p,q)),mean.model=

list(armaOrder=c(0,0),include.mean=TRUE),distribution.model = "norm")

# 2. GARCH-N

spec_aparch<-ugarchspec(variance.model =

list(model="fGARCH",submodel="GARCH",garchOrder=c(p,q)),mean.model=

list(armaOrder=c(0,0),include.mean=TRUE),distribution.model = "norm")

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

fit<-ugarchfit(data=serie,spec = spec_aparch,out.sample = 0,solver="hybrid")

sigma<-as.numeric(sigma(ugarchforecast(fit,n.ahead = 1)))

quant<-(-mean(serie)-qnorm(conf_level,0,1)*sigma)

garch_var<-rbind(garch_var,quant)

}

#t-student

# 3. GARCH-T

spec_aparch<-ugarchspec(variance.model =

list(model="fGARCH",submodel="GARCH",garchOrder=c(p,q)),mean.model=

list(armaOrder=c(0,0),include.mean=TRUE),distribution.model = "std")

# 4. GARCH GJR T

spec_aparch<-ugarchspec(variance.model =

list(model="fGARCH",submodel="GJRGARCH",garchOrder=c(p,q)),mean.model=

list(armaOrder=c(0,0),include.mean=TRUE),distribution.model = "std")

# 5. APARCH-T

spec_aparch<-ugarchspec(variance.model =

list(model="fGARCH",submodel="APARCH",garchOrder=c(p,q)),mean.model=

list(armaOrder=c(0,0),include.mean=TRUE),distribution.model = "std")

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

fit<-ugarchfit(data=serie,spec = spec_aparch,out.sample = 0,solver="hybrid")

sigma<-as.numeric(sigma(ugarchforecast(fit,n.ahead = 1)))

fit<-fitdistr(serie,"t")

quant<-(-mean(serie)+qt((1-conf_level),df=fit$estimate[["df"]])*sigma)

garch_var<-rbind(garch_var,quant)

}

gev_series<-gev_model(dataset,500,conf_level,5)

par_series<-gpd_model(dataset,500,conf_level,85)
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# CAVIAR #

w=500

cav_sav_series<-vector()

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

modelo<-caviarOptim(serie,model=1,pval=0.01)

cav_sav_series<-rbind(cav_sav_series,(-1)*modelo$VarPredict)

}

cav_sav_99<-as.vector(cav_sav_series[601:1600,1])

cav_as_series<-vector()

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

modelo<-caviarOptim(serie,model=2,pval=0.01)

cav_as_series<-rbind(cav_as_series,(-1)*modelo$VarPredict)

}

cav_as_99<-as.vector(cav_as_series[601:1600,1])

cav_garch<-vector()

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

modelo<-caviarOptim(serie,model=3,pval=0.01)

cav_garch<-rbind(cav_garch,(-1)*modelo$VarPredict)

}

cav_garch_99<-as.vector(cav_garch[601:1600,1])

cav_adap<-vector()

for(i in (length(dataset$Return)-1600):(length(dataset$Return)-1)){

print(i)

serie<-dataset$Return[(i-w+1):i]

modelo<-caviarOptim(serie,model=4,pval=0.01)

cav_adap<-rbind(cav_adap,(-1)*modelo$VarPredict)

}

cav_adap_99<-as.vector(cav_adap[601:1600,1])

A.4. Backtest Code

VaR<-serie

alpha=0.01

BackTest = BacktestVaR(data, VaR, alpha)

vec<-vector()

for (i in 1:length(data)){

vec[i]<-ifelse(data[i]-VaR[i]<0,1,0)

}

#number of excesses

sum(vec)

#Excess Ratio

sum(vec)/length(data)

#Unconditional Coverage

BackTest$LRuc

#Conditional Coverage
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BackTest$LRcc

#DQ Test

BackTest$DQ

#QL Loss funcion

mean(BackTest$Loss$LossSeries)

#Caporin

vec<-vector()

for (i in 1:length(data)){

vec[i]<-ifelse(data[i]-VaR[i]<0,VaR[i]-data[i],data[i]-VaR[i])

}

sum(vec)/length(data)

#Basic Loss function

vec<-vector()

for (i in 1:length(data)){

vec[i]<-ifelse(data[i]-VaR[i]<0,(VaR[i]-data[i])^2,0)

}

sum(vec)/length(data)
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