Escuela Universitaria
Politécnica - La Almunia
Centro adscrito

Universidad Zaragoza

ESCUELA UNIVERSITARIA POLITECNICA
DE LA ALMUNIA DE DONA GODINA (ZARAGOZA)

=z

ANEXOS

Herramientas dinamicas para determinacion
de politica de inventario optima bajo distintas
distribuciones de demanda

Dynamic tools for deciding on the best
inventory policy under different demand
distributions

425.18.94

Autor: Adrian Calleja Visiedo
Director: Luis Mariano Esteban Escaio

Fecha: 28/11/2018

Escuela Universitaria

Centro adscrito
Universidad Zaragoza

=7

Politécnica- La Almunia Herramientas dindmicas para determinacién de politica de

inventario dptima bajo distintas distribuciones de demanda

INDICE DE CONTENIDO

ANEXO 1. (CODIGO PYTHON)

INDICES

1.1. DATOS DE ENTRADA

1.2. FILTRACION DE DATOS Y PRIMEROS CALCULOS

1.3. ANALISIS DE PARETO

1.4. PARAMETROS DE CONTROL

1.5. SIMULACION DEMANDA Y LEAD TIME

1.6. SIMULACION POLITICAS

1.7. COSTES DE LAS POLITICAS

1.8. REDUCCION DE INVERSION

Autor: Adrian Calleja Visiedo
425.18.94

O N U~ W W

Escuela Universitaria

Politécnica - La Almunia Herramientas dindmicas para determinacion de politica de
Centro adscrito

UniversidadZaragoza inventario optima bajo distintas distribuciones de demanda

(Cdédigo Python)

=

ANEXO 1. (C6D1GO PYTHON)

A continuacién, se adjunta el céodigo Python que emplea el programa disefiado en

Jupyter Notebook junto a alguna breve explicacion.

1.1. DATOS DE ENTRADA

Se comienza importando las librerias necesarias y cargando el archivo Excel con

los datos de entrada.

import pandas as pd

import numpy as np

import math

from scipy.stats import norm
import random

import matplotlib.pyplot as plt
from scipy import stats

file = pd.ExcelFile('C:/Users/AdrianCalleja/Datos.xlsx")
print(file.sheet_names)

['Ventas', 'MaestroProductos’', 'TablaDin']

1.2. FILTRACION DE DATOS Y PRIMEROS CALCULOS

Seguidamente, se procede a realizar el filtrado de datos de la demanda segun el

percentil 95.

dfl
dfl

= file.parse('Ventas"')
= dfl.round()

dfl_pivot = dfl.pivot(index = ‘idSecuencia’, columns = 'idProductoc’, walues = ‘udsDemanda')

dfl_pivot_perc
dfl_pivot_perc

= pd.DataFrames()
= dfl_pivot[:]

dfl_pivot_perc_sin_nan
dfl_pivot_perc_sin_nan

pd.DataFrame()
dfl_pivot_perc[:]

for x im range (@, len(dfl_pivot.columns}):
Datos_antes_percentiles = dfl_pivot.iloc[:, x]

Promedio_prueba = Datos_antes_percentiles.sum()/len(Datos_antes_percentiles[Datos_antes_percentiles > @])
Std_prueba = Datos_antes_percentiles[Datos_antes_percentiles > @].std()

maxl = Datos_antes_percentiles.max()

perc_inf
perc_sup

np.percentile(Datos_antes_percentiles, @)
np.percentile(Datos_antes_percentiles, 95)

Datos_despues_percentiles = Datos_antes_percentiles[(Datos_antes_percentiles »= perc_inf) & (Datos_antes_percentiles
<= perc_sup)]

max2 = Datos_despues_percentiles.max()

dfl_pivot_perc.iloc[:, x] = Datos_despues_percentiles

Promedio_prueba perc = (Datos_despues_percentiles.sum()/
len(Datos_despues_percentiles[Datos_despues_percentiles > @])).round()

Std_prueba_perc = Datos_despues_percentiles[Datos_despues_percentiles > @].std()

dfl_pivot_perc_sin_nan.iloc[:, x] = dfl_pivot_perc.ilec[:, x].fillna(Promedic_prueba_perc)[:]

Autor: Adrian Calleja Visiedo -1-
425.18.94

Escuela Universitaria
Politécnica - La Almunia
Centro adscrito

Universidad Zaragoza

Herramientas dinamicas para determinaciéon de politica de =

inventario éptima bajo distintas distribuciones de demanda

(Cédigo Python)

Después se realizan cdlculos basicos sobre la demanda.

GroupbyFechaArticulo = dfl_pivot_perc_sin_nan.stack(}[:]
GroupbyFechaArticulo.columns = ['idSecuencia’, 'idProducto’, 'udsDemanda’]

40 ArticulosHistorico = dfl[’idProducto’]

41 ArticulosHistorico = ArticulesHistorico.drop_duplicates()

42 ArticulosHistorico = ArticulesHistorico.sort_values()

43 ArticulosHistorico = ArticulesHistorico.reset index()

44 ArticulosHistorico = ArticulosHistorico.drop(['index’], axis=1)
45 ArticulosHistorico['ColumnaComun'] = 1

FechasHistorico = dfil['idSecuencia’]

4% FechasHistorico = FechasHistorico.drop_duplicates()

% FechasHistorico = FechasHistorico.sort_values()
FechasHistorico = FechasHistorico.reset_index()
FechasHistorico = FechasHistorico.drop(['index'], axis=1)
FechasHistorico['ColumnaComun’] = 1

W

HistoricoFechasArticulos = pd.merge(FechasHistorico, ArticulosHistorico, how = ‘outer', on = ‘ColumnaComun’)

HistoricoFechasArticulos = HistoricoFechasArticulos.drop(['ColumnaComun’], axis=1)

ReconstruccionPedidos = pd.merge(HistoricoFechasArticulos, GroupbyFechaArticulo.to_frame(), how = ‘left’,
on = ["idProducto’, 'idSecuencia’])

ReconstruccionPedidos = ReconstruccionPedidos.fillna(@)

ReconstruccionPedidos.columns = [‘'idSecuencia’, 'idProducto’, 'udsDemanda’]

b=l

SumDemandaTotalArticulo = ReconstruccionPedidos.groupby([idProducto’]).sum()
SumDemandaTotalArticulo = SumDemandaTotalArticulo.drop([idSecuencia’], axis=1)

CountDemandaTotalArticulo = ReconstruccionPedidos[ReconstruccionPedidos.udsDemanda > @].groupby([" idProducto’]).count()
CountDemandaTotalArticulo = CountDemandaTotalArticulo.drop(['idSecuencia’], axis=1)

DemandaMediaArticuloPorPedido = SumDemandaTotalArticulo/CountDemandaTotalArticulo

StdDemandaMediaArticuloPorPedido = ReconstruccionPedidos[ReconstruccionPedidos.udsDemanda >
71 @].groupby (["idProducto’]).std()
72 stdDemandaMediaArticuloPorPedido = StdDemandaMediaArticuloPorPedido.drop(['idSecuencia’], axis=1)

4 Tablal = pd.merge(SumDemandaTotalArticulo, CountDemandaTotalArticulo, how = ‘outer’, on = 'idProducto’)
75 Tablal.columns = ['Demanda_Total', 'M pedidos']

77 Tablal = pd.merge(Tablal, DemandaMediaArticuloPorPedido, how = ‘outer’, on = 'idProducto’)
78 Tablal.columns = ['Demanda_Total','N pedidos’, ‘Demanda Promedio']

Tablal = pd.merge(Tablal, StdDemandaMediaArticuloPorPedido, how = ‘outer', on = 'idProducto’)
Tablal.columns = ['Demanda_Total', 'N pedidos', 'Demanda Promedic’, 'Desv Demanda’]

df2 = file.parse('MaestroProductos’)
df2 = df2.groupby(['idProducto’]).sum()

Tabla2 = pd.merge(Tablal, df2, how = ‘outer’, on = "idProducto’)
Tabla2.columns = ['Demanda_Total', 'N_pedidos', 'Demanda_Promedic’, 'Desv_Demanda’,
‘Precio’, ‘Lt', 'dLt", 'Ce', 'Cm', 'Cs"]

Tabla2['Valor'] = Tabla2.Demanda_Total * Tabla2.Precio
ValorTotalProductos = Tabla2['Valor'].sum()

Tabla2['Valor_%'] = ((Tabla2.valor * 18@)/ValorTotalProductos)
Tabla2 = Tabla2.sort_values('Valor_¥', ascending=False)

-2- Autor: Adrian Calleja Visiedo
425.18.94

Escuela Universitaria

Politécnica - La Almunia Herramientas dinamicas para determinacién de politica de
Centro adscrito

UniversidadZaragoza inventario optima bajo distintas distribuciones de demanda

(Cdédigo Python)

1.3. ANALISIS DE PARETO

Y se realiza el analisis de Pareto junto con la asignacién del nivel de servicio.

i=e

valor = Tabla2['Valor %'].head(i).sum(i)
Limite_Rank_A = 3@

Limite Rank_B = 95

Limite_Rank_C = 1@@

while valor < Limite_Rank_C:

i=(i+1)
valor = Tabla2['Valor_%'].head(i).sum()
Rank_C = i
while valor < Limite_Rank_B:
i=(i+1)
valor = Tablaz['Valor_%'].head(i).sum()
Rank_B = 1
while valor < Limite Rank_A:
i=(i+1)
valor = Tabla2['Valor %'].head(i).sum()
Rank_A = i

Tabla2.reset_index(level=8, inplace=True)

Tabla2['Rank_ABC'] = @
Tabla2.loc[@:Rank_A, 'Rank_ABC"]

= 'A
Tabla2.loc[Rank_A:Rank_B, "Rank ABC'] = "B’
Tabla2.loc[Rank_B:Rank_C, "Rank ABC'] = °C°
Tabla2[‘N_Servicio'] = @
Tabla2.loc[@:Rank_A, 'N_Servicio'] = 99
Tabla2.loc[Rank_A:Rank_B, 'N_Servicio'] = 9@
Tabla2.loc[Rank_B:Rank_C, 'N_Servicio'] = 8@

1.4. PARAMETROS DE CONTROL

Ahora se pueden calcular los pardmetros que controlaran las diferentes politicas.

Tabla2['Phi'] = norm.ppf(Tabla2.N_Servicio/10@)
#Contar numero de entradas

N_fechas_distintas = int(len(set(dfl.idSecuencia)))
N_articulos_distintos = int{len(set(dfl.idProducto)))
Factor_Dias = Tabla2.N_pedidos/N_fechas_distintas

Tabla2['E0Q"]
Tablaz['E0Q"]

({2 * Tabla2.Demanda_Total * Tabla2.Ce) / (Tabla2.Cm))**(1/2)
Tabla2['E0Q"].apply(np.round)

Tablaz2['Pp']

(Tabla2.Demanda_Promedio*Factor_Dias) * Tabla2.Lt + (Tabla2.Phi * (Tabla2.Lt * (Tabla2.Desv_Demanda®**2) +
(((Tabla2.Demanda_Promedio*Factor_Dias)**2)*(Tabla2.dLt**2)))**(1/2))

Tabla2['Pp']

Tabla2['Tp']

Tabla2['Pp*].apply(np.round)
round (36@/((Tabla2.Demanda_Total * (Tabla2.N_pedidos/int(len(set(dfl.idSecuencia)))))/Tabla2.E0Q))

Tabla2['Stock_de_Ciclo'] (Tabla2.Demanda_Promedio*Factor_Dias) * (Tabla2.Lt + Tabla2.Tp)
Tabla2['Stock_de_Ciclo'] = Tabla2['Stock_de Ciclo'].apply(np.round)

Tabla2['Stock_de_Ciclo_prueba'] = (Tabla2.Demanda_Promedio*Factor_Dias) * (Tabla2.Lt)
Tabla2['Stock_de_Ciclo_prueba'] = Tabla2['Stock de_Cicle_prueba'].apply{np.round)

Tabla2['Stock_de_Seguridad'] = Tabla2.Phi * ((((Tabla2.Lt + Tabla2.Tp) * (Tabla2.Desv_Demanda™*2)+
(((Tabla2.Demanda_Promedic*Factor_Dias)**2)*(Tabla2.dLt**2))))**(1/2))

Tabla2['Stock_de_Seguridad’] = Tabla2['Stock_de_Seguridad'].apply(np.round)

Tabla2['StockObj '] = Tabla2.Stock_de_Ciclo + Tabla2.Stock de_Seguridad

Tabla2[*StockOl '] = Tabla2['StockObjetivo'].apply(np.round)

Tabla2['StockObj _prueba”] = Tabla2.Stock de_Ciclo_prueba + Tabla2.Stock de_Seguridad

Tabla2['StockObjetivo_prueba®] = Tabla2[*StockObjetivo_prueba'].apply(np.round)

Autor: Adrian Calleja Visiedo -3 -
425.18.94

Herramientas dinamicas para determinaciéon de politica de

inventario éptima bajo distintas distribuciones de demanda

(Cédigo Python)

Al

=

Escuela Universitaria
Politécnica - La Almunia
Centro adscrito

Universidad Zaragoza

Se preparan algunas tablas para registrar valores durante las simulaciones.

TablaIndice = pd.DataFrame(Tabla2.idProducto)
N_articulos_distintos = int(len(set(TablaIndice.idProducto)))

Tablalt = pd.DataFrame()

TablaDemanda_1
TablaDemanda_2
TablaDemanda_3
TablaDemanda_4

= pd.DataFrame()
= pd.DataFrame()
= pd.DataFrame()
= pd.DataFrame()
TablaStock 1
TablaStock 2
TablaStock 3
TablaStock 4

= pd.DataFrame(})
= pd.DataFrame(})
= pd.DataFrame(})
= pd.DataFrame(})
TablaReabast_1
TablaReabast_2
TablaReabast_3
TablaReabast_4

pd.DataFrame()
pd.DataFrame()
pd.DataFrame()
pd.DataFrame()

TablaRoturas_1
TablaRoturas_2
TablaRoturas_3
TablaRoturas_4

pd.DataFrame()
pd.DataFrame()
pd.DataFrame()
pd.DataFrame()

1.5. SIMULACION DEMANDA Y LEAD TIME

Y comienza la simulacion de la demanda y lead time.

Rango_fin_bucles = N_articulos _distintos - 1

#S5IMULAR DEMANDA y Lt
TablaDemandas = pd.DataFrame()
TablalLt = pd.DataFrame()

for x in range(@, Rango_fin_bucles):
print ("Simulacion del articulo ", x)
Articulo = TablaIndice['idProducto’][x]
mu = Tabla2["Demanda_Promedio'][x]
sigma = Tabla2['Desv_Demanda'][x]
Lt = Tabla2["Lt'][x]
dLt = Tabla2['dit'][x]
print ("Articulo: ", Articulo)

N_fechas_distintas = int{len(set(dfl.idSecuencia)))
Factor Dia = Tabla2['N_pedidos'][x]/N_fechas_distintas
print("El factor dia es: ", Factor_Dia)

contador_veces_demanda = @

lista_demanda = []
lista_ Lt = []

-4 - Autor: Adrian Calleja Visiedo

425.18.94

Escuela Universitaria

Politécnica - La Almunia Herramientas dinamicas para determinacién de politica de
Centro adscrito
UniversidadZaragoza inventario dptima bajo distintas distribuciones de demanda

(Cédigo Python)

for y in range(@, 36@):
random_number = random.random()

if Factor_Dia > random_number:
Simulacion_demanda = stats.expon.rvs(scale=mu, size=1)
Simulacion_demanda = Simulacion_demanda.round()
while Simulacion_demanda <= @:
Simulacion_demanda = (np.random.normal(mu, sigma, 1))
Simulacion_demanda = Simulacion_demanda.round()

lista_demanda.append(Simulacion_demanda)

else:
lista_demanda.append(@)

#Lead time
Simulacion_Lt = (np.random.normal{Lt, dLt, 1))
Simulacion_Lt = Simulacion_Lt.round()
while Simulacion_Lt <= @:
Simulacion_Lt = (np.random.normal(Lt, dLt, 1))
Simulacion_Lt = Simulacion_Lt.round()

lista_Lt.append(Simulacion_Lt)
TablaDemandas[Articulo] = lista_demanda
TablaLt[Articule] = lista_Lt

TablaDemandas = TablaDemandas.astype(int)
Tablalt = TablalLt.astype(int)

1.6. SIMULACION POLITICAS

A partir de aqui comienzan las simulaciones de las diferentes politicas,

comenzando por Stock Objetivo.

D0 STOCK OB

o
m
=~
=

Vi

[=

for x im range(®, Rango_fin_bucles):
print ("Simulacion del articulo ™, x)
Articulo = TablaIndice[idProducto’][i]
mu = Tabla2[‘Demanda_Promedic'][1]
sigma = Tabla2['Desv_Demanda'][1i]
Lt = Tabla2['Lt'][i]
diLt = Tabla2['dLt'][i]
print ("Articulo: ™, Articulo)
print ("mu es: ™, mu)
print ("sigma es: ™, sigma)
print ("el Lt es: ™, Lt)
print ("la dLt es: ", dLt)
Stock_objetive = Tabla2['StockObjetivo][i]
Stock_disponible = Stock objetivo
Stock_virtual = Stock_objetivo
print ("El stock objetivo es: ", Stock _objetivo)
N_fechas_distintas = int(len(set(dfl.idSecuencia)))
Factor Dia = Tabla2['N_pedidos'][i]/N_fechas_distintas
print("El factor dia es: ", Factor Dia)
contador_veces_demanda = @
contador_dias = @
Tp = Tabla2['Tp'][1i]
print{"El tiempo entre pedidos es: ", Tp)
Esperando_reabast = @

dia_emision_orden_reabast = @
Simulacion_Lt_dia pedido = @
272 orden_reabast_emitida = @
273 recepciones_pendientes = @

Autor: Adrian Calleja Visiedo -5-
425.18.94

Herramientas dindmicas para determinacion de politica de =

inventario éptima bajo distintas distribuciones de demanda

Escuela Universitaria
Politécnica - La Almunia
Centro adscrito

Universidad Zaragoza

[]
A

(Cédigo Python)

275 lista_stock
276 lista_reabas
2 lista 1t = [
lista_y = []
lista_recep = []
lista_reab = []
lista_dia_reab = []
lista_roturas_stock = []
lista_demanda = []

[1

-]
]

for y in range(@, 36@):
random_number = random.random()

Simulacion demanda = TablaDemandas[Articulo][y]
Simulacion Lt = TablalLt[Articulo][y]

if Simulacion_demanda > @:

lista_demanda.append(Simulacion_demanda)

Stock_disponible = (Stock_disponible - Simulacion_demanda)
Stock_virtual = Stock virtual - Simulacion_demanda
contador_veces_demanda = contador_veces_demanda + 1

if Esperando_reabast ==
for z in range (@,len(lista_dia reab) + 5)
if (len(lista dia_reab) > @):
Iz = @
while zz < len(lista dia_reab):
if (contador_dias == lista_dia reab[zz]):
Stock_disponible = Stock_disponible + lista_reab[@]

recepciones_pendientes = recepciones_pendientes - lista_reab[@]

if recepciones_pendientes ==
Esperando_reabast = @

lista_reab.pop(@)
lista_dia_reab.pop(@)

else:

zZz = zz + 1

-

orden_reabast_emitida = Stock objetivo - Stock_virtual
Stock_virtual = Stock virtual + orden_reabast_emitida

Esperando_reabast = 1

recepciones_pendientes = recepciones_pendientes + orden_reabast_emitida

dia_emision_orden_reabast = contador_dias

Simulacion_Lt_dia pedido = Simulacion_Lt

if (orden_reabast_emitida != @):
lista_reab.append(orden_reabast_emitida)

f (contador_dias % Tp == @ and Stock_disponible < Stock _objetivo and contador_dias != @):

lista_dia_reab.append(dia_emision_orden_reabast + Simulacion_Lt dia_pedido)

if Stock_disponible < @ and lista_stock[-1] < @:
if Stock_disponible < lista_stock[-1]:
lista_roturas_stock.append(Stock disponible - lista_stock[-1])
else:
lista_roturas_stock.append(@)
elif Stock disponible < @ and lista stock[-1] »= @:
lista_roturas_stock.append(Stock_disponible)
else:
lista_roturas_stock.append(@)

else:

lista_roturas_stock.append(@)
lista_demanda.append(@)

if Esperando_reabast ==
for z in range (@,len(lista_dia reab) + 5)
if (len(lista_dia_reab) > @):
Iz = @
while zz < len(lista_dia_reab):
if (contador_dias == lista_dia_reab[zz]):
Stock_disponible = Stock_disponible + lista_reab[@]

recepciones_pendientes = recepciones_pendientes - lista_reab[@]

if recepciones_pendientes == @:
Esperando_reabast = @

lista_reab.pop(@)
lista_dia_reab.pop(@)

else:

Autor: Adrian Calleja Visiedo

425.18.94

Escuela Universitaria

Politécnica - La Almunia Herramientas dindmicas para determinacion de politica de
Centro adscrito

UniversidadZaragoza inventario optima bajo distintas distribuciones de demanda

(Cdédigo Python)

orden_reabast_emitida = Stock_objetivo - Stock_virtual

Stock_virtual = Stock virtual + orden_reabast_emitida

Esperando_reabast = 1

recepciones_pendientes = recepciones_pendientes + orden_reabast_emitida

dia_emision_orden_reabast = contador_dias

Simulacion_Lt_dia pedido = Simulacion_Lt

if (orden_reabast_emitida != @):
lista_reab.append(orden_reabast_emitida)
lista_dia_reab.append(dia_emision_orden_reabast + Simulacion_Lt dia_pedido)

lista_stock.append(Stock_disponible)

if (contador_dias ¥ Tp == @ and Stock disponible < Stock_objetivo):
lista_reabast.append(orden_reabast_emitida)

else:
lista_reabast.append(@)

lista_lt.append(Simulacion_Lt)
lista_y.append(y)

contador_dias = contador_dias + 1
i=(i+1)
print ("i es:

» 1)

TablaStock 1[Articulo] = lista_stock
TablaReabast_1[Articulo] = lista_reabast
TablaRoturas_1[Articulo] = lista_roturas_stock
TablaDemanda_1[Articulo] = lista_demanda

El codigo es practicamente el mismo para el resto de politicas, solamente cambia
la cantidad y la condicion de reabastecimiento segun lo explicado en la memoria, por lo

que pasaremos directamente con los costes.

1.7. COSTES DE LAS POLITICAS

== TABLACOSTES 1
TablaDemanda_1 = TablaDemanda_1.astype(int)
TablaStock_1 = TablaStock_1.astype(int)
TablaReabast_1 = TablaReabast_1.astype(int)
Tablalt = TablalLt.astype(int)

TablaCostes_1 = pd.DataFrame()

Tabla2.set_index('idProducto’, inplace = True)
TablaCostes_1['Media_stock'] = TablaStock_1.mean()

TablaCostes_1 = TablaCostes_1.astype(int)

TablaCostes_1['Cm'] = Tabla2.Cm

TablaCostes_1['Cm_Total'] = TablaCostes_1.Media stock * TablaCostes_1.Cm
CountReabastArticulo = TablaReabast 1[TablaReabast_1 > @].count()
TablaCostes_1['N_reabast’'] = CountReabastArticulo

TablaCostes_1['Ce’] = Tabla2.Ce

TablaCostes_1['Ce_Total'] = TablaCostes_1.N_reabast * TablaCostes_1.Ce

TablaRoturas_1 = TablaRoturas_1.astype(int)
CountStockNegativo? = TablaRoturas_1[TablaRoturas_1 < @].count()
SumStockNegative2 = TablaRoturas_1[TablaRoturas_1 < @].sum()

TablaCostes_1['Roturas_stock u'] = (SumStockNegativo2) * (-1)

TablaCostes_1['Cs'] = Tabla2.Cs

TablaCostes_1['Cs_Total'] = TablaCostes_l.Roturas_stock u * TablaCostes_1.Cs
TablaCostes_1['Suma_Coste_Total'] = TablaCostes_1.Cm_Total + TablaCostes 1.Ce_Total + TablaCostes_1.Cs_Total
TablaCostes_1['Precio’'] = Tabla2.Precio

TablaCostes_1['Inversion_stock media'] = TablaCostes_1.Media_stock * TablaCostes_1.Precio

TablaCostes_1 = TablaCostes_1.round(2)

CosteEmisionInventario = TablaCostes_1['Ce Total'].sum()
CosteMantenimientoInventario = TablaCostes_1['Cm Total®].sum()
CosteRupturasInventario = TablaCostes_1['Cs_Total'].sum()

CosteTotalInventario = TablaCostes_1['Suma_Coste_Total®].sum()
InversionInventario = TablaCostes_1['Inversicn_stock media'].sum()

Para las tablas de costes 2, 3 y 4 el procedimiento es exactamente el mismo.

Autor: Adrian Calleja Visiedo -7 -
425.18.94

Herramientas dinamicas para determinaciéon de politica de =

inventario dptima bajo distintas distribuciones de demanda

Escuela Universitaria
Politécnica - La Almunia
Centro adscrito

Universidad Zaragoza

(Cédigo Python)

A continuacidn, se calcula “TablaCostes_Minimos”.

1 lista_indices = []
2 lista_indices = TablaCostes_1.index

4 TablaCostes_Minimos = pd.DataFrame()

TablaCostes_Minimos = TablaCostes_1.copy()
TablaCostes_Minimos['Politica_Ganadora'] = 'Temporal®

9 x=8
1@ for x in range(@, Rango_fin_bucles):
11 | #TablaCostes_1
if (TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]] < TablaCostes_1['Suma_Coste_Total'][lista_indices[x]]):
13 TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_Minimos[TablaCostes_Minimos.index ==
] lista indices[x]]

TablaCostes_Minimos[‘Pelitica_Ganadora'][lista_indices[x]] = 'Politica_1°
6 else:
17 TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_l[TablaCostes_1.index ==
13 lista_indices[x]]
TablaCostes_Minimos[‘Pelitica_Ganadora'][lista_indices[x]] = 'Politica_1°

21 #TablaCostes 2
if (TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]] < TablaCostes_2['Suma_Coste_Total'][lista_indices[x]]):
TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_Minimos[TablaCostes_Minimos.index ==
lista indices[x]]

else:

26 TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_2[TablaCostes 2.index ==
2 lista_indices[x]]

28 TablaCostes_Minimos[‘Pelitica_Ganadora'][lista_indices[x]] = 'Peolitica_2°

#TablaCostes_3

if (TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]] < TablaCostes_3["Suma_Coste_Total'][lista_indices[x]]):

TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_Minimos[TablaCostes_Minimos.index ==
lista_indices[x]]

else:

TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_3[TablaCostes_3.index ==
lista_indices[x]]

TablaCostes_Minimos['Politica_Ganadora'][lista_indices[x]] = ‘Politica 3°

9 #TablaCostes 4

40 if (TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]] < TablaCostes_4["Suma_Coste_Total'][lista_indices[x]]):

41 TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_Minimos[TablaCostes_Minimos.index ==
42 lista_indices[x]]

43 else:

4L TablaCostes_Minimos[TablaCostes_Minimos.index == lista_indices[x]] = TablaCostes_4[TablaCostes_4.index ==

45 lista_indices[x]]

45 TablaCostes_Minimos['Politica_Ganadora'][lista_indices[x]] = ‘Politica 4°

43 TablaCostes_Minimos

Autor: Adrian Calleja Visiedo
425.18.94

Escuela Universitaria

Politécnica - La Almunia Herramientas dinamicas para determinacién de politica de
Centro adscrito

UniversidadZaragoza inventario optima bajo distintas distribuciones de demanda

(Cdodigo Python)

1.8. REDUCCION DE INVERSION

Y el ahorro en inversion que supone cada politica respecto a la actual.

1 TablaCostes_1['Sobrecoste’] = ‘Temporal®

2 TablaCostes_2['Sobrecoste’] = 'Temporal®

3 TablaCostes_3['Sobrecoste’] = 'Temporal®

4 TablaCostes_4['Scbrecoste’'] = 'Temporal®

5 | TablaCostes_1[‘Ahorro_en_inversion'] = 'Temporal'
TablaCostes_2['Ahorro_en_inversion'] = ‘Temporal®

5 TablaCostes_3['Ahorro_en_inversion'] = ‘Temporal®

9 TablaCostes_4['Ahorro_en_inversion'] = ‘Temporal®

11 x =8

12 for x in range(@, Rango_fin_bucles):

13 #TablaCostes 1

Sobrecoste = TablaCostes_1['Suma_Coste_Total'][lista_indices[x]] -
TablaCostes_Minimos['Suma_Coste Total'][lista_indices[x]]

16 Ahorro_en_inversion = TablaCostes_Minimos['Inversion_stock media®][lista_indices[x]] -

17 TablaCostes_1['Inversion_stock media'][lista_indices[x]]

19 TablaCostes_1['Sobrecoste’]J[lista_indices[x]] = Sobrecoste
2e TablaCostes_1['Ahorro_en_inversion'][lista_indices[x]] = Ahorro_en_inversion

22 | #TablaCostes 2

23 Sobrecoste = TablaCostes_2['Suma_Coste_Total'][lista_indices[x]] -
TablaCostes_Minimos['Suma_Coste Total'][lista_indices[x]]

Ahorro_en_inversion = TablaCostes_Minimos['Inversion_stock media®][lista_indices[x]] -

26 TablaCostes_2['Inversion_stock media'][lista_indices[x]]

28 TablaCostes_2['Sobrecoste’][lista_indices[x]] = Sobrecoste
29 TablaCostes_2['Ahorro_en_inversion'][lista_indices[x]] = Ahorro_en_inversion

#TablaCostes 3
Sobrecoste = TablaCostes_3['Suma_Coste_Total'][lista_indices[x]] -
TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]]
Ahorro_en_inversion = TablaCostes_Minimos['Inversion_stock_media'][lista_indices[x]] -
TablaCostes_3["Inversion_stock media'][lista_indices[x]]

TablaCostes_3['Sobrecoste’][lista_indices[x]] = Sobrecoste
TablaCostes_3['Ahorro_en_inversion®][lista_indices[x]] = Ahorro_en_inversion

40 #TablaCostes 4

41 Sobrecoste = TablaCostes_4['Suma_Coste_Total'][lista_indices[x]] -

42 TablaCostes_Minimos['Suma_Coste_Total'][lista_indices[x]]

43 Ahorro_en_inversion = TablaCostes_Minimos['Inversion_stock media®][lista_indices[x]] -
4L TablaCostes_4["Inversion_stock media'][lista_indices[x]]

45 TablaCostes_4['Sobrecoste’][lista_indices[x]] = Sobrecoste
4 TablaCostes_4['Ahorro_en_inversion®][lista_indices[x]] = Ahorro_en_inversion

Autor: Adrian Calleja Visiedo -9 -
425.18.94

Escuela Universitaria

Herramientas dinamicas para determinacion de politica de gd A8 Politécnica-La Aimunia
. . . . L . . . Centro adscrito
inventario optima bajo distintas distribuciones de demanda == Universidad Zaragoza

(Cédigo Python)
Para después obtener los ratios.

TablaCostes_1['Ratio_Ahorro_en_inversion_Sobrecoste'] = TablaCostes_1[‘Ahorro_en_inversion'] / TablaCostes 1['Scbrecoste’]
TablaCostes_2['Ratio_Ahorro_en_inversion_Sobrecoste'] = TablaCostes_2[‘Ahorro_en_inversion'] / TablaCostes 2['Scbrecoste’]
TablaCostes_3["Ratio_Ahorro_en_inversion_Sobrecoste'] = TablaCostes_3['Ahorro_en_inversion'] / TablaCostes_3['Sobrecoste’]
TablaCostes_4['Ratio_Ahorro_en_inversion_Sobrecoste'] = TablaCostes_4[Ahorro_en_inversion'] / TablaCostes 4['Scbrecoste’]

Iy

oo s

TablaCostes_Minimos['Ratio_Ahorro_en_inversion_Mayor'] = @.8@
TablaCostes_Minimos['Politica_Ratio Mayor®'] = 'Actual’

9 x=@
12 for x in range (@, Rango_fin_bucles):
11 #TablaCostes 1

12 if (TablaCostes_Minimos['Ratic_aAhorro_en_inversion_Mayor'][lista_indices[x]] <

13 TablaCostes_1['Ratioc_Ahorro_en_inversion_Scbrecoste'][lista_indices[x]]):
14 TablaCostes_Minimos['Ratic_Ahorro_en_inversion_Mayor'][lista_indices[x]] =

5 TablaCostes_1['Ratio_Ahorro_en_inversion_Socbrecoste'][lista_indices[x]]
16 TablaCostes_Minimos['Politica_Ratio_Mayor'][lista_indices[x]] = 'Politica_1°

17 else:

13 pass

19

28 #TablaCostes 2
21 if (TablaCostes_Minimos['Ratic_aAhorro_en_inversion_Mayor'][lista_indices[x]] <
TablaCostes_2['Ratioc_Ahorro_en_inversion_Scbrecoste'][lista_indices[x]]):
TablaCostes_Minimos['Ratic_Ahorro_en_inversion_Mayor'][lista_indices[x]] =
TablaCostes_2['Ratio_Ahorro_en_inversion_Sobrecoste'][lista_indices[x]]
TablaCostes_Minimos[Politica_Ratio_Mayor'][lista_indices[x]] = ‘Politica_2°
else:
27 pass

#TablaCostes 3
if (TablaCostes_Minimos['Ratic_aAhorro_en_inversion_Mayor'][lista_indices[x]] <
TablaCostes_3['Ratioc_Ahorro_en_inversion_Scbrecoste'][lista_indices[x]]):
TablaCostes_Minimos['Ratic_Ahorro_en_inversion_Mayor'][lista_indices[x]] =
TablaCostes_3['Ratio_Ahorro_en_inversion_Socbrecoste'][lista_indices[x]]
TablaCostes_Minimos['Politica_Ratio_Mayor'][lista_indices[x]] = 'Politica_3'
else:
pass

#TablaCostes 4
if (TablaCostes_Minimos['Ratic_aAhorro_en_inversion_Mayor'][lista_indices[x]] <
2 TablaCostes_4['Ratioc_Ahorro_en_inversion_Scbrecoste'][lista_indices[x]]):
41 TablaCostes_Minimos['Ratic_Ahorro_en_inversion_Mayor'][lista_indices[x]] =
42 TablaCostes_4['Ratioc_Ahorro_en_inversion_Scbrecoste'][lista_indices[x]]
3 TablaCostes_Minimos[‘Politica_Ratio_Mayor'][lista_indices[x]] = 'Politica_4'
4o else:
pass

Y poder compararlos.

1 TablaCostes_Minimos_b = pd.DataFrame()
2 TablaCostes_Minimos_b = TablaCostes_Minimos.copy()

TablaCostes_Minimos_b = TablaCostes_Minimos_b.sort_values('Ratio_Ahorro_en_inversion_Mayor', ascending=False)

lista_indices_TablaCostes_Minimos_b =
lista_indices_TablaCostes_Minimos_b = TablaCostes_Minimos_b.index

TablaReduccion_Inversion = pd.DataFrame()
TablaReduccion_Inversion = TablaCostes_Minimos.copy()

lista_Coste_Almacenaje = []
lista_Inversion_Almacenaje = []

x =8

for x in range (0@, 258):
Valor Coste_Almacenaje = TablaReduccion_Inversion[’Suma_Coste Total'].sum()
Valor_Inversion_Almacenaje = TablaReduccion_ Inversion['Inversion_stock _media’].sum()
lista_Coste_Almacenaje.append(Valor_Coste Almacenaje)
lista_Inversion_Almacenaje.append(Valor_Inversion_aAlmacenaje)

#Politica 1
if (TablaCostes_Minimos_b.loc[TablaCostes_Minimos_b.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ratio Mayor'] == 'Politica_1°).any():
TablaReduccion_Inversion[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x]] = TablaCostes_1[TablaCostes_1.index ==
lista_indices_TablaCostes_Minimos_b[x]]
TablaReduccion_Inversion.loc[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica Ganadora'] = "Politica_1°
else:
pass

-10 - Autor: Adrian Calleja Visiedo
425.18.94

Escuela Universitaria
Politécnica-La Almunia Herramientas dinamicas para determinacion de politica de
Centro adscrito

UniversidadZaragoza inventario optima bajo distintas distribuciones de demanda

(Cdédigo Python)

#Politica 2
if (TablaCostes_Minimos_b.loc[TablaCostes Minimos_b.index ==

lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ratio Mayor'] == 'Politica_2").any():

TablaReduccion_Inversion[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x]] = TablaCostes_2[TablaCostes 2.index ==

lista_indices_TablaCostes_Minimos_b[x]]
TablaReduccion_Inversion.loc[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica Ganadora'] = "Politica 2

41 else:
42 pass

44 #Politica_3
45 if (TablaCostes_Minimos_b.loc[TablaCostes_Minimos_b.index ==
45 lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ratio Mayor'] == 'Politica_3").any()
4 TablaReduccion_Inversion[TablaReduccion_Inversion.index ==
3 lista_indices_TablaCostes_Minimos_b[x]] = TablaCostes_3[TablaCostes_3.index ==
lista_indices_TablaCostes_Minimos_b[x]]
TablaReduccion_Inversion.loc[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ganadora'] = ‘Politica_3
else:
pass

#Politica 4
if (TablaCostes_Minimos_b.loc[TablaCostes_Minimos_b.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ratio Mayor'] == 'Politica 4').any():
TablaReduccion_Inversion[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x]] = TablaCostes 4[TablaCostes 4.index ==
lista_indices_TablaCostes_Minimos_b[x]]

61 TablaReduccion_Inversion.loc[TablaReduccion_Inversion.index ==
lista_indices_TablaCostes_Minimos_b[x], 'Politica_Ganadora®] = ‘Politica 4°
else:
pass

TablaComparacion_Coste_Inversion = pd.DataFrame()
TablaComparacion_Coste_Inversion['Coste’] = lista_Coste_Almacenaje
TablaComparacion_Coste_Inversion['Inversion’] = lista_Inversion_Almacenaje
TablaComparacion_Coste_Inversion

Autor: Adrian Calleja Visiedo -11 -
425.18.94

=

Escuela Universitaria) L S, .
Politécnica - La Almunia Herramientas dinamicas para determinacion de politica de
Centro adscrito

Universidad Zaragoza inventario éptima bajo distintas distribuciones de demanda

425.18.94

Relacion de documentos

(L) MEMOKIA ivviiiiiii i 45 paginas

(X) ANEXOS 1iuiiiiiiiiiii i i 11 paginas

La Almunia, a 28 del 11 de 2018

Firmado: Adrian Calleja Visiedo

	ANEXO 1. (Código Python)
	1.1. Datos de entrada
	1.2. Filtración de datos y primeros cálculos
	1.3. Análisis de pareto
	1.4. Parámetros de control
	1.5. Simulación demanda y lead time
	1.6. Simulación políticas
	1.7. Costes de las políticas
	1.8. Reducción de inversión

