
Bases de Gröbner e ideales diferenciables

Celia Aguelo Jiménez
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Director del trabajo: José Ignacio Cogolludo
27 de noviembre 2018

Abstract

Gröbner bases are a particular form of generating a set of ideals in a ring of polynomials over any
field. By employing this way of ideal generators, it is possible to obtain unique remainders when ma-
king the division algorithm. This allows one to solve a series of problems such as the set of zeroes of a
polynomial equation or a system.

At the beginning of the project, a series of very standard definitions and properties will be explained,
starting from the definition of monomial, greatest common divisor, polynomials, affine spaces, affine va-
rieties, and ideals. Also, a first introduction to the division algorithm for polynomials in one variable
will be given.

After introducing these terms and properties, a study of the Gröbner bases construction method will
be carried out, more specifically, Buchberger’s algorithm, which is based on the division algorithm in
k[x1, ...,xn].

In order to do this, the concept of monomial orderings will be presented and some examples of it
will be given. This concept is of great importance to carry out the division algorithm of polynomials in
several variables so that once a monomial ordering is selected, the remainder can be uniquely determi-
ned.

Once this is clarified, this project focuses on giving the definition of a Gröbner basis, via the ideal
of leading terms. The celebrated Hilbert basis theorem can be proved using this ideal of leading terms.
Also a series of properties and applications such as the ascending chain condition and the concept of
S-polynomial is provided.

To end this section the Buchberger’s algorithm will be explained. This algorithm generates a Gröb-
ner basis from an ideal. Using Hilbert’s basis theorem one can find a finite set of generators. Starting
with these generators, a set of S-polinomials is generated and by means of the division algorithm the
non-zero remainders are added to the set of generators. This process is repeated until a Gröbner basis is
obtained. Nevertheless, generating a Gröbner basis this way results in redundant terms. For this reason,
the concepts of minimal Gröbner basis and reduced Gröbner bases are introduced, through which these
redundant terms are excluded.

Due to the good result of Buchberger’s algorithm, the ultimate goal of this project is to find a similar
method in the situation where differential polynomial rings are being worked upon.

This is not simple, since we have new definitions of differential rings, differential ideals, differential
polynomials and differential monomials. The concepts of weight, quasi-homogeneous differential poly-
nomial, and quasi-homogeneous differential component are introduced.

One of the found difficulties is that these polynomial rings have a infinite number of variables and
so both differential rings and differential ideals need to satisfy some special properties in order to allow
a finite process similar to Buchberger’s algorithm. One of these properties is that the ground field is a

III

IV Capítulo 0. Abstract

field of constants of characteristic zero. In addition, ideals must be radical.

Once the difficulties are known, the process begins by introducing the concept of H-bases of diffe-
rential ideals that will act as the equivalent of Gröbner bases. In order to construct it, a process similar
to the Bucheberger’s algorithm will take place, which we will call this the reduction process.

To wrap up, an example of the reduction process will be shown. Starting from a differential system
that cannot be solved in a simple way, each one of the steps will be applied to obtain a simpler differen-
tial system that can be easily solved.

Each of the equations of the system is a part of the initial differential ideal, and a calculation of the
S-polynomial as in the Buchberger’s algorithm is performed, only the employed way of calculating it
will be different because of the weights. This polynomial is the one the reduction process is applied to,
which in reality is similar to the division algorithm, with the purpose of lowering the weight of the new
differential polynomial. This way this new polynomial will be added to the basis until we get a zero
polynomial, and thus the H-bases will be generated, which will allow to simplify our system.

Índice general

Abstract III

Introducción 1

1. Primeras definiciones 3
1.1. Polinomios y espacio afín . 3
1.2. Variedades afines . 4
1.3. Ideales . 4
1.4. Polinomios de una variable . 5

2. Bases de Gröbner 9
2.1. Orden monomial en k[x1, . . . ,xn]. 10
2.2. El algoritmo de la división en k[x1, . . . ,xn]. 11
2.3. Ideales monomiales y lema de Dickson . 13
2.4. El teorema de las bases de Hilbert y bases de Gröbner. 15
2.5. Propiedades de las Bases de Gröbner. 15
2.6. Algoritmo de Buchberger. 16

3. Anillos de polinomios diferenciales 19
3.1. H-Bases de ideales . 20

4. Ejemplo 23

Bibliografía 25

Índice alfabético 27

Anexo 29

V

Introducción

La teoría de Bases de Gröbner se desarrolló en los años 60 junto con el algoritmo de Buchber-
ger teniendo un gran impacto en el álgebra computacional. Esto ha hecho posible el cálculo eficiente
de ecuaciones polinómicas permitiendo investigar complicados ejemplos. Es por esto que las bases de
Gröbner tienen multitud de aplicaciones en campos como la criptografía, la teoría de grafos, la robótica,
la resolución de sistemas de ecuaciones polinómicas,...

Entre todas estas aplicaciones nos vamos a centrar en la resolución de sistemas de ecuaciones con
polinomios diferenciales.

El objetivo de este trabajo es desarrollar la teoría de las bases de Gröbner para llegar a resolver ecua-
ciones polinómicas y sistemas de ecuaciones diferenciales polinómicas tanto de manera teórica como
realizando un programa en Sage que permita su resolución.

Para ello este trabajo está estructurado en cuatro capítulos:

En el capítulo 1 presentamos definiciones que nos permiten introducir las bases de Gröbner, su desa-
rrollo está basado en el texto [1], (Capítulo 1).

En el capítulo 2 se introduce el concepto de las bases de Gröbner y el algoritmo de Buchberger que
permite calcularlas, basándonos también en el texto [1], (Capítulo 2, párrafos 1-7).

En el capítulo 3 se extienden los conceptos aprendidos en los capítulos anteriores a anillos diferen-
ciales, explicando un método equivalente al algoritmo de Buchberger llamado proceso de reducción.
Para el cual nos hemos apoyado en los textos [2] y [3].

En el capítulo 4 se realiza un ejemplo que ilustra la teoría anterior. Para su resolución se ha imple-
mentado en Sage una serie de programas que facilitan su resolución que se muestran en el anexo (pági-
na 29).

1

Capítulo 1

Primeras definiciones

En este capítulo se introducen una serie de conceptos para polinomios algebraicos que posterior-
mente extenderemos a polinomios diferenciales.

1.1. Polinomios y espacio afín

Definición 1.1. Un monomio en x1, ...,xn es un producto de la forma: xα1
1 ·x

α2
2 · ... ·xαn

n , donde los αi con
i = 1, ...,n son enteros no negativos. A la suma de estos exponentes se le llama grado total del monomio.

Un monomio se escribe de forma simplificada como: xα donde α = (α1,α2, ...,αn) así podemos
denotar el grado total como |α|. Tenemos que tener en cuenta que si α = (0,0, ...,0) entones xα = 1.

Definición 1.2. Llamamos polinomio en x1, ...,xn con coeficientes, aα , en k, a una combinación lineal
de monomios y lo podemos escribir como:

f = ∑
α

aαxα .

En un polinomio llamamos término de f a aαxα si el coeficiente aα 6= 0.
El grado total de f se denota gr(f) y es el máximo grado de todos los monomios con coeficiente no

nulo.
El conjunto de los polinomios con coeficientes en k se denota k[x1, ...,xn].
La suma y el producto de polinomios es también un polinomio de k[x1, ...,xn].
Diremos que f divide a un polinomio g si g = f h para algún h ∈ k[x1, ...,xn].
El conjunto de polinomios k[x1, ...,xn], es un anillo, además es conmutativo y lo denotamos anillo

de polinomios.

Definición 1.3. Llamamos espacio afín n-dimensional con n un entero al conjunto:

kn = {(a1, ...,an) : a1, ...,an ∈ k}.

Por ejemplo R (la recta afín) y R2 (el plano afín) son espacios afines.

Para relacionar los polinomios con los espacios afines vemos que los polinomios nos dan una función
f : kn→ k que dada (a1, ...,an) ∈ kn sustituye cada xi por ai. De esta manera tenemos una relación entre
el álgebra y la geometría. Esta doble naturaleza nos permite obtener resultados como:

Proposición 1.1. Sea k un cuerpo infinito y f ∈ k[x1, ...,xn]. Entonces f = 0 en k[x1, ...,xn] si y solo si
f : kn→ k es la función nula.

Corolario 1.2. Sea k un cuerpo infinito y f ,g ∈ k[x1, ...,xn]. Entonces f = g en k[x1, ...,xn] si y solo si
f : kn→ k y g : kn→ k son la misma función.

Teorema 1.3. Todo polinomio f ∈ C[x] no constante tiene una raíz que pertenece a C.

3

4 Capítulo 1. Primeras definiciones

1.2. Variedades afines

Definición 1.4. Se dice variedad afín definida sobre f1, ..., fs, un conjunto de polinomios en k[x1, ...,xn]
con k cuerpo, a V(f1, ..., fs) = {(a1, ...,an) ∈ kn : fi(a1, ...,an) = 0 ∀1≤ i≤ s}. Es el conjunto de solu-
ciones de un sistema de ecuaciones f1(x1, ...,xn) = ...= fs(x1, ...,xn) = 0.

Notamos que en el plano R2 los círculos, elipses, parábolas e hipérbolas son variedades afines, así
como los grafos de funciones polinómicas. En el espacio R3 algunos ejemplos de variedades afines
son el paraboloide de revolución V(z− x2 − y2), el cono V(z2 − x2 − y2) o una superficie dada por
V(x2− y2z2 + z3) que tienen puntos de singularidad. También es una variedad la curva cúbica torcida
(twisted cubic) V(y− x2,z− x3) que es la intersección de las superficies y = x2 y z = x3, así tenemos
que dos superficies en R3 dan una curva.

En mayor dimensión podemos considerar un cuerpo k y un sistema de m ecuaciones lineales con n
incógnitas x1, ...,xn con coeficientes en k:

a11x1 + ...+a1nxn = b1,
...

am1x1 + ...+amnxn = bm.

La solución forma una variedad en kn llamada variedad lineal. De hecho, las rectas y planos son varie-
dades lineales. En las variedades lineales la codimensión la determina el número de ecuaciones inde-
pendientes.

Por último notamos que si V,W⊂ kn son variedades afines, entonces la unión, V∪W, e intersección,
V∩W, también lo son.

Definición 1.5. Dado un cuerpo k. Una función racional en t1, ..., tn con coeficientes en k es un cociente
f/g de dos polinomios f ,g ∈ k[t1, ..., tn], donde g es un polinomio no nulo. Además, dos funciones
racionales f/g y p/h son iguales siempre que h f = pg en k[t1, ..., tn].

El conjunto de las funciones racionales se denota k(t1, ..., tn) y es un cuerpo.

Hay varias formas de representar una variedad afín aunque no siempre podemos representarlas de
todas estas formas.

Suponemos que tenemos una variedad V = V(f1, ..., fs) ⊂ kn. Entonces una representación para-
métrica racional de V es un conjunto de funciones racionales r1, ...,rn ∈ k(t1, ..., tm) tal que los puntos
dados por:

x1 = r1(t1, ..., tm),
x2 = r2(t1, ..., tm),

...
xn = rn(t1, ..., tm)

están en la variedad V.
Cuando en una parametrización de una variedad tenemos polinomios en vez de funciones lo lla-

mamos representación paramétrica polinómica de V. Las ecuaciones originales f1 = ... = fs = 0 que
definen la variedad V se llaman representación implícita de la variedad.

1.3. Ideales

Definición 1.6. Un subconjunto I ⊂ k[x1, ...,xn] es un ideal si cumple:

I) 0 ∈ I

II) Si f ,g ∈ I entonces f +g ∈ I

III) Si f ∈ I y h ∈ k[x1, ...,xn], entonces h f ∈ I

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 5

Definición 1.7. Dados los polinomios f1, ..., fs ∈ k[x1, ...,xn] el conjunto

〈 f1, ..., fs〉=

{
s

∑
t=1

ht ft : h1, ...,hs ∈ k[x1, ...,xn]

}

se denomina ideal generado por f1, ..., fs.

Lema 1.4. Si f1, ..., fs ∈ k[x1, ...,xn] entonces 〈 f1, ..., fs〉 es un ideal de k[x1, ...,xn].

Dados f1, ..., fs ∈ k[x1, ...,xn], obtenemos el sistema de ecuaciones:

f1 = 0,
...

fs = 0.

Desde estas ecuaciones podemos obtener otras. Por ejemplo, si multiplicamos la primera ecuación por
h1 ∈ k[x1, ...xn] la segunda por h2 ∈ k[x1, ...xn] y así sucesivamente y luego sumamos todas obtenemos:

h1 f1 +h2 f2 + ...+hs fs = 0.

El lado izquierdo de esta ecuación es un elemento del ideal 〈 f1, ..., fs〉.

Decimos que I es un ideal finitamente generado si existe f1, ..., fs ∈ k[x1, ...,xn] tal que I = 〈 f1, ..., fs〉,
y decimos que f1, ..., fs es una base de I.

Proposición 1.5. Si f1, ..., fs y g1, ...,gt son bases del mismo ideal en k[x1, ...,xn], tal que 〈 f1, ..., fs〉 =
〈g1, ...,gt〉, entonces V(f1, ..., fs) = V(g1, ...,gt).

Definición 1.8. Dada V⊂ kn una variedad afín, definimos el conjunto:

I(V) = { f ∈ k[x1, ...,xn] : f (a1, ...,an) = 0 ∀(a1, ...,an) ∈ V}.

Lema 1.6. Si V⊂ kn es una variedad afín, entonces I(V)⊂ k[x1, ...,xn] es un ideal, llamado ideal de V.

Lema 1.7. Si f1, ..., fs ∈ k[x1, ...,xn], entonces 〈 f1, ..., fs〉 ⊂ I(V(f1, ..., fs)), pero la igualdad no es siem-
pre cierta.

Para cuerpos arbitrarios la relación entre 〈 f1, ..., fs〉 y I(V(f1, ..., fs)) puede ser sutil, sin embargo
sobre un cuerpo algebraicamente cerrado como C hay una sencilla relación entre estos ideales.

Aunque, en los cuerpos, en general I(V(f1, ..., fs)) puede no ser igual a 〈 f1, ..., fs〉. El ideal de una
variedad siempre contiene suficiente información para poder determinar la variedad de forma unívoca.

Proposición 1.8. Sean V y W dos variedades afines en kn: Entonces:

I) V⊂W si y solo si I(V)⊃ I(W).

II) V = W si y solo si I(V) = I(W).

1.4. Polinomios de una variable

Definición 1.9. Dado un polinomio f ∈ k[x] no nulo, tomamos:

f = a0xm +a1xm−1 + ...+am

donde at ∈ k y a0 6= 0, además el grado de f es m. Entonces decimos que el término principal de f es
a0xm y lo denotamos T P(f).

6 Capítulo 1. Primeras definiciones

Así, dados dos polinomios no nulos f ,g podemos decir que:

gr(f)≤ gr(g)⇔ T P(f) divide T P(g)

Proposición 1.9. El Algoritmo de la División: Sea k un cuerpo y g un polinomio no nulo en k[x].
Entonces, cada f ∈ k[x] puede escribirse como:

f = qg+ r

donde q,r ∈ k[x] y también r = 0 o el gr(r) < gr(g). Además, q y r son los únicos polinomios que
cumplen estas propiedades.

Demostración. Describamos primero el algoritmo de la división en pseudocódigo:

INPUT: g, f
OUTPUT: q,r

q := 0;r := f
WHILE: r 6= 0 AND T P(g) divide T P(r) DO

q := q+T P(r)/T P(g)
r := r− (T P(r)/T P(g))g

En cada paso del algoritmo vamos obteniendo nuevos valores de q y r hasta obtener sus valores
finales.

Veamos que funciona: Primero notamos que f = qg+ r se cumple para los valores iniciales de q y
r dados y que si lo redefinimos sigue siendo cierto ya que se cumple:

f = qg+ r = (q+T P(r)/T P(f))g+(r− (T P(r)/T P(g))g)

El siguiente paso del algoritmo es comprobar que no se cumple r 6= 0 y que T P(g) divide T P(r) si
es así produce una nueva q y r y repetimos hasta que deje de ser falso.

La clave es observar que r− (T P(r)/T P(g))g es 0 o de menor grado que r. Pues, suponiendo que:

r = a0xm + ...+am, T P(r) = a0xm,

g = b=XK + ...+bk, T P(g) = b0xk,

y suponemos que m≥ k, entonces:

r− (T P(r)/T P(g))g = (a0xm + ...)− a0

b0
xm−k(b0xk + ...)

y esto significa que el grado de r va bajando. Y como el grado es finito, concluimos que el algoritmo es
finito.

Por último, tenemos que ver que q y r son únicos. Supongamos que f = qg+ r = q′g+ r′ donde r y
r′ poseen menor grado que g. Si r 6= r′ entonces gr(r′− r)< gr(g), pero por otro lado

(q−q′)g = r′− r

veíamos que q−q′ 6= 0 y por tanto:

gr(r′− r) = gr((q−q′)g) = gr(q−q′)+gr(g)≥ gr(g).

Esto es una contradicción y por tanto r = r′ y también tenemos que q = q′. Así, obtenemos la
unicidad.

Corolario 1.10. Si k es un cuerpo y f ∈ k[x] es un polinomio no nulo, entonces el grado de f es como
mucho el número de raíces de f en k.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 7

Corolario 1.11. Si k es un cuerpo, entonces cada ideal de k[x] puede escribirse como 〈 f 〉 para algún
f ∈ k[x]. Además, f es único salvo multiplicación por constantes no nulas de k.

Definición 1.10. Un Máximo Común Divisor de dos polinomios f ,g ∈ k[x] es un polinomio h tal que :

I) h divide a f y g.

II) Si p es otro polinomio que divide a f y g, entonces p divide a h.

Si h cumple esto se escribe h = MCD(f ,g)

Proposición 1.12. Sea f ,g ∈ k[x]. Entonces.

I) MCD(f ,g) existe y es el único salvo multiplicación por constantes no nulas en k

II) MCD(f ,g) es un generador del ideal 〈 f ,g〉

III) El MCD(f ,g) se puede encontrar mediante un algoritmo.

Demostración. Veamos este algoritmo. Tomamos la siguiente notación, f ,g ∈ k[x] donde g 6= 0 y es-
cribimos f = qg+ r donde q y r son polinomios como los de la proposición 1.9. Cogemos r como el
resto de f y g (r = resto(f ,g)). Podemos emplear, por tanto el algoritmo de Euclides para encontrar el
MCD(f ,g) :

INPUT: g, f
OUTPUT: h

s := g; h := f
WHILE: s 6= 0 DO:

res := resto(h,s)
h := s
s := res

Por el algoritmo de la división, llamando f = qg+ r podemos afirmar que:

MCD(f ,g) = MCD(f −qg,g) = MCD(r,g).

Notamos que el gr(g)> gr(r) o r = 0. Si r 6= 0 repetimos el proceso para hacerlo todavía mas pequeño,
aplicando el algoritmo de la división ahora a g = q′r+ r′ y así llegamos a que:

MCD(g,r) = MCD(r,r′).

Donde gr(r)> gr(r′) o r′ = 0 y si no es así seguimos repitiendo.
Además podemos afirmar que este algoritmo termina porque el grado de s va disminuyendo, enton-

ces en algún momento llegará a 0 y si eso pasa el MCD(f ,g) = MCD(h,0) = h.

Definición 1.11. El Máximo Común Divisor de los polinomios f1, ..., fs ∈ k[x] es un polinomio h tal
que :

I) h divide a f1, ..., fs.

II) Si p es otro polinomio que divide a f1, ..., fs entonces p divide a h.

Entonces, se escribe h = MCD(f1, ..., fs).

Y al igual que hemos extendido la definición de MCD para dos polinomios a s polinomios podemos
extender la proposición anterior añadiendo: si s≥ 3, entonces MCD(f1, ..., fs)=MCD(f1,MCD(f2, ..., fs)).

Capítulo 2

Bases de Gröbner

A partir de las bases de Gröbner intentamos dar respuesta a cuatro problemas:

1. Conseguir saber si los ideales están generados por un conjunto finito.

2. Resolver el problema de pertenencia a un ideal.

3. Encontrar las soluciones de un sistema de ecuaciones.

4. Buscar si es posible encontrar un sistema de ecuaciones a partir de las soluciones.

Ejemplo 1. Dado un ideal I ⊂ k[x], es decir, n = 1, por el corolario 1.11 sabemos que I = 〈g〉 para algún
g ∈ k[x], es decir, están generados por un conjunto finito.

También es fácil encontrar los miembros de los ideales usando el algoritmo de la división,1.9:
f ∈ I = 〈g〉 si y solo si al dividir f entre g se tiene que r = 0.

Ejemplo 2. Consideramos un sistema de ecuaciones:

a11x1 + ...+a1nxn +b1 = 0,
...

am1x1 + ...+amnxn +bm = 0.

Podemos reducir las filas a una matriz: a11 · · · a1n −b1
...

...
...

am1 · · · amn −bm


Hacemos operaciones con las filas hasta obtener una matriz escalonada y luego podemos encontrar

las soluciones sustituyendo los valores por las variables libres.
En algunos casos puede haber una solución o no haberla.

Ejemplo 3. Tomamos un n arbitrario y consideramos V⊂ Kn parametrizada como:

x1 = a11t1 + ...+a1mtm +b1,
...

xn = an1t1 + ...+anmtm +bn.

V es un subespacio afín lineal de kn ya que V es la imagen de F : kn −→ kn definida por:

F(t1, ..., tm) = (a11t1 + ...+a1mtm +b1, ...,an1t1 + ...+anmtm +bn).

Buscamos un sistema de ecuaciones lineales cuya solución sea el conjunto de puntos de V.

9

10 Capítulo 2. Bases de Gröbner

Escribimos las ecuaciones restando el término xi a ambos lados y escribimos la matriz correspon-
diente. Operamos las filas para obtener una matriz escalonada con unos en la diagonal.

Cogiendo las últimas filas obtenemos ecuaciones que no dependen de los términos t j que son las
ecuaciones que definen V.

Nuestro objetivo es extender los métodos de los ejemplos hechos en sistemas de grado 1 a cualquier
grado y posteriormente ver si también es posible hacerse para sistemas diferenciales.

2.1. Orden monomial en k[x1, . . . ,xn].

Para el algoritmo de la división y la eliminación Gaussiana es muy importante el orden de los
términos del polinomio. Para poder ordenarlos podemos describir el monomio xα = xα1

1 · · ·xαn
n como

la tupla de sus exponentes α = (α1, ...,αn), estableciendo una correspondencia entre los monomios en
k[x1, ...,xn] y Zn

≥0. Además, cualquier orden > establecido en Zn
≥0 dará un orden de los monomios y

aunque hay muchas formas de ordenarlos nos va a interesar las que sean compatibles con la estructura
algebraica de los anillos de polinomios.

Definición 2.1. Un orden monomial en k[x1, . . . ,xn] es cualquier relación > en Zn
≥0 o equivalentemente,

una relación en el conjunto de monomios xα ,α ∈ Zn
≥0 cumpliendo:

(I) > es total (o lineal) orden en Zn
≥0.

(II) Si α > β y γ ∈ Zn
≥0, entonces α + γ > β + γ .

(III) > es un buen orden en Zn
≥0. Esto quiere decir que cada subconjunto no vacío de Zn

≥0 tiene un
elemento más pequeño.

Lema 2.1. Una relación de orden > en Zn
≥0 es un buen orden si y solo si cada secuencia estrictamente

decreciente en Zn
≥0

α(1)> α(2)> α(3)> .. .

termina eventualmente.

Definición 2.2. Orden lexicográfico. Sea α = (α1, . . . ,αn) y β = (β1, . . . ,βn) ∈ Zn
≥0. Decimos que

α >lex β si, en la diferencia vectorial α −β ∈ Zn, el término más a la izquierda, no nulo, es positivo.
Escribiremos xα >lex xβ si α >lex β .

Notar que el orden lexicográfico, es un orden monominal puesto que cumple la definición 2.1. Hay
también que darse cuenta de que existen muchos ordenes lexicográficos porque dependen de como se
ordenen las variables x1, . . . ,xn.

Podemos tener en cuenta el grado total del monomio y así obtenemos otra manera de ordenar los
monomios.

Definición 2.3. Orden lexicográfico graduado. Dado α,β ∈ Zn
≥0. Decimos α >grlex β si:

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, o |α|= |β | y α >lex β

Escribiremos xα >grlex xβ si α >grlex β .

Definición 2.4. Orden lexicográfico graduado inverso. Dado α,β ∈ Zn
≥0. Decimos α >invgrlex β si:

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, o |α|= |β |

y en α−β ∈ Zn el término más a la derecha no nulo es negativo.
Escribiremos xα >invgrlex xβ si α >invgrlex β .

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 11

Definición 2.5. Dado f = ∑α aαxα un polinomio no nulo en k[x1, . . .xn] y dado > un orden monomial:

(I) El multigrado de f es: multigr(f) = max(α ∈ Zn
≥0 : aα 6= 0)

(II) El coeficiente principal de f es: CL(f) = amultigr(f) ∈ k

(III) El monomio principal de f es: ML(f) = xmultigr(f)

(IV) El término principal de f es: T L(f) =CL(f) ·ML(f)

Ejemplo 4. Dado f (x,y,z) = 2x+ 3y2z+ x2 + z3 se pretende dar el polinomio con sus términos orde-
nados por cada uno de los órdenes monomiales con x > y > z indicando en cada caso su multigrado, su
término principal y su monomio principal.

En los tres casos se escribe cada término del polinomio como un vector de 3 componentes, la primera
corresponde al grado de la x, la segunda el de la y y la tercera el de la z.

x � (1,0,0)

y2z � (0,2,1)

x2 � (2,0,0)

z3 � (0,0,3)

Orden lexicográfico. En este orden debemos restar los vectores y sera mayor el que en esta resta
tenga el término más a la izquierda, no nulo, positivo. Así, f ordenado por el orden lexicográfico
es: f (x,y,z)= x2+2x+3y2z+z3, el multigrado es (2,0,0), su término principal es x2 que coincide
con el monomio principal.

Orden lexicográfico graduado. El término mayor es el que al realizar la suma de las com-
ponentes del vector sea mayor, y si dos son iguales el que sea mayor por orden lexicográfico.
Por tanto, f ordenado por orden lexicográfico graduado es f (x,y,z) = 3y2z+ z3 + x2 + 2x así,
multigr(f) = (0,2,1), T L(f) = 3y2z y ML(f) = y2z

Orden lexicográfico graduado inverso. El término mayor es el que al realizar la suma de las
componentes del vector sea mayor y si dos son iguales el que al hacer la resta tenga el término más
a la derecha no nulo negativo. De esta manera, el orden lexicográfico graduado inverso coincide
con el orden lexicográfico graduado.

Lema 2.2. Dado f ,g ∈ k[x1, . . . ,xn] polinomios no nulos, entonces:

(I) multigr(f g) = multigr(f)+multigr(g).

(II) Si f +g 6= 0, entonces multigr(f +g)≥ max(multigr(f),multigr(g)).

Si además multigr(f) 6= multigr(g) entonces la igualdad ocurre.

2.2. El algoritmo de la división en k[x1, . . . ,xn].

Vamos a extender el algoritmo de la división 1.9, ya visto, a polinomios en k[x1, . . . ,xn] en vez de
k[x]. En general el objetivo es dividir f ∈ k[x1, . . . ,xn] entre f1, . . . , fs ∈ k[x1, . . . ,xn], es decir, ver si
podemos expresar f como:

f = a1 f1 + . . .+as fs + r.

Donde a1, ...,an,r ∈ k[x1, . . . ,xn], y para caracterizarlo necesitaremos los distintos órdenes lexico-
gráficos.

12 Capítulo 2. Bases de Gröbner

Teorema 2.3. Algoritmo de la división en k[x1, . . . ,xn]. Fijado un orden monomial > en Zn
≥0, y dado

F =(f1, . . . , fs) una tupla ordenada de polinomios en k[x1, . . . ,xn]. Entonces cada f ∈ k[x1, . . . ,xn] puede
escribirse como:

f = a1 f1 + . . .+as fs + r.

Donde a,r ∈ k[x1, . . . ,xn] y r = 0 o una combinación lineal de monomios con coeficientes en k
no divisibles por T L(f1), . . . ,T L(fs). Llamaremos r el resto de dividir f entre F, además si ai fi 6= 0
tendremos que multigr(f)≥ multigr(ai fi).

Demostración. Veamos la existencia de a1, . . . ,as y r dando un algoritmo para su construcción y viendo
que funciona correctamente.

INPUT: f1, . . . , fs, f
OUTPUT: a1, . . . ,as,r

a1 := 0; . . .a: = 0;r := 0
p := f

WHILE p 6= 0 DO:
i := 1
ocurredivision:=false
WHILE i≤ s AND ocurredivision= false DO:

IF T L(fi) divide T L(p) THEN:
ai := ai +T L(p)/T L(fi)
p := p− (T L(p)/T L(fi)) fi

ocurredivision:=true
ELSE:

i := i+1
IF ocurredivision=false THEN:

r := r+T L(p)
p := p−T L(p)

Observamos que en el bucle pueden pasar dos cosas:

(División) Si T L(fi) divide a T L(p) el algoritmo actúa como si hubiera una variable.

(Resto) Si T L(fi) no divide a T L(p) entonces al algoritmo añade el término principal de p al
resto r.

Veamos que el algoritmo funciona, primero comprobamos que

f = a1 f1 + . . .+as fs + p+ r (2.1)

se verifica en cada paso.
Para los valores iniciales es claro. Suponemos que T L(fi) divide a T L(p) y la igualdad:

ai fi + p = (ai +T L(p)/T L(fi)) fi +(p− (T L(p)/T L(fi)) fi).

Vemos que ai fi + p no cambia, entonces en este caso 2.1 se sigue cumpliendo.
Por otro lado el siguiente paso tenemos que p y r cambian pero p+ r no cambia

p+ r = (p−T L(p))+(r+T L(p)),

entonces igual que antes se sigue cumpliendo 2.1.
El algoritmo se empieza a detener cuando p = 0 en esta situación 2.1 se transforma en:

f = a1 f1 + . . .+as fs + r.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 13

Los términos se añaden a r sólo cuando no son divisibles por ningún T L(fi), a1, . . . ,as y r cumplen
las propiedades deseadas cuando el algoritmo termina.

Por último, necesitamos ver que el algoritmo siempre termina. Para ello veamos que en cada paso p
se redefine y su multigrado disminuye o se vuelve 0. Suponemos que durante la división p se redefine
como:

p′ = p− T L(p)
T L(fi)

fi

Así;

T L
(

T L(p)
T L(fi)

fi

)
=

T L(p)
T L(fi)

T L(fi) = T L(p)

por tanto p y T L(p)
T L(fi)

fi tiene el mismo término principal. Así, su diferencia p′ tiene que tener multigrado
menor y si el algoritmo no termina nunca tendríamos un serie decreciente de multigrados y por las
propiedades de lo ordenes monomiales esto no puede ocurrir.

Queda pendiente estudiar la relación entre el multigr(f) y el multigr(ai fi).
Cada término de ai es de la forma T L(p)/T L(fi) para algún valor de la variable p. El algoritmo em-

pieza por p = f y como hemos visto el multigrado de p disminuye, por eso vemos que T L(p)≤ T L(f)
entonces tenemos que multigr(ai fi)≤ multigr(f) cuando ai fi 6= 0.

Ejemplo 5. Sea f = x7y2 +x3y2−y+1 se quiere dividir entre F = [f1 = xy2−x, f2 = x−y3] usando el
orden lexicográfico graduado con x > y.

El T L(f1) = xy2 divide al T L(f) = x7y2 entonces podemos realizar el primer paso del algoritmo
obteniendo como cociente x6 y resto r1 = x7− x3y2− y+1. Ahora el término principal de r1 es x7 que
no es dividido ni por T L(f1) ni por T L(f2) = −y3 por tanto x7 es parte del resto de la división y nos
queda −x3y2− y+ 1 para continuar el algoritmo, repitiendo estos pasos hasta obtener un resto donde
ninguno de sus términos pueda ser dividido por el termino principal de f1 ni de f2, se obtiene, en este
ejemplo, que el resto final es r = x7 + x3− y+1 y podemos escribir f = (x6 + x2) f1 +0 f2 + r.

Podemos apreciar algunas propiedades del algoritmo de la división, como que el resto no está deter-
minado de manera única, pues si se escoge otro orden monomial puede cambiar, por ejemplo si ahora
dividimos f entre F pero con orden lexicográfico con x > y obtenemos que el resto es 2y3− y+1, por
eso es importante fijar un orden monomial. Incluso con el mismo orden monomial el resto depende
de la forma de ordenar la tupla de divisores. Por ejemplo si dividimos f entre F1 = [f2, f1] con orden
lexicográfico obtenemos que el resto es y23 + y11− y+1 que es distinto al anterior.

Otra propiedad interesante es que si después de dividir f entre F = (f1, . . . , fs) se obtiene r = 0
entonces quiere decir que f ∈ 〈 f1, . . . , fs〉, de hecho, r = 0 es condición suficiente para ser miembro de
un ideal, pero no es condición necesaria.

Por ejemplo, si dividimos f = x+ z entre F = [xy− z,xy+ x] obtenemos que el resto es x+ z y
aunque al aplicar el algoritmo de la división el resto no da 0, f es combinación de los elementos de F
pues f = f2− f1, lo que implica que f ∈ F .

2.3. Ideales monomiales y lema de Dickson

Definición 2.6. Un ideal I ⊂ k[x1, . . . ,xn] es un ideal monomial si hay un subconjunto A⊂ Zn
≥0 tal que

I contiene a todos los polinomios de la forma ∑α∈A hαxα donde hα ∈ k[x1, ...,xn], en este caso

I = 〈xα : α ∈ A〉.

Lema 2.4. Sea I = 〈xα : α ∈ A〉 un ideal monomial. Entonces xβ pertenece a I si y solo si xβ es divisible
por xα para algún α ∈ A.

14 Capítulo 2. Bases de Gröbner

Lema 2.5. Sea I un ideal monomial y sea f ∈ k[x1, . . . ,xn], entonces son equivalentes:

(I) f ∈ I.

(II) Cada término de f está en I.

(III) f es una k-combinación lineal de monomios de I.

Corolario 2.6. Dos ideales monomiales son el mismo si y solo si contienen los mismos monomios.

Teorema 2.7. Lema de Dickson. Un ideal monomial I = 〈xα : α ∈ A〉 ⊂ k[x1, . . . ,xn] se puede escribir
de la forma I = 〈xα(1), . . . ,xα(s)〉 donde α(1), . . . ,α(s) ∈ A. En particular, I tiene una base finita.

Demostración. Vamos a verlo por inducción sobre n.

Si n = 1: Entonces I está generado por los monomios xα
1 donde α ∈ A⊂ Z≥0. Sea β el elemento

más pequeño de A ⊂ Z≥0. Entonces β ≤ α para todo α ∈ A, así xβ

1 divide a todos los otros
generadores xα

1 . Así se sigue que I = 〈xβ

1 〉.

Tomando n> 1 y que el teorema es cierto para n−1. Escribiendo las variables como x1, . . . ,xn−1,y,
así, los monomios en k[x1, . . . ,xn,y] se pueden escribir como xαym donde α =(α1, . . . ,αn−1)∈ Zn−1

≥0
y m ∈ Z≥0.

Suponemos que I ⊂ k[x1, . . . ,xn−1,y] es un ideal monomial. Para encontrar los generadores de
I, sea J un ideal en k[x1, . . . ,xn−1] generado por los monomios xα para los cuales xαym ∈ I para
algún m ≥ 0. Por la hipótesis de inducción tenemos que muchos de los monomios xα generan J,
es decir, tenemos que J = 〈xα(1), . . . ,xα(s)〉.
Para cada 1≤ i≤ s la definición de J nos dice que xα(i)ymi ∈ I para algún mi ≥ 0. Sea m el mayor
de los mi, entonces para cada k ∈ [0, ...,m−1] consideramos el ideal Jk ⊂ k[x1, . . . ,xn1] generado
por los monomios xβ tal que xβ yk ∈ I. Podemos pensar en Jk como una parte de I generada por
monomios que contienen a y y exactamente k potencias. Volviendo a usar la hipótesis de inducción
vemos que Jk está generado por un conjunto finito de monomios, es decir Jk = 〈xαλ (1), . . . ,xαλ (sλ)〉.
Vemos que I está generado por alguno de los siguientes monomios:

J : xα(1)ym, . . . ,xα(s)ym,

J0 : xα0(1), . . . ,xα0(s0),

J1 : xα1(1)y, . . . ,xα1(s1)y,
...

Jm−1 : xαm−1(1)ym−1, . . . ,xαm−1(sm−1)ym−1.

Notamos que cada monomio en I es divisible por uno de la lista, pues sea xαyp ∈ I, si p ≥ m, es
divisible por algún xα(i)ym de la constitución de J. En caso contrario (p≤m−1), es divisible por
algún xαp(j)yp de la construcción de Jp. Así por el lema 2.5 tenemos que los monomios anteriores
generan el mismo ideal que I y por el corolario 2.6 apreciamos que tienen que ser los mismos.

Para terminar la demostración debemos observar si el conjunto finito de los generadores se puede esco-
ger del conjunto de los generadores del ideal. Si escribimos las variables como x1, . . . ,xn nuestro ideal
monomial es I = 〈xα : α ∈ A〉 ⊂ k[x1, . . . ,xn]. Necesitamos ver que I está generado por un número finito
de xα donde α ∈ A. Anteriormente hemos visto que I = 〈xβ (1), . . . ,xβ (s)〉 para algún monomio xβ (t) ∈ I
y mientras pasa esto, por el lema 2.4, sabemos que xβ (t) es divisible por xα(t) para algún α(i) ∈ A.
Entonces es fácil ver que I = 〈xα(1), . . . ,xα(s)〉.

Corolario 2.8. Sea > una relación en Zn
≥0 tal que :

I) > es un orden total en Zn
≥0.

II) Si α > β y γ ∈ Zn
≥0, entonces α + γ > β + γ .

Entonces > es un buen orden si y solo si α ≥ 0 para todo α ∈ Zn
≥0.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 15

2.4. El teorema de las bases de Hilbert y bases de Gröbner.

Definición 2.7. Dado I ⊂ k[x1, . . . ,xn] un ideal distinto de {0}.

(I) Llamamos T L(I) al conjunto de los términos principal de los elementos de I. Así:

T L(I) = {cxα : existe f ∈ I con T L(f) = cxα}.

(II) Denotamos 〈T L(I)〉 al ideal generado por los elementos de T L(I).

Si damos un conjunto finito generador de I, I = 〈 f1, . . . , fs〉, entonces 〈T L(f1), . . . ,T L(fs)〉 y 〈T L(I)〉
pueden ser ideales distintos. Es cierto que T L(ft) ∈ T L(I) ⊂ 〈T L(I)〉 por definición lo que implica,
〈T L(f1), . . . ,T L(fs)〉 ⊂ 〈T L(I)〉. Sin embargo, 〈T L(I)〉 puede ser estrictamente mayor.

Proposición 2.9. Dado un ideal I ⊂ k[x1, . . . ,xn]:

(I) 〈T L(I)〉 es un ideal monomial.

(II) Hay g1, . . . ,gs ∈ I tales que 〈T L(I)〉= 〈T L(g1), . . . ,T L(gt)〉.

Teorema 2.10. Teorema de Bases de Hilbert. Cada ideal I ⊂ k[x1, . . . ,xn] tiene un conjunto finito
generador. Este es I = 〈g1, . . . ,gs〉 para algún g1, . . . ,gs ∈ I.

Definición 2.8. Fijado un orden monomial. Un conjunto finito G = {g1, . . . ,gs} de un ideal I se llama
base de Gröbner si:

〈T L(g1), . . . ,T L(gt)〉= 〈T L(I)〉.

Corolario 2.11. Fijado un orden monomial, cada ideal I ⊂ k[x1, . . . ,xn] distinto de {0} tiene una base
de Gröbner. Además, cualquier base de Gröbner de I es base de I.

Algunas consecuencias del Teorema de las bases de Hilbert son la condición de las cadena ascen-
dente de ideales (ACC) y las variedades afines son determinadas por ideales.

Teorema 2.12. Condición de las cadenas ascendentes. Dado I1 ⊂ I2 ⊂ I3 ⊂ . . . un cadena ascendente
de ideales en k[x1 . . . ,xn]. Entonces existe un N ≥ 1 tal que:

IN = IN+1 = IN+2 =

Definición 2.9. Dado I ⊂ k[x1, . . . ,xn] un ideal. Denotamos por V(I) al conjunto:

V(I) = {(a1, . . . ,an) ∈ kn : f (a1, . . . ,an) = 0 ∀ f ∈ I}

El conjunto V(I) puede estar definido por un conjunto finito de ecuaciones polinómicas aunque el
ideal no nulo I contenga infinitos polinomios diferentes.

Proposición 2.13. V(I) es una variedad afín. En particular, si I = 〈 f1, . . . , fs〉 entonces V(I)=V(f1, . . . , fs).

2.5. Propiedades de las Bases de Gröbner.

Hemos visto en el ejemplo 5 que el resto no tiene porque ser único si se cambia el orden de los
divisores. Sin embargo, si los divisores forman una base de Gröbner esto no ocurre.

Proposición 2.14. Sea G = g1, . . . ,gn una base de Gröbner para un ideal I ⊂ k[x1, . . .xn] y sea f ∈
k[x1, . . . ,xn]. Entonces hay un único r ∈ k[x1, ...,xn] con las siguientes propiedades.

I) Ningún término de r es divisible por LT (g1), ...,LT (gn).

16 Capítulo 2. Bases de Gröbner

II) Hay un g ∈ I tal que f = g+ r.

En particular, r es el resto de la división de f entre G sin importar el orden de los elementos de G
cuando haces el algoritmo de la división.

Corolario 2.15. Sea G= g1, . . . ,gn una base de Gröbner para un ideal I⊂ k[x1, . . .xn] y sea f ∈ k[x1, . . . ,xn].
Entonces f ∈ I si y solo si el resto de la división de f entre G es cero.

Definición 2.10. Llamamos f F al resto en la división de f entre la tupla ordenada F = (f1, ..., fs). Si F
es una base de Gröbner para 〈 f1, ..., fn〉 entonces podemos considerar F como un conjunto.

Definición 2.11. Sea f ,g ∈ k[x1, ...,xn] polinomios no nulos.

I) Si multigr(f) = α y multigr(g) = β entonces γ = (γ1, ...,γn), donde γi = max(αi,βi) para cada i.
Llamamos xγ al mínimo común múltiplo de ML(f) y ML(g) y escribimos xγ =MCM(ML(f),ML(g)).

II) El S-polinomio de f y g es la combinación:

S(f ,g) =
xγ

T L(f)
f − xγ

T L(g)
g. (2.2)

Lema 2.16. Suponemos que tenemos la suma ∑
s
i=1 ci fi donde ci ∈ k y multigr(fi) = δ ∈ Zn

≥0 para
todo i. Si multigr(∑s

i=1 ci fi)< δ entonces ∑
s
i=1 ci fi es una combinación lineal con coeficientes en k, del

S-polinomio S(f j, fk) para 1≥ j,k,≥ s. Además, cada S(f j, fk) tiene multigrado < δ .

Teorema 2.17. Sea I un ideal de polinomios. Entonces la base G = {g1, ...,gn} de I es una base de
Gröbner de I si y solo si para todo par i 6= j, el resto de la división de S(gi,g j) entre G es cero.

Este teorema es llamado el criterio de Buchberger.

2.6. Algoritmo de Buchberger.

Este algoritmo, parte desde el criterio de Buchberger y nos va a permitir generar bases de Gröbner.

Teorema 2.18. Dado I = 〈 f1, . . . , fs〉 6= 0 un ideal de polinomios, entonces una base de Gröbner para I
puede ser generada en un número finito de pasos con el siguiente algoritmo:

INPUT: F = (f1, . . . , fs)

OUTPUT: Una base de Gröbner G =C(g1, . . . ,gt) para I con F ⊂ G
G := F REPEAT
G′ := G

FOR cada par p,q, p 6= q en G′ DO:
S := S(p,q)G′

IF S 6= 0 THEN G := G∪{S}
UNTIL G = G′

Demostración. Si, G= {g1, ...,gs} entonces como tomamos como notación 〈G〉= 〈g1, ...,gs〉 y 〈LT (G)〉=
〈LT (g1), ...,LT (gt)〉. Veamos que se tiene G⊂ I en cada paso del algoritmo.

Sabemos que inicialmente es cierto, en el siguiente paso añadimos a G el resto S = S(p,q)G′ para
p,q ∈ G. Si G ⊂ I entonces p,q y por tanto S(p,q) están en I y como estamos dividiendo por G′ ⊂ I
tenemos que G∪{S} ⊂ I. También vemos que G contiene la base de I dada por F , lo que quiere decir
que G es ahora base de I.

El algoritmo termina cuando G = G′ que quiere decir que S(p,q)G′
= 0 para todo p,q ∈ G, y por el

teorema 2.17 sabemos que G es base de Gröbner de 〈G〉= I.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 17

Nos queda ver que el algoritmo termina. Necesitamos considerar qué pasa después de cada paso
del bucle. El conjunto G es G′ con el resto no nulo obtenido de la división del S-polinomio entre los
elementos de G′. Suponemos que r es el resto no nulo que se añade a G y por tanto el T L(r) no es
divisible por ningún termino principal de los elementos de G′, y así, T L(r) /∈ 〈T L(G′)〉, pero todavía
T L(r) /∈ 〈T L(G)〉 entonces 〈T L(G′)〉⊂ 〈T L(G)〉 ya que G′⊂G. Además si G′ 6=G, es claro el contenido
es estricto.

Por lo que acabamos de ver el ideal 〈T L(G′)〉 y sus sucesivas iteraciones del bucle son una cadena
ascendente de ideales en k[x1, ...,xn]. Así, por el teorema 2.12 de la condición de las cadenas ascendentes,
sabemos que hay un número finito de iteraciones y la cadena se estabiliza, por eso en algún momento
〈T L(G)〉 = 〈T L(G′)〉 y esto implicara que G′ = G, por tanto tenemos que el algoritmo termina en un
número finito de pasos.

Así tenemos el criterio de Buchberger (2.17) y el algoritmo de Buchberger (2.18) que nos permiten
encontrar y dar bases de Gröbner. Pero usando estos dos teoremas a menudo obtenemos bases más
grandes de lo necesario y podríamos eliminar algunos generadores redundantes.

Lema 2.19. Sea G una base de Gröbner para un ideal polinómico I. Sea p ∈ G un polinomio tal que
T L(p) ∈ 〈T L(G−{p})〉. Entonces G−{p} es también una base para I.

Definición 2.12. Una base de Gröbner minimal para el ideal de polinomios I es una base de Gröbner G
de I tal que :

I) CL(p) = 1 para todo p ∈ G.

II) Para todo p ∈ G, T L(p) /∈ 〈T L(G−{p})〉.

Definición 2.13. Una base de Gröbner reducida para un ideal de polinomios I es una base de Gröbner
G de I tal que:

I) CL(p) = 1 para todo p ∈ G.

II) Para todo p ∈ G, ningún monomio de p está en 〈T L(G−{p})〉.

Proposición 2.20. Sea I 6= {0} un ideal de polinomios. Entonces, para un orden monomial dado, I tiene
una única base de Gröbner reducida.

Otra consecuencia es que tenemos un algoritmo para ver cuando dos conjuntos de polinomios gene-
ran el mismo ideal.

Ejemplo 6. Sean f1 = x2y− z y f2 = xy−1 dos polinomios sobre Q[x,y,z], F = [f1, f2]. Estos polino-
mios generan un ideal I. Fijemos el orden monomial lexicográfico con x > y > z. Queremos ver si F es
una Base de Gröbner, si no lo es calcularla y obtener su base de Gröbner minimal.

Lo primero que hay que hacer es calcular el S-polinomio utilizando la fórmula 2.2, con ella obtene-
mos que es S = −z+ x. El siguiente paso es realizar el algoritmo de la división, dividiendo S entre F ,
tras hacerlo obtenemos que el resto es r = −z+ x que es distinto de 0 por tanto por 2.17 F no es una
base de Gröbner.

Para construir una base de Gröbner debemos aplicar el algoritmo de Buchberger, que consiste en
añadir el resto de la división de cada uno de los posibles S-polinomios a la base inicial hasta que todos
los restos sean cero. Es decir, ahora F ′ = [f1, f2,r], calculamos todos los posibles S-polinomios de F ′.
Sus restos son siempre cero, lo que prueba que F ′ = [x2y− z,xy−1,−z+ x] es una base de Gröbner y
que la base de Gröbner minimal, es decir quitando los elementos que sean combinación de los demás,
es Fm = [xy−1,z− x].

Capítulo 3

Anillos de polinomios diferenciales

Una vez vistas las bases de Gröbner para ideales de polinomios algebraicos intentamos encontrar
algo similar en anillos de polinomios diferenciales. Para ello, será preciso introducir una serie de con-
ceptos y observaciones.

Definición 3.1. Un anillo R se dice que es un anillo diferencial si existe un operador de R a R, d : R→ R
tal que ∀α,β ∈ R:

d es lineal, es decir, d(α +β) = d(α)+d(β)

d(αβ) = d(α)β +αd(β).

Definición 3.2. Un subconjunto I de un anillo diferencial R es un ideal diferencial si es un ideal alge-
braico de R y además es cerrado para la diferencial, es decir, d(I)⊂ I.

Si S es un subconjunto de R e I es el menor ideal diferencial de R conteniendo a S. Se dice que S es
un sistema generador de I, si S = { f1, ..., fn} entonces se denota I = [f1, .. fn].

Pero tenemos que tener en cuenta que si R es un anillo algebraico se puede considerar el ideal
algebraico I generado por S pero este será distinto al ideal diferencial.

Ejemplo 7. Tomamos k un cuerpo y R = k[x0,x1,x2, ...] definamos d : R→ R como d(xi) = xi+1. Enton-
ces el anillo R es un anillo diferencial, que podemos identificar con k[x,dx,d(2)x, ...,d(n)x]. Lo denotare-
mos por k{x} y representa el anillo de polinomios diferenciales de x sobre k. Si añadimos más variables
tenemos k{x1, ...,xn} el anillo diferencial de polinomios en x1, ...,xn sobre k.

Definición 3.3. Sea M el conjunto de todos los monomios en el anillo R = k{x1, ...,xn}, consideremos
la aplicación, llamada peso de los monomios de k{x1, ...,xn}, ω : M→ R tal que:

ω(xi) = mi con mi > 0 para i = 1, ...,n

ω(d(k)xi) = k+mi para cualquier entero k > 0 y i = 1, ...,n

Para cualquier monomio m ∈M, ω(m) = ∑i ω(fi) donde el rango de los fi sobre los factores de
m contiene una única variable o una derivada.

El peso de un polinomio diferencial es el máximo peso de sus monomios (entendiendo monomio
como producto de variables y diferenciales de las variables).

Definición 3.4. Un polinomio diferencial se dice cuasi-homogéneo si sus monomios tienen todos el
mismo peso respecto a las mismas funciones peso.

Cualquier polinomio se puede escribir de manera única como suma de polinomios cuasi-homogéneos,
que se llaman componentes cuasi-homogéneas. A la componente de mayor peso se le llama componente
cuasi-homogénea principal.

19

20 Capítulo 3. Anillos de polinomios diferenciales

Definición 3.5. Un ideal diferencial I se dice cuasi-homogéneo si todo polinomio diferencial f de I
tiene sus componentes cuasi-homogéneas en I, es decir, si f ∈ I tal que f = ∑ fd ⇒ fd ∈ I.

Con estas definiciones tenemos las siguientes propiedades:

ω(f g) = ω(f)+ω(g) ∀ f ,g ∈ R = k{x1, ...,xn}

ω(d(f)) = ω(f)+1 ∀ f ,g ∈ R = k{x1, ...,xn}, y por tanto ω(d(k)(f)) = ω(f)+ k ∀ f ,g ∈ R

El conjunto S j de producto de potencias diferenciales de peso j es finito para cualquier j.

Proposición 3.1. Un ideal diferencial I en un anillo de polinomios diferenciales con coeficientes cons-
tantes es cuasi-homogéneo si y solo si tiene un sistema generador cuasi-homogéneo.

Tenemos que tener en cuenta que si R es un anillo diferencial necesitamos que Q esté contenido en
R y que los ideales sean radicales para que k{x} sea un anillo diferencial.

3.1. H-Bases de ideales

Con estas definiciones podemos definir las H-bases de ideales diferenciales que nos permitirán
hacer una construcción similar a lo obtenido con las bases de Gröbner con lo que podremos simplificar
sistemas de ecuaciones diferenciales y así poder resolverlos más fácilmente.

Definición 3.6. Sea I un ideal diferencial en k{x1, ...,xn}, H(I) es un ideal algebraico generado por el
conjunto de todas las componentes cuasi-homogéneas principales de los polinomios diferenciales en I.

Así, un polinomio diferencial f está en H(I) si todas sus componentes cuasi-homogéneas están en
H(I). Necesitaremos estar en el cuerpo de constantes para que H(I) sea un ideal diferencial, pues de
no estar las derivadas y extracción de componentes cuasi-homogéneas principales no se puede calcu-
lar en general. Además podemos definir H(I)i = H(I)∩Ai donde Ai que es un k-espacio vectorial de
polinomios cuasi-homogéneos de peso i.

Notamos que dada una base S para un ideal diferencial I consideramos el ideal H(S) generado por
las componentes cuasi-homogéneas principales de los polinomios del conjunto

S = {g : g = dks con s ∈ S k ∈ N∪{o}},

entonces generalmente H(S)⊂ H(I).

Definición 3.7. Una base S de un ideal diferencial I se llama H-base si H(S) = H(I).

Al estar en el cuerpo de las contantes H(S) también es un ideal diferencial.

Veamos ahora un procedimiento para conseguir una H-base, empezando por un conjunto finito de
generadores. Este proceso consiste en determinar para cualquier peso k el conjunto H(S)k y comprobar
cualquier relación lineal entre los elementos de cada conjunto. Estas relaciones proporcionan nuevos
generadores que tendrán menor peso y se podrán añadir a la base S y así podremos completar hasta
obtener una H-base.

Este proceso es similar al visto para obtener una base de Gröbner y aunque tiene una serie de
inconvenientes, como la restricción de los ideales mencionada anteriormente o que el cuerpo ha de ser
el de las contantes, nos proporciona información útil sobre el ideal.

Sea S el conjunto de polinomios diferenciales tales que para cualquier entero fijo k hay un numero
finito de elementos en S cuyo pero es k. Es posible introducir una variable por un procedimiento de
reescritura para polinomios diferenciales usando elementos de S.

Sea f un polinomio diferencial cuasi-homogéneo. Suponemos f1, ... fp son elementos de S con peso
ω(f): sus componentes cuasi-homogéneas principales generan un subespacio V del espacio vectorial W

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 21

de los polinomios cuasi-homogéneos de peso ω(f). Como podemos calcular el cuerpo de los coeficien-
tes es posible encontrar h1(f) y h2(f) tales que se tiene h(f) = h1(f)+ h2(f) con h1(f) ∈ V y h2(f)
en el subespacio complementario ortogonal a V . Es decir, las componentes cuasi-homogéneas princi-
pales de f (como f es cuasi-homogéneo h(f) = f) se pueden ponen como suma de las componentes
principales de f que están en V y las que están en su complementario ortogonal.

Además se puede calcular los elementos ai ∈ k tales que:

h1(f) = a1h(f1)+ ...+aph(fp).

Con estos elementos que hemos encontrado podemos calcular la reducción de f módulo S que será:

f̃ = f − (a1 f1 + ...+ap fp).

Esta relación de reducción la denotamos f →S f̃ .
El proceso de reducción puede generalizarse para cualquier polinomio diferencial g sin necesi-

dad de ser cuasi-homogéneo, pues sabemos que pueden ponerse como sumas de componentes cuasi-
homogéneas, por tanto bastaría aplicarlo a cada una de sus componentes.

Proposición 3.2. Sea I un ideal diferencial S una H-base de I y f un polinomio diferencial. Entonces
f está en I si y sólo si alguna cadena maximal de reducción con respecto a S termina en 0.

Capítulo 4

Ejemplo

En este capítulo aplicaremos el método explicado en el capítulo anterior a un caso particular para
poder mostrar el procedimiento general que se encuentra implementado en el Anexo (ver pág. 29).

Consistirá en transformar un sistema de ecuaciones diferenciales polinómicas con una difícil solu-
ción en un sistema sencillo del cual la solución es conocida o fácil de obtener.

Para ello, partimos del siguiente sistema:y(t)+ dx(t)
dt −

(
dx(t)

dt −
dy2(t)

d2t

)20
x(t)12y(t)10 = 0

dy(t)
dt − x(t) = 0.

Con estas dos ecuaciones podemos denotar f1 = y+ ẋ− (ẋ− ÿ)20x12y10 y f2 = ẏ− x y así tomamos
la base inicial F = [f1, f2] donde f1 y f2 están en C{x,y} y fijamos el orden lexicográfico con x > y.

La manera de aplicar el método de reducción es análoga al algoritmo de Buchberger (2.18), así pues,
comenzamos construyendo un S-polinomio a partir de estos dos polinomios diferenciales.

Como en el ejemplo 7 debemos entender ẋ, ẍ, ..., ẏ, ÿ, ... como nuevas variables. Definiremos el peso
de x y de y como 1 y así, podemos definir pesos al resto de variables de modo que ω(xi+1) = ω(xi)+1
y análogamente para las yi. Esta diferencia de peso nos afectará a la hora de encontrar el término prin-
cipal pues dependiendo del orden fijado el peso afectara a su elección. Por ejemplo respecto al orden
lexicográfico graduado si x tiene peso 1 e y tiene peso 3 el polinomio f = x2 + y tiene como término
principal y mientras que si ambas tuvieran peso 1 seria x2.

En nuestro caso hemos fijado el orden lexicográfico ya que así los pesos no afectan a la hora de
ordenar los monomios. Así, en este ejemplo el S-polinomio es:

fs = y+ ẋ− (ẋ− ÿ)20x12y10− x11ẋ20y10ẏ+ x12ẋ20y10.

El siguiente paso es reducir el S-polinomio obtenido y añadir el resto a la base inicial, como se hacía
con el resto en el algoritmo de Buchberger.

Para iniciar el proceso de reducción necesitamos saber el peso del S-polinomio y si es cuasi-
homogéneo o no. De no serlo, como es el caso, ya que no todos los monomios tienen el mismo peso,
nos quedamos con la componente principal.

El peso del S-polinomio es 82 con este peso calcularemos la base B, obtenida de realizar combina-
ciones de f1 y f2, hasta obtener todos los posibles polinomios diferenciales de peso 82.

23

24 Capítulo 4. Ejemplo

El siguiente paso es poner la componente cuasi-homogénea principal del S-polinomio como combi-
nación de las componentes cuasi-homogéneas principales de los elementos de la base B.

Así, por ejemplo la componente cuasi-homogénea principal del S-polinomio, fs es h(fs)=−x12y10ÿ20

que es 1 por la componente principal de f1.

Una vez hecho esto, el proceso de reducción se continúa restando al polinomio inicial la componente
cuasi-homogénea principal y sumando los coeficientes obtenidos en el paso anterior multiplicando por
su correspondiente elemento de la base B. En nuestro ejemplo, en el primer paso del método, obtenemos
que el S-polinomio queda reducido a:

x12ẋ20y10− x11ẋ20y10ẏ

Continuamos reduciendo este segundo polinomio hasta que el polinomio reducido sea 0, igual que
en el paso anterior o que el peso del polinomio obtenido sea menor que el de los elementos de la base
inicial (F en nuestro ejemplo).

En este ejemplo, en concreto, lo que sucede es que da 0, es decir, que la H-base está compuesta
únicamente por f1, f2 y seguimos sin tener un sistema más sencillo. De hecho es el mismo, por tanto lo
que debemos hacer es reducir un elemento de la base inicial con respecto al otro.

Como el grado de f1 es mucho mayor que el de f2 vamos a intentar reducir f1 respecto a f2 obte-
niendo los elementos de la base B desde f2 y siguiendo los mismos pasos que anteriormente, obtenemos
que f1 se puede expresar como ẋ+ y y por tanto, nuestro base inicial quedará como F ′ = [ẋ+ y, ẏ− x].
Viéndolo como sistema obtenemos que nuestro sistema inicial es equivalente a:{

dx(t)
dt + y(t) = 0
−x(t)+ dy(t)

dt = 0

Se trata de un sistema muy sencillo cuya solución es:

x(t) = cos(t)x(0)− sin(t)y(0)

y(t) = sin(t)x(0)+ cos(t)y(0)

Para la obtención de los resultados en Sage se ha tenido que realizar un cambio de notación, de
modo que a x se le ha llamado x0 a ẋ se le llama x1 y a ẍ, x2 y de manera análoga con la y, de esta forma
es necesario definir lo que es derivar.

También hay que observar que el anillo estará formado por x0,x1,x2,y0,y1,y2, pasa a ser finito y por
tanto no se puede derivar de nuevo x2 e y2, es decir, tomamos la licencia de impedir la existencia de
derivadas terceras ya que en nuestras ecuaciones iniciales no aparecen. Como consecuencia de esto el
algoritmo realizado no sirve en general sino en unos casos determinados. Pero la modificación para otro
tipo de casos no siendo compleja escapa de los objetivos de este trabajo.

Bibliografía

[1] DAVID COX, JOHN LITTLE, DONAL O’SHEA, Ideals, Varieties and Algorithms, Colección Sprin-
ger, Tercera Edición, 2007.

[2] GIOVANI GALLO, BHUBANESWAR MISHRA, FRANÇOIS OLLIVER, Some Constructions in Rings
of Differential Polynomials, Applied algebra, algebraic algorithms and error-correcting codes (New
Orleans, LA, 1991), 171-182, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991.

[3] FRANÇOIS BOULIER, Differential elimination and biological modelling, Gröbner bases in sym-
bolic analysis, 109-137, Radon Ser. Comput. Appl. Math., 2, Walter de Gruyter, Berlin, 2007

25

Índice alfabético

H-base, 20
S-polinomio, 16

Algoritmo de Buchberger, 16
Algoritmo de la división, 6
Algoritmo de la division en varias variables, 11
Anillo diferencial, 19

Base de Gröbner, 15
Base de Gröbner minimal, 17
Base de Gröbner reducida, 17
Bases de Gröbner, 9

Coeficiente principal, 11
Componente cuasi-homogénea, 19
Condición de las cadeas ascendentes, 15
Criterio de Buchberger, 16

Espacio afín, 3

Ideal, 4
Ideal diferencial, 19
Ideal monomial, 13

Lema de Dixon, 14

Máximo común divisor, 7
Monomio, 3
Monomio principal, 11
Multigrado, 11

Orden lexicográfico, 10
Orden lexicográfico graduado, 10
Orden lexicográfico graduado inverso, 10
Orden monomial, 10

Peso de los monomios, 19
Peso de un polinomio, 19
Polinomio, 3
Polinomio cuasi-homogéneo, 19
Polinomios en una variable, 5
Proceso de reducción, 20

Teorema de las bases de Hilbert, 15
Termino principal, 11

Varieda afín, 4

27

28 Capítulo 4. Bibliografía

Anexo

Se muestran aquí los algoritmos empleados para la resolución de los ejemplos. Comenzamos con
los programas empleados en el caso de anillos de polinomios no diferenciales

S_polinomio.

Input (P, f ,g). Donde P es el anillo, y f y g dos polinomios.
Output (s). s es un polinomio, concretamente el S-polinomio obtenido de f y g.

def S_polinomio(P,f,g):

a=P(f).lm()

b=P(g).lm()

c=lcm(a,b)

s=P((c/a)*f-(c/b)*g)

return s

alg. Algoritmo de la división.

Input (P,G, f). Donde P es el anillo, y G es una lista de polinomios y f un polinomio.
Output (I,r). Una lista de dos elementos, donde I es una lista de polinomios, los cuales corresponden

a los cocientes al aplicar el algoritmo de la división, r un polinomio que corresponde al resto.

def alg(P,G,f):

n=len(G)

p=f

I=n*[0]

r=0

while p!=0:

i=0

do=False

while i<n and do==False:

a=P(G[i]).lt()

b=P(p).lt()

if b%a==0:

coci=P(b/a)

I[i]=I[i]+coci

p=p-coci*G[i]

do=True

else:

i=i+1

if do==False:

r=r+b

p=p-b

29

30 Capítulo 4. Anexo

return (I,r)

baseG. Algoritmo de Buchberger.

Input (P, I). P es un anillo, I una lista de polinomios.
Output (G). G es una lista de polinomios, que forman una base de Gröbner.

def baseG(P,I):

n=len(I)

G=I

for i in [0..n-2]:

for j in [i+1..n-1]:

S=S_polinomio(P2,G[i],G[j])

M=alg(P,G,S)

if M[1]!=0:

G=G+[M[1]]

return baseG(P,G)

return G

baseGmin. Cálculo de base minimal.

Input (P, I,k = 0). P es un anillo, I una lista de polinomios,k es un numero que si no se indica es 0.
Output (G2). G2 es una lista de polinomios, que forman una base de Gröbner minimal.

def baseGmin(P,I,k=0):

G=baseG(P,I)

n=len(G)

for i in [k..n-1]:

G0=[G[j] for j in [0..n-1] if j<>i]

G1=[G[j] for j in [k..n-1] if j<>i]

M=alg(P,G1,G[i])

if M[1]==0:

return baseGmin(P,G0,i)

G2=[G[s]/G[s].lc() for s in range(n)]

return G2

Las siguientes funciones corresponden al caso de polinomios diferenciales

derivada.

Input (p). p es un polinomio.
Output (d). d es un polinomio, resultante de calcular la derivada de p.

def derivada(p):

mon=p.monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

d=0

for i in range(n):

if mon[i]%x2==0 or mon[i]%y2==0:

return ’hay que cambiar el anillo’

m=[x0,x1,y0,y1]

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 31

dm=[x1,x2,y1,y2]

for j in range(4):

k=1

while mon[i]%m[j]^k==0:

k=k+1

d=d+coe[i]*(k-1)*dm[j]*mon[i]/m[j]

return d

grmon. Grado de un monomio.

Input (m). m es un monomio.
Output (gr, f ,e). Es una lista formada por 3 elementos, gr es un número, el grado del monomio, f es

una lista de números, los pesos de cada una de las variables,e es una lista de números, los exponentes
de las variables del monomio.

def grmon(m):

g=0

if m%x3==0 or m%y3==0:

return ’hay que cambiar el anillo’

v=[x0,x1,x2,y0,y1,y2]

e=6*[0]

for j in range(len(v)):

k=1

while m%v[j]^k==0:

k=k+1

e[j]=e[j]+(k-1)

f=[e[0],2*e[1],3*e[2],e[3],2*e[4],3*e[5]]

return e[0]+e[3]+2*(e[1]+e[4])+3*(e[2]+e[5]),f,e

resta.

Input (a,b). a y b son dos listas.
Output (r) r es una lista, obtenida de restar cada los valores de las listas a y b. Si las listas son de

distinto tamaño devuelve que no puede restar.

def resta(a,b):

n=len(a)

m=len(b)

if n!=m:

return ’no se pueden restar’

else:

r=[a[i]-b[i] for i in range(n)]

return r

tplex. Término y monomio principal por el orden lexicográfico.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal

y otro mon, correspondiente al monomio principal, ambos por el orden lexicográfico.

def tplex(p):

mon=(p).monomials()

32 Capítulo 4. Anexo

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

g=[grmon(i)[1] for i in mon]

h=[grmon(i)[2] for i in mon]

t=g[0]

e=h[0]

c=coe[0]

for j in [1..n-1]:

r=resta(t,g[j])

k=0

while r[k]==0:

k=k+1

if r[k]<0:

t=g[j]

e=h[j]

c=coe[j]

else:

t=t

e=e

c=c

ter=c*x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

mo=x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

return ter,mo

tplex. Término y monomio principal por el orden lexicográfico graduado.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal

y otro mon, correspondiente al monomio principal, ambos por el orden lexicográfico graduado.

def tplexg(p):

mon=(p).monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

o=[grmon(i)[0] for i in mon]

g=[grmon(i)[1] for i in mon]

h=[grmon(i)[2] for i in mon]

O=o[0]

t=g[0]

e=h[0]

c=coe[0]

for j in [1,n-1]:

if O<o[j]:

O=o[j]

t=g[j]

e=h[j]

c=coe[j]

if O>o[j]:

O=O

t=t

e=e

c=c

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 33

c=0

s=0

while s<n:

if O==o[s]:

c=c+1

s=s+1

if c<2:

ter=c*x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

mo=x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

return ter,mo

else:

pos=[i for i in [0..n-1] if o[i]==O]

q=0

for k in pos:

q=q+mon[k]

return tplex(q)

tplexi. Término y monomio principal por el orden lexicográfico inverso.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal

y otro mon, correspondiente al monomio principal, ambos por el orden lexicográfico inverso.

def tplexi(p):

mon=(p).monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

g=[grmon(i)[1] for i in mon]

h=[grmon(i)[2] for i in mon]

t=g[0]

e=h[0]

c=coe[0]

for j in [1..n-1]:

r=resta(t,g[j])

k=len(r)-1

while r[k]==0:

k=k-1

if r[k]>0:

t=g[j]

e=h[j]

c=coe[j]

else:

t=t

e=e

c=c

ter=c*x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

mo=x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

return ter,mo

tplex. Término y monomio principal por el orden lexicográfico inverso graduado.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal

y otro mon, correspondiente al monomio principal, ambos por el orden lexicográfico inverso graduado.

34 Capítulo 4. Anexo

def tplexgi(p):

mon=(p).monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

o=[grmon(i)[0] for i in mon]

g=[grmon(i)[1] for i in mon]

h=[grmon(i)[2] for i in mon]

O=o[0]

t=g[0]

e=h[0]

c=coe[0]

for j in [1,n-1]:

if O<o[j]:

O=o[j]

t=g[j]

e=h[j]

c=coe[j]

if O>o[j]:

O=O

t=t

e=e

c=c

c=0

s=0

while s<n:

if O==o[s]:

c=c+1

s=s+1

if c<2:

ter=c*x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

mo=x0^e[0]*x1^e[1]*x2^e[2]*y0^e[3]*y1^e[4]*y2^e[5]

return ter,mo

else:

pos=[i for i in [0..n-1] if o[i]==O]

q=0

for k in pos:

q=q+mon[k]

return tplexi(q)

dS_polinomio.

Input (orden,A, f ,g). orden es un número del 1 al 4 que indica el tipo de orden monomial con el
que se va a calcular el S-polinomio. (1-lexicográfico, 2-lexicográfico graduado, 3-lexicográfico inverso,
4-lexicográfico graduado inverso). A es el anillo, f y g son dos polinomios.

Output (s), donde s es un polinomio correspondiente al S-polinomio.

def dS_polinomio(orden,A,f,g):

if orden==1:

a=tplex(f)[1]

b=tplex(g)[1]

if orden==2:

a=tplexg(f)[1]

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 35

b=tplexg(g)[1]

if orden==3:

a=tplexi(f)[1]

b=tplexi(g)[1]

if orden==4:

a=tplexgi(f)[1]

b=tplexgi(g)[1]

c=lcm(a,b)

s=A((c/a)*f-(c/b)*g)

return s

eli.

Input (lista). lista es una lista
Output (l). l es una lista igual que lista pero sin elementos repetidos.

def eli(lista):

l=[]

for i in lista:

if i not in l:

l.append(i)

return sorted(l)

comqh. Componentes quasi-homogénas

Input (p). p es un polinomio.
Output (s) s es una lista formada por las componentes quasi-homogéneas de p es decir una lista

polinomios que tienen todos los términos con el mismo peso.

def comqh(p):

mon=(p).monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

o=[grmon(i)[0] for i in mon]

l=eli(o)

m=len(l)

s=m*[0]

i=0

while i<n:

j=0

while j<m:

if o[i]==l[j]:

s[j]=s[j]+coe[i]*mon[i]

j=j+1

i=i+1

return s

comqhp. Componente quasi-homogénea principal.

Input (p). p es un polinomio.
Output (s). s es un polinomio con todos sus términos con el mismo peso siendo este el peso mayor

de todas las componentes quasi-homogéneas, es decir s es la componente quasi-homogénea principal.

36 Capítulo 4. Anexo

def comqhp(p):

mon=(p).monomials()

coe=[p.monomial_coefficient(_) for _ in mon]

n=len(mon)

o=[grmon(i)[0] for i in mon]

l=eli(o)

m=len(l)

g=l[m-1]

s=0

i=0

while i<n:

if o[i]==g:

s=s+coe[i]*mon[i]

i=i+1

return s

wp. Peso de un polinomio

Input (p). p es un polinomio.
Output g. g es un número que corresponde al peso de p.

def wp(p):

mon=(p).monomials()

n=len(mon)

o=[grmon(i)[0] for i in mon]

l=eli(o)

m=len(l)

g=l[m-1]

return g

eliw

Input (I1,w). I1 es una lista de listas, donde cada sublista tiene 2 elementos es decir I1= [[ai,b1]...[an,bn]]
donde ai es la componente quasi-homogénea de bi. w es un número.

Output (Lw,L). Devuelve 2 listas de listas, la primeraLw está formada por los elementos de I1 cuya
primera componente (ai) tiene peso w. La segunda L está formada por los elementos de I1 cuya primera
componente tiene peso menos que w.

def eliw(I1,w):

n=len(I1)

Lw=[]

L=[]

for j in range(n):

if wp(I1[j][0])==w:

Lw=Lw+[I1[j]]

if wp(I1[j][0])<w:

L=L+[I1[j]]

return Lw,L

eliminar.

Input (L). L es una lista de listas formadas donde cada sublista tiene 2 elementos es decir L =
[[ai,b1]...[an,bn]] donde ai es la componente quasi-homogénea de bi.

Output (L). L es igual que la L del input, la diferencia es que se han eliminado las sublistas que
tenían el ai repetido.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 37

def eliminar(L):

n=len(L)

aux=L

for i in range(n-1):

for j in [i+1..n-1]:

if aux[i][0]==aux[j][0]:

aux=[aux[k] for k in [0..j-1]+[j+1..n-1]]

return eliminar(aux)

return L

baseSmul.

Input (I,w). I es una lista de listas donde cada sublista tiene 2 elementos es decir I = [[ai,b1]...[an,bn]]
donde ai es la componente quasi-homogénea de bi. w es un número.

Output (Lw).Lw es una lista de listas donde cada sublista tiene 2 elementos es decir Lw= [[ai,b1]...[an,bn]]
donde ai es la componente quasi-homogénea de bi y todas las ai tienen peso w.

def baseSmul(I,w):

Lw=eliw(I,w)[0]

L=eliw(I,w)[1]

V=[x0,x1,x2,y0,y1,y2]

n=len(L)

while n!=0:

L0=[[L[0][0]*i,L[0][1]*i] for i in V]

L1=eliw(L0,w)[0]

L2=eliw(L0,w)[1]

Lw=Lw+L1

L=[i for i in L if i<>L[0]]+L2

n=len(L)

return eliminar(Lw)

baseSw.Base S de polinomios de peso w.

Input (I,gr,R). I es una lista de polinomios,gr es un número R es el anillo de polinomios.
Output (L). Lw es una lista de listas donde cada sublista tiene 2 elementos es decir Lw= [[ai,b1]...[an,bn]]

donde ai es la componente quasi-homogénea de bi y todas las ai tienen peso w

def baseSw(I,gr,R):

I1=[[comqhp(i),i] for i in I]

L=baseSmul(I1,gr)

L1=[[comqhp(i),i] for i in I if alg(R,[x2,y2],comqhp(i))[0]!=[0,0]]

L2=[[comqhp(i),i] for i in alg(R,[x2,y2],comqhp(i))[0]==[0,0]]

L3=baseSmul(L1,gr)

L4=[[R(derivada(L2[j][0])),R(derivada(L2[j][1]))] for j in range(len(L2))]

L5=eliw(L4,gr)[0]

L6=eliw(L4,gr)[1]

n=len(L6)

while n!=0:

l1=[i for i in L6 if alg(R,[x2,y2],i[0])[0]!=[0,0]]

l2=[i for i in L6 if alg(R,[x2,y2],i[0])[0]==[0,0]]

L3=L3+baseSmul(l1,gr)

L4=[[R(derivada(l2[j][0])),R(derivada(l2[j][1]))] for j in range(len(l2))]

L5=L5+eliw(L4+L3,gr)[0]

38 Capítulo 4. Anexo

L6=eliw(L4+L3,gr)[1]

n=len(L6)

return eliminar(L+L3+L5)

GL

Input (L). L es una lista de listas donde cada sublista tiene 2 elementos, es decir, Lw= [[ai,b1]...[an,bn]]
donde ai es la componente quasi-homogénea de bi y todas las ai tienen peso w

Output (L). L es una lista de listas donde cada sublista tiene 2 elementos es decir L= [[ai,b1]...[an,bn]]
donde ai es la componente quasi-homogénea de bi y todas las ai tienen peso w principal, la diferencia
es que sus coeficientes forman un matriz triangular superior.

def GL(L):

L1=sorted(L,reverse=True)

n=len(L1)

i=0

while i<n-1:

j=i+1

while j<n:

c=alg(R,[L1[i][0]],L1[j][0])

if c[0]!=[0]:

L2=[L1[k] for k in [0..n-1] if k<>j]

L3=[[L1[i][0]-c[0][0]*L1[j][0],L1[i][1]-c[0][0]*L1[j][1]]]

L1=L2+L3

j=j+1

else:

j=j+1

i=i+1

L1=sorted(L1,reverse=True)

L1=sorted(L1,reverse=True)

return sorted(L1,reverse=True)

reducqh. Método de reducción para componente quasi-homogéneas.

Input (p, I,R). p es un polinomio quasi-homogéneo, I es una lista de polinomios, R es un anillo.
Output (q). q es un polinomio obtenido del proceso de reducción de p respecto a la base S obtenida

de I.

def reducqh(p,I,R):

w=wp(p)

S=baseSw(I,w,R)

S0=GL(S)

S1=[i[0] for i in S0 if i[0]<>0]

c=alg(R,S1,p)[0]

L=[[c[i],S0[i][1]] for i in range(len(S0)) if c[i]!=0]

q=p

for j in range(len(L)):

q=q-L[j][0]*L[j][1]

return q

reducp. Método de reducción.

Input (p, I,R). p es un polinomio, I es una lista de polinomios, R es un anillo.
Output (q1). q1 es un polinomio obtenido del proceso de reducción de p respecto a la base S obte-

nida de I.

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 39

def reducp(p,I,R):

p1=comqhp(p)

q=reducqh(p1,I,R)

q1=p-p1+q

H=[wp(i) for i in I]

H1=sorted(H)

h=H1[0]

if q1==0:

return q1

if wp(q1)>=h:

return reducp(q1,I,R)

else:

return q1

reduc. Proceso de reducción.

Input (I,R,orden). I es un ideal, R es un anillo, orden es un número del 1 al 4 que indica el tipo
de orden monomial (1-lexicográfico, 2-lexicográfico graduado, 3-lexicográfico inverso, 4-lexicográfico
graduado inverso).

Output (G). G es un lista de polinomios, que constituye una H-base.

def reduc(I,R,orden):

n=len(I)

G=I

for i in [0..n-2]:

for j in [i+1..n-1]:

S=dS_polinomio(orden,R,G[i],G[j])

M=reducp(S,I,R)

if M!=0:

G=G+[M]

return reduc(S,G)

return G

Tras realizar todos estos algoritmos y probar algún ejemplo como:{
g1 = x0x1+ y12

g2 = 3x0+ y0x1+ y13

G = [g1,g2] es el ideal, con el que obtenemos resultados como que el S-polinomio es:

−x1y13− x12y0−2x0x1+ y12.

Y al reducirlo nos da 0 y al construir la H-base obtenemos que nos da el mismo ideal G.
Pero al hacerlo con polinomios de mayor peso el calculo de la base S tarda mucho pues ha de realizar

muchas operaciones por eso algunas de las funciones han sido mejoradas para que en lugar de calcular
toda la base S solo calcule los elementos que son necesarios para realizar la reducción. Estas funciones
se muestra a continuación.

baseSmul1

Input (p, I,R). p es un polinomio,I es una lista de polinomios,R es un anillo.
Output (Lw). Lw es una lista de lista, con cada sublista formada por dos elementos [ai,b1], el pri-

mero, las componentes quasi-homogéneas de peso el de p formada a partir de las componentes quasi-
homogéneas de I y el segundo los polinomios de peso el de p de los cuales ai son las componentes
quasi-homogéneas principales.

40 Capítulo 4. Anexo

def baseSmul1(p,I,R):

p1=comqhp(p)

w=wp(p)

I1=[[comqhp(i),i] for i in I]

n=len(I)

I2=[i for i in I1 if alg(R,[R(i[0])],R(p1))[1]==0]

Lw=eliw(I2,w)[0]

L=eliw(I2,w)[1]

L=[i for i in L if alg(R,[i[0]],p1)[1]==0]

n=len(L)

m=len(Lw)

if m!=0:

return eliminar(Lw)

else:

while n!=0:

a=[alg(R,[R(L[i][0])],R(p1))[0][0] for i in range(n)]

L0=[[L[0][0]*a[i],L[0][1]*a[i]] for i in range(n)]

L1=eliw(L0,w)[0]

L2=eliw(L0,w)[1]

Lw=eliminar(Lw+L1)

m=len(Lw)

if m!=0:

return eliminar(Lw)

else:

L=[i for i in L if i<>L[0]]+L2

L=[L[i] for i in [0..len(L)-1] if alg(R,[L[i][0]],p1)[1]==0]

n=len(L)

return eliminar(Lw)

baseSw1.

Input (p, I,R). p es un polinomio,I es una lista de polinomios,R es un anillo.
Output (Lw). Lw es una lista de lista, con cada sublista formada por dos elementos [ai,b1], el pri-

mero, las componentes quasi-homogéneas de peso el de p formada a partir de las componentes quasi-
homogéneas de I y el segundo los polinomios de peso el de p de los cuales ai son las componentes
quasi-homogéneas principales.

def baseSw1(p,I,R):

gr=wp(p)

L=baseSmul1(p,I,R)

m=len(L)

if m!=0:

return eliminar(L)

else:

p1=comqhp(p)

I1=[[comqhp(i),i] for i in I]

L1=[i for i in I if alg(R,[x2,y2],comqhp(i))[0]!=[0,0]]

L2=[[comqhp(i),i] for i in I if alg(R,[x2,y2],comqhp(i))[0]==[0,0]]

e=len(L2)

L3=baseSmul1(p,L1,R)

L4=[[R(derivada(L2[j][0])),R(derivada(L2[j][1]))] for j in range(e)]

L4=[i for i in L4 if alg(R,[i[0]],p1)[1]==0]

Bases de Gröbner e ideales diferenciables - Celia Aguelo Jiménez 41

L5=eliw(L4,gr)[0]

L6=eliw(L4,gr)[1]

n=len(L6)

while n!=0:

l1=[i[1] for i in L6 if alg(R,[x2,y2],i[0])[0]!=[0,0]]

l2=[i for i in L6 if alg(R,[x2,y2],i[0])[0]==[0,0]]

L3=L3+baseSmul1(p,l1,R)

e2=len(l2)

L4=[[R(derivada(l2[j][0])),R(derivada(l2[j][1]))] for j in range(e2)]

L4=[i for i in L4 if alg(R,[i[0]],p1)[1]==0]

L5=L5+eliw(L4+L3,gr)[0]

L6=eliw(L4+L3,gr)[1]

n=len(L6)

return eliminar(L+L3+L5)

reducqh1. Método de reducción para componente quasi-homogéneas.

Input (p, I,R). p es un polinomio quasi-homogéneo, I es una lista de polinomios, R es un anillo.
Output (q). q es un polinomio obtenido del proceso de reducción de p respecto a la base S obtenida

de I.

def reducqh1(p,I,R):

w=wp(p)

S=baseSw1(p,I,R)

S0=GL(S)

S1=[i[0] for i in S0 if i[0]<>0]

q=p

if len(S1)!=0:

c=alg(R,S1,p)[0]

L=[[c[i],S0[i][1]] for i in range(len(S0)) if c[i]!=0]

for j in range(len(L)):

q=q-L[j][0]*L[j][1]

return q

reducp1. Método de reducción.

Input (p, I,R). p es un polinomio, I es una lista de polinomios, R es un anillo.
Output (q1). q1 es un polinomio obtenido del proceso de reducción de p respecto a la base S obte-

nida de I.

def reducp1(p,I,R):

p1=comqhp(p)

q=reducqh1(p1,I,R)

q1=p-p1+q

if q1==p:

return q1

H=[wp(i) for i in I]

H1=sorted(H)

h=H1[0]

if q1==0:

return q1

if wp(q1)>=h:

return reducp1(q1,I,R)

return q1

42 Capítulo 4. Anexo

basedG. H-base.

Input (P, I,orden). P es un anillo, I es una lista de ideales, orden es un número del 1 al 4 que
indica el tipo de orden monomial (1-lexicográfico, 2-lexicográfico graduado, 3-lexicográfico inverso,
4-lexicográfico graduado inverso).

Output (G). G es una lista de polinomios.

def basedG(P,I,orden):

n=len(I)

G=I

for i in [0..n-2]:

for j in [i+1..n-1]:

S=dS_polinomio(orden,P,G[i],G[j])

M=reducp1(S,G,P)

if M!=0:

G=G+[M]

return basedG(P,G,orden)

return G

basedGmin. H-base minimal.

Input (P, I,orden,k = 0). P es un anillo, I es una lista de polinomios, orden es un número del 1
al 4 que indica el tipo de orden monomial (1-lexicográfico, 2-lexicográfico graduado, 3-lexicográfico
inverso, 4-lexicográfico graduado inverso) y k es un número que si no se da vale 0.

Output (G2). G2 es una lista de polinomios.

def basedGmin(P,I,orden,k=0):

G=basedG(P,I,orden)

n=len(G)

if n==len(I):

H=[[wp(i),i] for i in I]

H1=sorted(H,reverse=True)

h=H1[0][1]

I1=[i for i in I if i<>h]

r=reducp1(h,I1,P)

G=[r]+I1

G2=[G[s]/G[s].lc() for s in range(n)]

return G2

for i in [k..n-1]:

G0=[G[j] for j in [0..n-1] if j<>i]

G1=[G[j] for j in [k..n-1] if j<>i]

M=alg(P,G1,G[i])

if M[1]==0:

return basedGmin(P,G0,orden,i)

G2=[G[s]/G[s].lc() for s in range(n)]

return G2

	Abstract
	Introducción
	Primeras definiciones
	Polinomios y espacio afín
	Variedades afines
	Ideales
	Polinomios de una variable

	Bases de Gröbner
	Orden monomial en k[x1,…,xn].
	El algoritmo de la división en k[x1,…,xn].
	Ideales monomiales y lema de Dickson
	El teorema de las bases de Hilbert y bases de Gröbner.
	Propiedades de las Bases de Gröbner.
	Algoritmo de Buchberger.

	Anillos de polinomios diferenciales
	H-Bases de ideales

	Ejemplo
	Bibliografía
	Índice alfabético
	Anexo

