Bases de Grobner e ideales diferenciables

macultad de Ciencias
Universidad Zaragoza

s2s Universidad
101 Zaragoza

1542

Celia Aguelo Jiménez
Trabajo de fin de grado en Matematicas
Universidad de Zaragoza

Director del trabajo: José Ignacio Cogolludo
2’7 de noviembre 2018

Abstract

Grobner bases are a particular form of generating a set of ideals in a ring of polynomials over any
field. By employing this way of ideal generators, it is possible to obtain unique remainders when ma-
king the division algorithm. This allows one to solve a series of problems such as the set of zeroes of a
polynomial equation or a system.

At the beginning of the project, a series of very standard definitions and properties will be explained,
starting from the definition of monomial, greatest common divisor, polynomials, affine spaces, affine va-
rieties, and ideals. Also, a first introduction to the division algorithm for polynomials in one variable
will be given.

After introducing these terms and properties, a study of the Grobner bases construction method will
be carried out, more specifically, Buchberger’s algorithm, which is based on the division algorithm in
k[xy, ..oy xn).

In order to do this, the concept of monomial orderings will be presented and some examples of it
will be given. This concept is of great importance to carry out the division algorithm of polynomials in
several variables so that once a monomial ordering is selected, the remainder can be uniquely determi-
ned.

Once this is clarified, this project focuses on giving the definition of a Grobner basis, via the ideal
of leading terms. The celebrated Hilbert basis theorem can be proved using this ideal of leading terms.
Also a series of properties and applications such as the ascending chain condition and the concept of
S-polynomial is provided.

To end this section the Buchberger’s algorithm will be explained. This algorithm generates a Grob-
ner basis from an ideal. Using Hilbert’s basis theorem one can find a finite set of generators. Starting
with these generators, a set of S-polinomials is generated and by means of the division algorithm the
non-zero remainders are added to the set of generators. This process is repeated until a Grobner basis is
obtained. Nevertheless, generating a Grobner basis this way results in redundant terms. For this reason,
the concepts of minimal Grobner basis and reduced Grobner bases are introduced, through which these
redundant terms are excluded.

Due to the good result of Buchberger’s algorithm, the ultimate goal of this project is to find a similar
method in the situation where differential polynomial rings are being worked upon.

This is not simple, since we have new definitions of differential rings, differential ideals, differential
polynomials and differential monomials. The concepts of weight, quasi-homogeneous differential poly-
nomial, and quasi-homogeneous differential component are introduced.

One of the found difficulties is that these polynomial rings have a infinite number of variables and
so both differential rings and differential ideals need to satisfy some special properties in order to allow

a finite process similar to Buchberger’s algorithm. One of these properties is that the ground field is a

II1

v Capitulo 0. Abstract

field of constants of characteristic zero. In addition, ideals must be radical.

Once the difficulties are known, the process begins by introducing the concept of H-bases of diffe-
rential ideals that will act as the equivalent of Grobner bases. In order to construct it, a process similar
to the Bucheberger’s algorithm will take place, which we will call this the reduction process.

To wrap up, an example of the reduction process will be shown. Starting from a differential system
that cannot be solved in a simple way, each one of the steps will be applied to obtain a simpler differen-
tial system that can be easily solved.

Each of the equations of the system is a part of the initial differential ideal, and a calculation of the
S-polynomial as in the Buchberger’s algorithm is performed, only the employed way of calculating it
will be different because of the weights. This polynomial is the one the reduction process is applied to,
which in reality is similar to the division algorithm, with the purpose of lowering the weight of the new
differential polynomial. This way this new polynomial will be added to the basis until we get a zero
polynomial, and thus the H-bases will be generated, which will allow to simplify our system.

Indice general

Abstract

Introduccion

1.

Primeras definiciones

1.1. Polinomiosyespacioafin
1.2. Variedades afines e
1.3. Ideales e e e
1.4. Polinomiosdeunavariable

2. Bases de Grobner
2.1. Orden monomial en K[Xy,...,Xn|.. L
2.2. Elalgoritmo de la divisién en K[Xy,...,Xp]. oL
2.3. Ideales monomialesy lemadeDickson.
2.4. FElteorema de las bases de Hilbert y bases de Grébner.
2.5. Propiedades de las Bases de Groébner.o
2.6. Algoritmo de Buchberger.
3. Anillos de polinomios diferenciales
3.1. H-Basesdeideales
4. Ejemplo
Bibliografia

Indice alfabético

Anexo

19
20

23

25

27

29

Introduccion

La teoria de Bases de Grobner se desarroll en los afios 60 junto con el algoritmo de Buchber-
ger teniendo un gran impacto en el dlgebra computacional. Esto ha hecho posible el célculo eficiente
de ecuaciones polinémicas permitiendo investigar complicados ejemplos. Es por esto que las bases de
Grdobner tienen multitud de aplicaciones en campos como la criptografia, la teorfa de grafos, la robética,
la resolucidn de sistemas de ecuaciones polinémicas,...

Entre todas estas aplicaciones nos vamos a centrar en la resolucion de sistemas de ecuaciones con
polinomios diferenciales.

El objetivo de este trabajo es desarrollar la teorfa de las bases de Grobner para llegar a resolver ecua-
ciones polindmicas y sistemas de ecuaciones diferenciales polindmicas tanto de manera teérica como
realizando un programa en Sage que permita su resolucion.

Para ello este trabajo estd estructurado en cuatro capitulos:

En el capitulo 1 presentamos definiciones que nos permiten introducir las bases de Grobner, su desa-
rrollo estéd basado en el texto [1], (Capitulo 1).

En el capitulo 2 se introduce el concepto de las bases de Grobner y el algoritmo de Buchberger que
permite calcularlas, basdndonos también en el texto [1], (Capitulo 2, parrafos 1-7).

En el capitulo 3 se extienden los conceptos aprendidos en los capitulos anteriores a anillos diferen-
ciales, explicando un método equivalente al algoritmo de Buchberger llamado proceso de reduccion.
Para el cual nos hemos apoyado en los textos [2] y [3].

En el capitulo 4 se realiza un ejemplo que ilustra la teoria anterior. Para su resolucién se ha imple-
mentado en Sage una serie de programas que facilitan su resolucién que se muestran en el anexo (pagi-
na 29).

Capitulo 1

Primeras definiciones

En este capitulo se introducen una serie de conceptos para polinomios algebraicos que posterior-
mente extenderemos a polinomios diferenciales.

1.1. Polinomios y espacio afin

Definicién 1.1. Un monomio en xp, ...,x, es un producto de la forma: x{ - x5? - ... - x%, donde los ¢; con

i=1,...,n son enteros no negativos. A la suma de estos exponentes se le llama grado total del monomio.
Un monomio se escribe de forma simplificada como: x* donde o = (a1, 0, ..., o) asi podemos
denotar el grado total como |c¢t|. Tenemos que tener en cuenta que si & = (0,0, ...,0) entones x* = 1.

Definicién 1.2. Llamamos polinomio en xi, ...,x, con coeficientes, ay, en k, a una combinacién lineal
de monomios y lo podemos escribir como:

f:Zaaxa.

En un polinomio llamamos término de f a agx® si el coeficiente ay # 0.

El grado total de f se denota gr(f) y es el maximo grado de todos los monomios con coeficiente no
nulo.

El conjunto de los polinomios con coeficientes en k se denota k|[xi, ..., X,].

La suma y el producto de polinomios es también un polinomio de k[xy, ..., x,].

Diremos que f divide a un polinomio g si g = fh para algin h € k[x, ..., Xx,].

El conjunto de polinomios k[xj,...,x,], es un anillo, ademds es conmutativo y lo denotamos anillo
de polinomios.

Definicion 1.3. Llamamos espacio afin n-dimensional con # un entero al conjunto:
K'= {(al,...,an) daj,...,a € k}
Por ejemplo R (la recta afin) y R? (el plano afin) son espacios afines.

Para relacionar los polinomios con los espacios afines vemos que los polinomios nos dan una funcién
f k" — k que dada (ay,...,a,) € k" sustituye cada x; por a;. De esta manera tenemos una relacién entre
el dlgebra y la geometria. Esta doble naturaleza nos permite obtener resultados como:

Proposicion 1.1. Sea k un cuerpo infinito y f € k[xy,...,x,]. Entonces f =0 en k[x,...,x,] si y solo si
f k" — k es la funcion nula.

Corolario 1.2. Sea k un cuerpo infinito y f,g € k|xi,...,x,|. Entonces f = g en k[xy,...,x,] si y solo si
fik"—=kyg: k" — ksonla misma funcion.

Teorema 1.3. Todo polinomio f € C|x| no constante tiene una raiz que pertenece a C.

4 Capitulo 1. Primeras definiciones

1.2. Variedades afines

Definicion 1.4. Se dice variedad afin definida sobre fi, ..., f;, un conjunto de polinomios en k[xi, ..., X,
con k cuerpo, a V(fi,..., fs) = {(ai1,....,an) € k" : fi(a1,...,a,) = 0V1 <i <s}. Es el conjunto de solu-
ciones de un sistema de ecuaciones fi(xy,...,x,) = ... = fy(x1,...,x,) = 0.

Notamos que en el plano R? los circulos, elipses, pardbolas e hipérbolas son variedades afines, asf
como los grafos de funciones polinémicas. En el espacio R3 algunos ejemplos de variedades afines
son el paraboloide de revolucién V(z — x> —y?), el cono V(z*> — x> —y*) o una superficie dada por
V(x* —y?z> +7°) que tienen puntos de singularidad. También es una variedad la curva ctbica torcida
(twisted cubic) V(y —x?,z—x?) que es la interseccién de las superficies y = x*> y z = x>, asf tenemos
que dos superficies en R3 dan una curva.

En mayor dimensién podemos considerar un cuerpo k y un sistema de m ecuaciones lineales con n
incégnitas x1, ..., x, con coeficientes en k:

ayxy+...+apx, = by,

Am1X1 + ... + Gunxn = by,

La solucién forma una variedad en k" llamada variedad lineal. De hecho, las rectas y planos son varie-
dades lineales. En las variedades lineales la codimension la determina el nimero de ecuaciones inde-
pendientes.

Por tltimo notamos que si V,W C k" son variedades afines, entonces la unién, VUW, e interseccion,
VNW, también lo son.

Definicion 1.5. Dado un cuerpo k. Una funcién racional en #1, ..., 1, con coeficientes en k es un cociente
f/g de dos polinomios f,g € klty,...,t,], donde g es un polinomio no nulo. Ademds, dos funciones
racionales f /gy p/h son iguales siempre que hf = pg en k[t,...,t,].

El conjunto de las funciones racionales se denota k(t1, ...,1,) y es un cuerpo.

Hay varias formas de representar una variedad afin aunque no siempre podemos representarlas de
todas estas formas.

Suponemos que tenemos una variedad V = V(f,..., fy) C k". Entonces una representacion para-
métrica racional de V es un conjunto de funciones racionales ry,...,r, € k(t1,...,1,) tal que los puntos
dados por:

X1 =n (l‘l, ...,tm),
Xy = i‘z(tl,...,tm),

Xn = rn(t1, . eestm)

estdn en la variedad V.

Cuando en una parametrizacién de una variedad tenemos polinomios en vez de funciones lo lla-
mamos representacién paramétrica polindmica de V. Las ecuaciones originales f; = ... = f; = 0 que
definen la variedad V se llaman representacién implicita de la variedad.

1.3. Ideales

Definicion 1.6. Un subconjunto I C k[xi,...,x,] es un ideal si cumple:
) 0el
) Sif,g€lentonces f+gel

1) Sifelyhekxy,...,x,), entonces hf € I

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 5

Definiciéon 1.7. Dados los polinomios fi, ..., fs € k[xi, ..., x,] el conjunto

(flyeorr f5) = {thf, thy,...,hs € k[xl,...,xn]}
t=1

se denomina ideal generado por f1, ..., fs.
Lema 1.4. Si f1,..., fs € k[x1,...,x,] entonces (fi,..., f;) es un ideal de k|xi,...,x,].

Dados fi, ..., fs € k[x1,...,x,], obtenemos el sistema de ecuaciones:

fl:O>

fs=0.
Desde estas ecuaciones podemos obtener otras. Por ejemplo, si multiplicamos la primera ecuacién por
hy € k[x,...x,] 1a segunda por h; € k[xj,...x,] y asi sucesivamente y luego sumamos todas obtenemos:

hfi+hyfo+...+hgfs =0.

El lado izquierdo de esta ecuacién es un elemento del ideal (fi, ..., f;).

Decimos que I es un ideal finitamente generado si existe f, ..., fy € k[x1,...,x,] talque I = (f1, ..., f5),
y decimos que fi,..., fy es una base de /.

Proposicion 1.5. Si fi,..., f; y g1,-..,8: son bases del mismo ideal en k|xi,...,x,), tal que (f1,..., fs) =
(g1,...,81), entonces V(fi,....fs) = V(g1,...,8&)-

Definicion 1.8. Dada V C k" una variedad afin, definimos el conjunto:
L(V)={f €klx1,....xs] : flar,...,an) =0 Y(ay,...,a,) € V}.
Lema 1.6. Si V C k" es una variedad afin, entonces I(V) C k[x1,...,x,] es un ideal, llamado ideal de V.

Lema 1.7. Si fi,..., fs € k[x1, ...,xp), entonces (fi,..., f;) CUV(f1,..., fs)), pero la igualdad no es siem-
pre cierta.

Para cuerpos arbitrarios la relacién entre (fi,..., f;) y I(V(f1,..., fs)) puede ser sutil, sin embargo
sobre un cuerpo algebraicamente cerrado como C hay una sencilla relacién entre estos ideales.

Aunque, en los cuerpos, en general I(V(f1,..., f;)) puede no ser igual a (f,..., fs). El ideal de una
variedad siempre contiene suficiente informacidn para poder determinar la variedad de forma univoca.

Proposicion 1.8. Sean V y W dos variedades afines en k": Entonces:
1) VC WsiysolosiI(V) D I(W).
11) V=W siysolosiI(V) =IL(W).

1.4. Polinomios de una variable
Definicion 1.9. Dado un polinomio f € k[x] no nulo, tomamos:
f=apX"+aixX" '+ ... +a,

donde a; € k'y ag # 0, ademas el grado de f es m. Entonces decimos que el término principal de f es
apx™ y lo denotamos TP(f).

6 Capitulo 1. Primeras definiciones

Asi, dados dos polinomios no nulos f, g podemos decir que:

gr(f) < gr(g) & TP(f) divide TP(g)

Proposicion 1.9. El Algoritmo de la Division: Sea k un cuerpo y g un polinomio no nulo en klx].
Entonces, cada f € klx] puede escribirse como:

f=q8+r

donde q,r € k|x| y también r =0 o el gr(r) < gr(g). Ademds, q y r son los iinicos polinomios que
cumplen estas propiedades.

Demostracion. Describamos primero el algoritmo de la divisién en pseudocddigo:

INPUT: g, f

OUTPUT: ¢q,r
q:=0;r:=f

WHILE: r # 0 AND TP(g) divide TP(r) DO
q:=q+TP(r)/TP(g)
ri=r—(TP(r)/TP(g))g

En cada paso del algoritmo vamos obteniendo nuevos valores de g y r hasta obtener sus valores
finales.

Veamos que funciona: Primero notamos que f = gg -+ r se cumple para los valores iniciales de g y
r dados y que si lo redefinimos sigue siendo cierto ya que se cumple:

f=ag+r=(q+TP(r)/TP(f))g+ (r—(TP(r)/TP(g))g)

El siguiente paso del algoritmo es comprobar que no se cumple r # 0 y que TP(g) divide TP(r) si
es asi produce una nueva g y r y repetimos hasta que deje de ser falso.
La clave es observar que r — (T P(r)/TP(g))g es 0 o de menor grado que r. Pues, suponiendo que:

r=apx" +...+ap, TP(r) = apx™,
g=b_XX+ .. +b, TP(g) = box*,

y suponemos que m > k, entonces:

r—(TP(r)/TP(g))g = (apxX +...) — %me—k(boﬁ +..)

y esto significa que el grado de r va bajando. Y como el grado es finito, concluimos que el algoritmo es
finito.

Por tltimo, tenemos que ver que g y r son tnicos. Supongamos que f = qg+r=¢'g+r donde ry
¥’ poseen menor grado que g. Si r # 1’ entonces gr(r' —r) < gr(g), pero por otro lado

(¢g—q)g="r—r
vefamos que ¢ — ¢’ # 0 y por tanto:
gr(r' —r)=gr((q—q")g) =gr(a—q)+gr(g) > gr(g)-

Esto es una contradiccién y por tanto r = ¥ y también tenemos que ¢ = ¢'. Asi, obtenemos la
unicidad. 0

Corolario 1.10. Si k es un cuerpo y f € k[x| es un polinomio no nulo, entonces el grado de f es como
mucho el niimero de raices de f en k.

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 7
Corolario 1.11. Si k es un cuerpo, entonces cada ideal de k|x| puede escribirse como (f) para algin
f € k[x]. Ademds, f es iinico salvo multiplicacion por constantes no nulas de k.
Definicién 1.10. Un Maximo Comun Divisor de dos polinomios f, g € k[x] es un polinomio % tal que :
I) hdividea fy g.
1) Si p es otro polinomio que divide a f'y g, entonces p divide a A.
Si h cumple esto se escribe 1 = MCD(f, g)
Proposicion 1.12. Sea f,g € k[x|. Entonces.
1) MCD(f,g) existe y es el uinico salvo multiplicacion por constantes no nulas en k
11) MCD(f,g) es un generador del ideal (f,g)
1) EIMCD(f,g) se puede encontrar mediante un algoritmo.

Demostracion. Veamos este algoritmo. Tomamos la siguiente notacion, f,g € k[x] donde g # 0 y es-
cribimos f = gg+ r donde g y r son polinomios como los de la proposicién 1.9. Cogemos r como el
resto de f'y g (r =resto(f,g)). Podemos emplear, por tanto el algoritmo de Euclides para encontrar el
MCD(f.¢) :

INPUT: g, f
OUTPUT: h
s:=g h:=f
WHILE: 5 # 0 DO:
res := resto(h,s)
h:=s

s.=res

Por el algoritmo de la division, llamando f = gg + r podemos afirmar que:
MCD(f,g) = MCD(f — gg,g) = MCD(r,g).

Notamos que el gr(g) > gr(r) o r =0. Si r # 0 repetimos el proceso para hacerlo todavia mas pequefio,
aplicando el algoritmo de la division ahora a g = ¢'r + 1 y asi llegamos a que:

MCD(g,r) = MCD(r,r).

Donde gr(r) > gr(r’) o ¥ =0y si no es asi seguimos repitiendo.
Ademads podemos afirmar que este algoritmo termina porque el grado de s va disminuyendo, enton-
ces en algin momento llegard a 0 y si eso pasa el MCD(f,g) = MCD(4,0) = h. O

Definicion 1.11. El Médximo Comin Divisor de los polinomios fi, ..., fs € k[x] es un polinomio # tal
que :

1) hdividea fi,..., f;.
1) Si p es otro polinomio que divide a fi, ..., f; entonces p divide a A.
Entonces, se escribe h = MCD(f1, ..., f;).

Y al igual que hemos extendido la definicién de MCD para dos polinomios a s polinomios podemos
extender la proposicion anterior afiadiendo: si s > 3, entonces MCD(f1, ..., fy) = MCD(f1,MCD(f2, ..., f5)).

Capitulo 2

Bases de Grobner

A partir de las bases de Grobner intentamos dar respuesta a cuatro problemas:

1. Conseguir saber si los ideales estdn generados por un conjunto finito.

2. Resolver el problema de pertenencia a un ideal.

3. Encontrar las soluciones de un sistema de ecuaciones.

4. Buscar si es posible encontrar un sistema de ecuaciones a partir de las soluciones.

Ejemplo 1. Dado un ideal I C k[x], es decir, n = 1, por el corolario 1.11 sabemos que / = (g) para algtin
g € k[x], es decir, estdn generados por un conjunto finito.

También es ficil encontrar los miembros de los ideales usando el algoritmo de la divisién,1.9:
f € I=g)siy solosial dividir f entre g se tiene que r = 0.

Ejemplo 2. Consideramos un sistema de ecuaciones:

ayxi+...+apx, +by =0,

a1 X1+ ... + apnxn + by, = 0.
Podemos reducir las filas a una matriz:
an -+ ai, —by

Ami **+ Gmn —bp

Hacemos operaciones con las filas hasta obtener una matriz escalonada y luego podemos encontrar
las soluciones sustituyendo los valores por las variables libres.
En algunos casos puede haber una solucién o no haberla.

Ejemplo 3. Tomamos un »n arbitrario y consideramos V C K" parametrizada como:

xy=ant +... +aymtm + by,

Xy = Anit1 + ... + Aty + by
V es un subespacio afin lineal de k" ya que V es la imagen de F' : k" — k" definida por:
F(l‘],...,l‘m) = (a“tl + ..t aimtm+bi,...,ant1 + ... —i—anmtm—l—bn).

Buscamos un sistema de ecuaciones lineales cuya solucion sea el conjunto de puntos de V.

9

10 Capitulo 2. Bases de Grobner

Escribimos las ecuaciones restando el término x; a ambos lados y escribimos la matriz correspon-
diente. Operamos las filas para obtener una matriz escalonada con unos en la diagonal.

Cogiendo las tltimas filas obtenemos ecuaciones que no dependen de los términos ; que son las
ecuaciones que definen V.

Nuestro objetivo es extender los métodos de los ejemplos hechos en sistemas de grado 1 a cualquier
grado y posteriormente ver si también es posible hacerse para sistemas diferenciales.

2.1. Orden monomial en k[xy,...,Xp|.

Para el algoritmo de la divisién y la eliminacién Gaussiana es muy importante el orden de los
términos del polinomio. Para poder ordenarlos podemos describir el monomio x* = x{* ---x% como
la tupla de sus exponentes & = (o, ..., &,), estableciendo una correspondencia entre los monomios en
klx1,....,x,] y Z . Ademas, cualquier orden > establecido en Z”, dard un orden de los monomios y
aunque hay muchas formas de ordenarlos nos va a interesar las que sean compatibles con la estructura

algebraica de los anillos de polinomios.

Definicién 2.1. Un orden monomial en k[x1, ...,x,| es cualquier relacién > en Z ;, o equivalentemente,
una relacién en el conjunto de monomios x%, & € Z~, campliendo:

(I) > es total (o lineal) orden en an0~
() Sia>ByyeZl, entonces a+y>f+.

(111) > es un buen orden en Z~,. Esto quiere decir que cada subconjunto no vacio de Z”, tiene un
elemento mas pequefio.

Lema 2.1. Una relacion de orden > en 7" es un buen orden si'y solo si cada secuencia estrictamente
decreciente en 7,
a(l)>a2)>a3)>...

termina eventualmente.

Definicion 2.2. Orden lexicografico. Sea o = (ai,...,0) y B = (B1,...,Bn) € Z2. Decimos que
o > B si, en la diferencia vectorial o — B € Z", el término mds a la izquierda, no nulo, es positivo.
Escribiremos x% >, xP si o >/, B.

Notar que el orden lexicogréfico, es un orden monominal puesto que cumple la definicién 2.1. Hay
también que darse cuenta de que existen muchos ordenes lexicograficos porque dependen de como se
ordenen las variables x,...,x;,.

Podemos tener en cuenta el grado total del monomio y asi obtenemos otra manera de ordenar los
monomios.

Definicién 2.3. Orden lexicografico graduado. Dado @, 8 € Z. Decimos & > ge, P si:
n n
o =Y ai>Bl=Y B, o lal=[Bly &> B
i=1 i=1

Escribiremos x% > g,/ xP sia >eriex B

Definicion 2.4. Orden lexicografico graduado inverso. Dado a,f3 € 7. Decimos 0 > inygriex B si:

|m:im>m:i&,ombww

yen @ — f3 € Z" el término més a la derecha no nulo es negativo.
Escribiremos x%* >j,g//ex Psia > invgriex B-

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 11

Definicién 2.5. Dado f =Y, agx® un polinomio no nulo en k[xi,...x,| y dado > un orden monomial:
(1) El multigrado de f es: multigr(f) = max(o € Z% : aq # 0)
(1) El coeficiente principal de f es: CL(f) = @uuigr(f) € k

(111) El monomio principal de f es: ML(f) = x™isr(f)

(1v) El término principal de f es: TL(f) = CL(f) - ML(f)

Ejemplo 4. Dado f(x,y,z) = 2x+ 3y*z +x*> + 2 se pretende dar el polinomio con sus términos orde-
nados por cada uno de los 6rdenes monomiales con x > y > z indicando en cada caso su multigrado, su
término principal y su monomio principal.

En los tres casos se escribe cada término del polinomio como un vector de 3 componentes, la primera
corresponde al grado de la x, la segunda el de la y y la tercera el de la z.

x— (1,0,0)

¥’z (0,2,1)
x* — (2,0,0)
22— (0,0,3)

= Orden lexicografico. En este orden debemos restar los vectores y sera mayor el que en esta resta
tenga el término mds a la izquierda, no nulo, positivo. Asi, f ordenado por el orden lexicografico
es: f(x,,z) =x*+2x+3y*z+23, el multigrado es (2,0,0), su término principal es x*> que coincide
con el monomio principal.

= Orden lexicografico graduado. El término mayor es el que al realizar la suma de las com-
ponentes del vector sea mayor, y si dos son iguales el que sea mayor por orden lexicografico.
Por tanto, f ordenado por orden lexicogrifico graduado es f(x,y,z) = 3y*z + 2> + x* + 2x asi,
multigr(f) = (0,2,1), TL(f) = 3y’z y ML(f) = y*z

= Orden lexicografico graduado inverso. El término mayor es el que al realizar la suma de las
componentes del vector sea mayor y si dos son iguales el que al hacer la resta tenga el término mas
a la derecha no nulo negativo. De esta manera, el orden lexicografico graduado inverso coincide
con el orden lexicogréifico graduado.

Lema 2.2. Dado f,g € k|xi,...,x,| polinomios no nulos, entonces:

(1) multigr(fg) = multigr(f)+ multigr(g).

(1) Si f+g # 0, entonces multigr(f + g) > max(multigr(f),multigr(g)).

Si ademds multigr(f) # multigr(g) entonces la igualdad ocurre.

2.2. El algoritmo de la division en k[xq, ..., X;].

Vamos a extender el algoritmo de la divisién 1.9, ya visto, a polinomios en k[xj,...,x,] en vez de
k[x]. En general el objetivo es dividir f € k[xy,...,x,] entre fi,..., fs € k[x1,...,x,], es decir, ver si
podemos expresar f como:

f=a1fi+...+asfs+r

Donde ay,...,an,r € k[xi,...,x,|, y para caracterizarlo necesitaremos los distintos 6rdenes lexico-
gréficos.

12 Capitulo 2. Bases de Grobner

Teorema 2.3. Algoritmo de la divisién en k[x, ..., Xp]. Fijado un orden monomial > en 7, y dado
F =(fi,...,[s) una tupla ordenada de polinomios en k|x\,...,x,). Entonces cada f € k|xy,...,x,| puede

escribirse como:
f= a1f1 —|—...+asfs+r.

Donde a,r € klxi,...,x,] y r = 0 0 una combinacion lineal de monomios con coeficientes en k

no divisibles por TL(f1),...,TL(f). Llamaremos r el resto de dividir f entre F, ademds si a;f; # 0
tendremos que multigr(f) > multigr(a;f;).

Demostracion. Veamos la existencia de ay, ... ,as y ¥ dando un algoritmo para su construccién y viendo
que funciona correctamente.

INPUT: fi,...,fs, f
OUTPUT: ay,...,a5,r
a;:=0;...a.=0;r:=0

p=f
WHILE p # 0 DO:
i:=1

ocurredivision:=false
WHILE i < s AND ocurredivision= false DO:
IF TL(f;) divide TL(p) THEN:
ai:=a;+TL(p)/TL(f)
p:=p—(TL(p)/TL(fi))f:
ocurredivision:=true
ELSE:
i=i+1
IF ocurredivision=false THEN:
r:=r+TL(p)
p:=p—TL(p)

Observamos que en el bucle pueden pasar dos cosas:
» (Division) Si TL(f;) divide a TL(p) el algoritmo actda como si hubiera una variable.

» (Resto) Si TL(f;) no divide a TL(p) entonces al algoritmo afiade el término principal de p al
resto r.

Veamos que el algoritmo funciona, primero comprobamos que
f=afi+...tafs+p+r 2.1)

se verifica en cada paso.
Para los valores iniciales es claro. Suponemos que TL(f;) divide a TL(p) y la igualdad:

aifi+p = (ai+TL(p)/TL(fi)fi+ (p — (TL(p)/TL(f))fi)-

Vemos que a;f; + p no cambia, entonces en este caso 2.1 se sigue cumpliendo.
Por otro lado el siguiente paso tenemos que p y ¥ cambian pero p + r no cambia

p+r=(p—TL(p))+(r+TL(p)),

entonces igual que antes se sigue cumpliendo 2.1.
El algoritmo se empieza a detener cuando p = 0 en esta situacion 2.1 se transforma en:

f=a1fi+...+afs+r

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 13

Los términos se afiaden a r s6lo cuando no son divisibles por ningtin TL(f;), ai,...,a; y r camplen
las propiedades deseadas cuando el algoritmo termina.

Por dltimo, necesitamos ver que el algoritmo siempre termina. Para ello veamos que en cada paso p
se redefine y su multigrado disminuye o se vuelve 0. Suponemos que durante la divisién p se redefine

como: TL(p)
TL(f:)

TL(p) .\ _ TL(p) N
L <TL<ﬁ->f’> = Ti(p) H = TLP)

por tanto p y ;2831)) fi tiene el mismo término principal. Asi, su diferencia p’ tiene que tener multigrado
menor y si el algoritmo no termina nunca tendriamos un serie decreciente de multigrados y por las
propiedades de lo ordenes monomiales esto no puede ocurrir.

Queda pendiente estudiar la relacion entre el multigr(f) y el multigr(a;f;).

Cada término de a; es de la forma TL(p)/TL(f;) para algin valor de la variable p. El algoritmo em-
pieza por p = f y como hemos visto el multigrado de p disminuye, por eso vemos que TL(p) < TL(f)

entonces tenemos que multigr(a;f;) < multigr(f) cuando a;f; # 0. O

p=p-— fi

Ejemplo 5. Sea f = x’y? +x*y> — y+ 1 se quiere dividir entre F = [f; = xy* —x, f> = x —y*] usando el
orden lexicogréfico graduado con x > y.

El TL(f1) = xy? divide al TL(f) = x’y? entonces podemos realizar el primer paso del algoritmo
obteniendo como cociente x° y resto r; = x7 —x3y?> —y+ 1. Ahora el término principal de r; es x” que
no es dividido ni por TL(f;) ni por TL(f>) = —y* por tanto x’ es parte del resto de la divisién y nos
queda —x3y?> — y + 1 para continuar el algoritmo, repitiendo estos pasos hasta obtener un resto donde
ninguno de sus términos pueda ser dividido por el termino principal de f; ni de f>, se obtiene, en este
ejemplo, que el resto final es r = x” 4+ x> — y+ 1 y podemos escribir f = (x® +x?)f; +0f> + .

Podemos apreciar algunas propiedades del algoritmo de la divisién, como que el resto no estd deter-
minado de manera tnica, pues si se escoge otro orden monomial puede cambiar, por ejemplo si ahora
dividimos f entre F pero con orden lexicogrifico con x > y obtenemos que el resto es 2y> —y+ 1, por
eso es importante fijar un orden monomial. Incluso con el mismo orden monomial el resto depende
de la forma de ordenar la tupla de divisores. Por ejemplo si dividimos f entre Fi = [f2, fi] con orden
lexicografico obtenemos que el resto es y** +y!! —y+ 1 que es distinto al anterior.

Otra propiedad interesante es que si después de dividir f entre F = (fi,...,fs) se obtiene r =0
entonces quiere decir que f € (fi,...,fs), de hecho, r = 0 es condicién suficiente para ser miembro de
un ideal, pero no es condicién necesaria.

Por ejemplo, si dividimos f = x4+ z entre F = [xy — z,xy + x] obtenemos que el resto es x4z y
aunque al aplicar el algoritmo de la division el resto no da 0, f es combinacién de los elementos de F
pues f = f» — f1,lo que implicaque f € F .

2.3. Ideales monomiales y lema de Dickson

Definicion 2.6. Un ideal I C k[xy,...,x,] es un ideal monomial si hay un subconjunto A C Z%, tal que
I contiene a todos los polinomios de la forma Y 4 hox® donde hy € k[x1, ...,x,], en este caso

I=(x%:acA).

Lema 2.4. Seal = (x*: o € A) un ideal monomial. Entonces xP pertenece a I si y solo si xP es divisible
por x* para algiin o € A.

14

Capitulo 2. Bases de Grobner

Lema 2.5. Sea I un ideal monomial y sea f € k|xy,...,x,], entonces son equivalentes:
(1) fel

(1) Cada término de f estd en I.

(111) f es una k-combinacion lineal de monomios de I.

Corolario 2.6. Dos ideales monomiales son el mismo si y solo si contienen los mismos monomios.

Teorema 2.7. Lema de Dickson. Un ideal monomial I = (x* : a € A) C k[x1,...,x,] se puede escribir
de la forma I = (x*Y) ... x*)) donde a(1),...,0a(s) € A. En particular, I tiene una base finita.

Demostracion. Vamos a verlo por induccién sobre .

= Sin= 1: Entonces] estd generado por los monomios x{ donde ¢ € A C Z>¢. Sea f3 el elemento

mds pequefio de A C Z>. Entonces B < a para todo a € A, asi xlf divide a todos los otros

generadores x{. Asf se sigue que / = <xll3).

Tomando n > 1y que el teorema es cierto para n — 1. Escribiendo las variables como x1, ..., x,_1,y,
asi, los monomios en k[xy, ..., x,,y| se pueden escribir como x*y" donde o = (a1, ..., 0,—1) € Z’;Ol
ym € Z>p.

Suponemos que I C k[xj,...,x,—1,y] es un ideal monomial. Para encontrar los generadores de
I, sea J un ideal en k[xj,...,x,_1] generado por los monomios x* para los cuales x*y" € I para

algin m > 0. Por la hipétesis de induccién tenemos que muchos de los monomios x* generan J,
es decir, tenemos que J = (x*(1) . x®()),

Para cada 1 < i < s la definicién de J nos dice que x*()y"i € I para algtn m; > 0. Sea m el mayor
de los m;, entonces para cada k € [0, ...,m — 1] consideramos el ideal J; C k[x1,...,x,,] generado
por los monomios xP tal que xPy* € I. Podemos pensar en J; como una parte de I generada por
monomios que contienen a y y exactamente k potencias. Volviendo a usar la hipétesis de induccién
vemos que J;, estd generado por un conjunto finito de monomios, es decir J;, = (x% (1) .. x% (1)),

Vemos que / esta generado por alguno de los siguientes monomios:
J o x@Mym o yals)ym
Jo: xaﬂ(l), .. ,xao(so),
Jix@aMy o xals)y

Jm—l : x(Xm,| (l)ym—l . ’xam,] (Sm,|)ym—1 .

Notamos que cada monomio en [es divisible por uno de la lista, pues sea x*y? € I, si p > m, es
divisible por algin x*()y de la constitucién de J. En caso contrario (p <m—1), es divisible por
algtin x%(/)y? de la construccién de J . Asi por el lema 2.5 tenemos que los monomios anteriores
generan el mismo ideal que / y por el corolario 2.6 apreciamos que tienen que ser los mismos.

Para terminar la demostracién debemos observar si el conjunto finito de los generadores se puede esco-
ger del conjunto de los generadores del ideal. Si escribimos las variables como xy, ..., x, nuestro ideal
monomial es I = (x*: o € A) C k[xy,...,x,|. Necesitamos ver que [estd generado por un niimero finito
de x* donde o € A. Anteriormente hemos visto que I = (xB(1) ... xB()) para algiin monomio xf®) € 1
y mientras pasa esto, por el lema 2.4, sabemos que xP(*) es divisible por x*) para algin o (i) € A.
Entonces es facil ver que I = (x*(1), .. x®()), O

Corolario 2.8. Sea > una relacion en 7", tal que :

1) > es un orden total en ano-

1) Sia>ByyeZl, entonces o+y>f+.

Entonces > es un buen orden si'y solo si o > 0 para todo o0 € 7.

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 15

2.4. El teorema de las bases de Hilbert y bases de Grobner.

Definicion 2.7. Dado I C k[xy,...,x,] un ideal distinto de {0}.

(1) Llamamos TL(I) al conjunto de los términos principal de los elementos de /. Asi:

TL(I) = {cx* : existe f € I con TL(f) = cx®}.

(1) Denotamos (T'L(I)) al ideal generado por los elementos de TL([).

Si damos un conjunto finito generadorde I, I = (f,. .., f;), entonces (TL(f1),...,TL(fs)) y (TL(I))
pueden ser ideales distintos. Es cierto que TL(f;) € TL(I) C (TL(I)) por definicién lo que implica,
(TL(f1),...,TL(fs)) C (TL(I)). Sin embargo, (TL(I)) puede ser estrictamente mayor.

Proposicion 2.9. Dado un ideal I C k[xy,. .. ,xp):
(1) (TL(I)) es un ideal monomial.
(11) Hay g1,...,8s €I tales que (TL(I)) = (TL(g1),...,TL(g)).

Teorema 2.10. Teorema de Bases de Hilbert. Cada ideal I C k[xy,...,x,] tiene un conjunto finito
generador. Este es [= (gy,...,g) para algin gi,...,gs € L.

Definicién 2.8. Fijado un orden monomial. Un conjunto finito G = {gi,...,gs} de un ideal I se llama
base de Grobner si:

(TL(81),---,TL(g)) = (TL(I))-

Corolario 2.11. Fijado un orden monomial, cada ideal I C k[xi,...,x,] distinto de {0} tiene una base
de Grobner. Ademds, cualquier base de Grobner de I es base de 1.

Algunas consecuencias del Teorema de las bases de Hilbert son la condicién de las cadena ascen-
dente de ideales (ACC) y las variedades afines son determinadas por ideales.

Teorema 2.12. Condicion de las cadenas ascendentes. Dado I} C I, C I C ... un cadena ascendente
de ideales en k[x) ... ,x,|. Entonces existe un N > 1 tal que:

IN:IN+1 :IN+2:
Definicion 2.9. Dado I C kl[xy,...,x,]| un ideal. Denotamos por V(I) al conjunto:
V() =A{(ai,...,an) €L": f(ar,...,ay,) =0 ¥V f €I}

El conjunto V(I) puede estar definido por un conjunto finito de ecuaciones polinémicas aunque el
ideal no nulo 7 contenga infinitos polinomios diferentes.

Proposicion 2.13. V(1) es una variedad afin. En particular, sil = (fi, ..., fs) entonces V(I) =V(fi,...,fs)-

2.5. Propiedades de las Bases de Grobner.

Hemos visto en el ejemplo 5 que el resto no tiene porque ser Unico si se cambia el orden de los
divisores. Sin embargo, si los divisores forman una base de Grobner esto no ocurre.

Proposicion 2.14. Sea G = gy,...,g, una base de Gréobner para un ideal I C klxi,...x,] y sea f €
klx1,...,x,]. Entonces hay un iinico r € k|xy, ...,x,] con las siguientes propiedades.

1) Ningin término de r es divisible por LT (g1),...,LT (gy).

16 Capitulo 2. Bases de Grobner

1) Hayun g €l tal que f =g+r.

En particular, r es el resto de la division de f entre G sin importar el orden de los elementos de G
cuando haces el algoritmo de la division.

Corolario 2.15. Sea G=gy,...,g8, una base de Grébner para un ideal I C k[xy,...x,] y sea f € klxi,...,xy].
Entonces f € 1 siy solo si el resto de la division de f entre G es cero.

Definicion 2.10. Llamamos fF al resto en la division de f entre la tupla ordenada F = (fi, ..., fs). Si F
es una base de Grobner para (f7, ..., f,) entonces podemos considerar F como un conjunto.

Definicion 2.11. Sea f,g € k[xi,...,x,] polinomios no nulos.

1) Simultigr(f) = o'y multigr(g) = B entonces Y = (¥, ...,), donde % = max(o, B;) para cada i.
Llamamos x” al minimo comtin miltiplo de ML(f) y ML(g) y escribimos x¥ = MCM (ML(f),ML(g)).

1) El S-polinomio de f'y g es la combinacidn:

xV xV

=710’ T TL()

S(f,g) g (2.2)

Lema 2.16. Suponemos que tenemos la suma Y.}, cifi donde c; € k 'y multigr(f;) = 0 € Z para
todo i. Si multigr(Y}_, cif;) < 6 entonces ¥}, cif; es una combinacion lineal con coeficientes en k, del
S-polinomio S(fj, fv) para 1 > j,k,> s. Ademds, cada S(f;, fi) tiene multigrado < O.

Teorema 2.17. Sea I un ideal de polinomios. Entonces la base G = {g1,...,gn} de I es una base de
Grobner de I si 'y solo si para todo par i # j, el resto de la division de S(g;,8;) entre G es cero.

Este teorema es llamado el criterio de Buchberger.

2.6. Algoritmo de Buchberger.

Este algoritmo, parte desde el criterio de Buchberger y nos va a permitir generar bases de Grobner.

Teorema 2.18. Dado I = (fi,...,fs) # 0 un ideal de polinomios, entonces una base de Grobner para I
puede ser generada en un niimero finito de pasos con el siguiente algoritmo:

INPUT: F = (f1,...,f;)
OUTPUT: Una base de Grébner G = C(gy,...,g/) paral con F C G
G := F REPEAT

G =G
FOR cada par p,q,p # g en G’ DO:
76/
§:=S(p,q)
IF S £ 0 THEN G := GU {S}
UNTIL G =G

Demostracion. Si, G={gi,...,gs} entonces como tomamos como notacién (G) = (g1, ...,&s) ¥y (LT (G)) =
(LT(g1),..,LT(g:)). Veamos que se tiene G C I en cada paso del algoritmo.

Sabemos que inicialmente es cierto, en el siguiente paso afiadimos a G el resto S = S(p,q)Gl para
p,q € G. Si G C I entonces p,q y por tanto S(p,q) estdn en I y como estamos dividiendo por G' C I
tenemos que GU {S} C I. También vemos que G contiene la base de I dada por F, lo que quiere decir
que G es ahora base de I.

El algoritmo termina cuando G = G’ que quiere decir que S(p, q)Gl =0 para todo p,q € G, y por el
teorema 2.17 sabemos que G es base de Grébner de (G) = 1.

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 17

Nos queda ver que el algoritmo termina. Necesitamos considerar qué pasa después de cada paso
del bucle. El conjunto G es G’ con el resto no nulo obtenido de la divisién del S-polinomio entre los
elementos de G'. Suponemos que r es el resto no nulo que se afiade a G y por tanto el TL(r) no es
divisible por ningtn termino principal de los elementos de G, y asi, TL(r) ¢ (TL(G')), pero todavia
TL(r) ¢ (TL(G)) entonces (TL(G')) C (TL(G)) yaque G’ C G. Ademas si G’ # G, es claro el contenido
es estricto.

Por lo que acabamos de ver el ideal (TL(G')) y sus sucesivas iteraciones del bucle son una cadena
ascendente de ideales en k[xy, ...,x,]. Asi, por el teorema 2.12 de la condicion de las cadenas ascendentes,
sabemos que hay un niimero finito de iteraciones y la cadena se estabiliza, por eso en algiin momento
(TL(G)) = (TL(G')) y esto implicara que G’ = G, por tanto tenemos que el algoritmo termina en un
ndmero finito de pasos.

O

Asi tenemos el criterio de Buchberger (2.17) y el algoritmo de Buchberger (2.18) que nos permiten
encontrar y dar bases de Grobner. Pero usando estos dos teoremas a menudo obtenemos bases mas
grandes de lo necesario y podriamos eliminar algunos generadores redundantes.

Lema 2.19. Sea G una base de Grobner para un ideal polinomico 1. Sea p € G un polinomio tal que
TL(p) € (TL(G—{p})). Entonces G —{p} es también una base para I.

Definicion 2.12. Una base de Grobner minimal para el ideal de polinomios / es una base de Grobner G
de I tal que :

1) CL(p) =1 paratodo p € G.
11) Paratodo p € G, TL(p) ¢ (TL(G—{p})).

Definicion 2.13. Una base de Grébner reducida para un ideal de polinomios 7 es una base de Grobner
G de [tal que:

1) CL(p) =1 paratodo p € G.
11) Para todo p € G, ningtin monomio de p estd en (TL(G — {p})).

Proposicion 2.20. Sea I # {0} un ideal de polinomios. Entonces, para un orden monomial dado, I tiene
una tinica base de Grobner reducida.

Otra consecuencia es que tenemos un algoritmo para ver cuando dos conjuntos de polinomios gene-
ran el mismo ideal.

Ejemplo 6. Sean f; = x>y —zy f» = xy — 1 dos polinomios sobre Q|x,y,z], F = [f1, f2]. Estos polino-
mios generan un ideal /. Fijemos el orden monomial lexicografico con x >y > z. Queremos ver si F es
una Base de Grobner, si no lo es calcularla y obtener su base de Grébner minimal.

Lo primero que hay que hacer es calcular el S-polinomio utilizando la férmula 2.2, con ella obtene-
mos que es S = —z+ x. El siguiente paso es realizar el algoritmo de la divisidn, dividiendo S entre F,
tras hacerlo obtenemos que el resto es r = —z + x que es distinto de O por tanto por 2.17 F no es una
base de Grobner.

Para construir una base de Grébner debemos aplicar el algoritmo de Buchberger, que consiste en
afiadir el resto de la divisién de cada uno de los posibles S-polinomios a la base inicial hasta que todos
los restos sean cero. Es decir, ahora F’ = [f1, f»,r], calculamos todos los posibles S-polinomios de F’.
Sus restos son siempre cero, lo que prueba que F’ = [x*y —z,xy — 1,—z+ x] es una base de Grobner y
que la base de Grobner minimal, es decir quitando los elementos que sean combinacién de los demads,
es Fy = [xy—1,z—x].

Capitulo 3

Anillos de polinomios diferenciales

Una vez vistas las bases de Grobner para ideales de polinomios algebraicos intentamos encontrar
algo similar en anillos de polinomios diferenciales. Para ello, serd preciso introducir una serie de con-
ceptos y observaciones.

Definicion 3.1. Un anillo R se dice que es un anillo diferencial si existe un operadorde RaR,d : R — R
tal que Vo, B € R:

= d es lineal, es decir, d(o+ B) =d(a) +d(B)
= d(ap)=d(a)B+oad(B).

Definicion 3.2. Un subconjunto 7/ de un anillo diferencial R es un ideal diferencial si es un ideal alge-
braico de R y ademds es cerrado para la diferencial, es decir, d(I) C I.

Si § es un subconjunto de R e I es el menor ideal diferencial de R conteniendo a S. Se dice que S es
un sistema generador de I, si S = {fi, ..., f» } entonces se denota I = [f,..fy].

Pero tenemos que tener en cuenta que si R es un anillo algebraico se puede considerar el ideal
algebraico / generado por S pero este serd distinto al ideal diferencial.

Ejemplo 7. Tomamos k un cuerpo y R = k[xo,x1,x2,...] definamos d : R — R como d(x;) = x;;1. Enton-
ces el anillo R es un anillo diferencial, que podemos identificar con k|x, dx, d(z)x, s d(”)x]. Lo denotare-
mos por k{x} y representa el anillo de polinomios diferenciales de x sobre k. Si afiadimos mds variables
tenemos k{xj,...,x,} el anillo diferencial de polinomios en xi, ..., X, sobre k.

Definicion 3.3. Sea M el conjunto de todos los monomios en el anillo R = k{xy,...,x, }, consideremos
la aplicacidn, llamada peso de los monomios de k{xj,...,x,}, ® : M — R tal que:

» o(x;) =m;conm; >0parai=1,...n
» ©(d®x;) = k+m; para cualquier entero k >0yi=1,...,n

» Para cualquier monomio m € M, ®(m) = Y; ®(f;) donde el rango de los f; sobre los factores de
m contiene una Unica variable o una derivada.

El peso de un polinomio diferencial es el maximo peso de sus monomios (entendiendo monomio
como producto de variables y diferenciales de las variables).

Definicion 3.4. Un polinomio diferencial se dice cuasi-homogéneo si sus monomios tienen todos el
mismo peso respecto a las mismas funciones peso.

Cualquier polinomio se puede escribir de manera inica como suma de polinomios cuasi-homogéneos,
que se llaman componentes cuasi-homogéneas. A la componente de mayor peso se le llama componente
cuasi-homogénea principal.

19

20 Capitulo 3. Anillos de polinomios diferenciales

Definicion 3.5. Un ideal diferencial / se dice cuasi-homogéneo si todo polinomio diferencial f de /
tiene sus componentes cuasi-homogéneas en /, es decir, si f € [talque f =Y f; = fa € 1.

Con estas definiciones tenemos las siguientes propiedades:

= o(fg) =o(f)+o(g) Vf,g € R=k{xi,....x.}
= 0d(f)) = o(f)+17f,g € R=k{x1,....xx}, y por tanto @(d")(f)) = o(f) +k Vf,g € R
= El conjunto S; de producto de potencias diferenciales de peso j es finito para cualquier j.

Proposicion 3.1. Un ideal diferencial I en un anillo de polinomios diferenciales con coeficientes cons-
tantes es cuasi-homogéneo si y solo si tiene un sistema generador cuasi-homogéneo.

Tenemos que tener en cuenta que si R es un anillo diferencial necesitamos que Q esté contenido en
Ry que los ideales sean radicales para que k{x} sea un anillo diferencial.

3.1. H-Bases de ideales

Con estas definiciones podemos definir las H-bases de ideales diferenciales que nos permitirdn
hacer una construccién similar a lo obtenido con las bases de Grobner con lo que podremos simplificar
sistemas de ecuaciones diferenciales y asi poder resolverlos mas facilmente.

Definiciéon 3.6. Sea I un ideal diferencial en k{xj,...,x,}, H(I) es un ideal algebraico generado por el
conjunto de todas las componentes cuasi-homogéneas principales de los polinomios diferenciales en /.

Asi, un polinomio diferencial f estd en H(I) si todas sus componentes cuasi-homogéneas estdn en
H(I). Necesitaremos estar en el cuerpo de constantes para que H () sea un ideal diferencial, pues de
no estar las derivadas y extraccién de componentes cuasi-homogéneas principales no se puede calcu-
lar en general. Ademds podemos definir H(I); = H(I) N A; donde A; que es un k-espacio vectorial de
polinomios cuasi-homogéneos de peso i.

Notamos que dada una base S para un ideal diferencial / consideramos el ideal H(S) generado por
las componentes cuasi-homogéneas principales de los polinomios del conjunto

S={g:g=d"sconscSkeNU{o}},
entonces generalmente H(S) C H(I).
Definicién 3.7. Una base S de un ideal diferencial / se llama H-base si H(S) = H(I).

Al estar en el cuerpo de las contantes H(S) también es un ideal diferencial.

Veamos ahora un procedimiento para conseguir una H-base, empezando por un conjunto finito de
generadores. Este proceso consiste en determinar para cualquier peso k el conjunto H(S); y comprobar
cualquier relacion lineal entre los elementos de cada conjunto. Estas relaciones proporcionan nuevos
generadores que tendrdn menor peso y se podrdn afiadir a la base S y asi podremos completar hasta
obtener una H-base.

Este proceso es similar al visto para obtener una base de Grobner y aunque tiene una serie de
inconvenientes, como la restriccién de los ideales mencionada anteriormente o que el cuerpo ha de ser
el de las contantes, nos proporciona informacién util sobre el ideal.

Sea S el conjunto de polinomios diferenciales tales que para cualquier entero fijo £ hay un numero
finito de elementos en S cuyo pero es k. Es posible introducir una variable por un procedimiento de
reescritura para polinomios diferenciales usando elementos de S.

Sea f un polinomio diferencial cuasi-homogéneo. Suponemos fi, ... f, son elementos de S con peso
o(f): sus componentes cuasi-homogéneas principales generan un subespacio V del espacio vectorial W

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 21

de los polinomios cuasi-homogéneos de peso @(f). Como podemos calcular el cuerpo de los coeficien-
tes es posible encontrar & (f) y ha(f) tales que se tiene h(f) = hi(f) + ha(f) con hy(f) € V' y ha(f)
en el subespacio complementario ortogonal a V. Es decir, las componentes cuasi-homogéneas princi-
pales de f (como f es cuasi-homogéneo &(f) = f) se pueden ponen como suma de las componentes
principales de f que estdn en V' y las que estdn en su complementario ortogonal.

Ademads se puede calcular los elementos a; € k tales que:

h (f) = a1h<f1) + ... +aph(fp).

Con estos elementos que hemos encontrado podemos calcular la reduccién de f médulo S que sera:

f=f—(afi+..+apfy).

Esta relacién de reduccién la denotamos f —5 f.

El proceso de reducciéon puede generalizarse para cualquier polinomio diferencial g sin necesi-
dad de ser cuasi-homogéneo, pues sabemos que pueden ponerse como sumas de componentes cuasi-
homogéneas, por tanto bastarfa aplicarlo a cada una de sus componentes.

Proposicion 3.2. Sea I un ideal diferencial S una H-base de I y f un polinomio diferencial. Entonces
festdenl siy solo si alguna cadena maximal de reduccion con respecto a S termina en 0.

Capitulo 4

Ejemplo

En este capitulo aplicaremos el método explicado en el capitulo anterior a un caso particular para
poder mostrar el procedimiento general que se encuentra implementado en el Anexo (ver pag. 29).

Consistird en transformar un sistema de ecuaciones diferenciales polindmicas con una dificil solu-
cién en un sistema sencillo del cual la solucién es conocida o fécil de obtener.
Para ello, partimos del siguiente sistema:

N 2 20
y() + 40— Cﬁ”—%ﬁ& X(1)2y(1)"° = 0
DO x(r) =

Con estas dos ecuaciones podemos denotar f; =y +x — (x —7)2°x'2y!% y f = y — x y asi tomamos
la base inicial F = [f}, f>] donde f; y f> estdn en C{x,y} y fijamos el orden lexicografico con x > y.

La manera de aplicar el método de reduccién es andloga al algoritmo de Buchberger (2.18), asi pues,
comenzamos construyendo un S-polinomio a partir de estos dos polinomios diferenciales.

Como en el ejemplo 7 debemos entender x, X, ..., y, ¥, ... como nuevas variables. Definiremos el peso
de x y de y como 1y asi, podemos definir pesos al resto de variables de modo que @ (x;+1) = ®(x;) + 1
y andlogamente para las y;. Esta diferencia de peso nos afectard a la hora de encontrar el término prin-
cipal pues dependiendo del orden fijado el peso afectara a su eleccidén. Por ejemplo respecto al orden
lexicogréfico graduado si x tiene peso 1 e y tiene peso 3 el polinomio f = x> +y tiene como término

principal y mientras que si ambas tuvieran peso 1 seria x.

En nuestro caso hemos fijado el orden lexicografico ya que asi los pesos no afectan a la hora de
ordenar los monomios. Asf, en este ejemplo el S-polinomio es:

fs =y+xi— (y)ZO 12y10 X11X20y10y+x12x20y10

El siguiente paso es reducir el S-polinomio obtenido y afadir el resto a la base inicial, como se hacia
con el resto en el algoritmo de Buchberger.

Para iniciar el proceso de reduccidon necesitamos saber el peso del S-polinomio y si es cuasi-
homogéneo o no. De no serlo, como es el caso, ya que no todos los monomios tienen el mismo peso,
nos quedamos con la componente principal.

El peso del S-polinomio es 82 con este peso calcularemos la base B, obtenida de realizar combina-

ciones de f; y f>, hasta obtener todos los posibles polinomios diferenciales de peso 82.

23

24 Capitulo 4. Ejemplo

El siguiente paso es poner la componente cuasi-homogénea principal del S-polinomio como combi-
nacién de las componentes cuasi-homogéneas principales de los elementos de la base B.

Asf, por ejemplo la componente cuasi-homogénea principal del S-polinomio, f; es h(f;) = —x'2y105%0
que es 1 por la componente principal de f;.

Una vez hecho esto, el proceso de reduccién se continda restando al polinomio inicial la componente
cuasi-homogénea principal y sumando los coeficientes obtenidos en el paso anterior multiplicando por
su correspondiente elemento de la base B. En nuestro ejemplo, en el primer paso del método, obtenemos
que el S-polinomio queda reducido a:

122010 _ 11,20 10y,

Continuamos reduciendo este segundo polinomio hasta que el polinomio reducido sea 0, igual que
en el paso anterior o que el peso del polinomio obtenido sea menor que el de los elementos de la base
inicial (¥ en nuestro ejemplo).

En este ejemplo, en concreto, lo que sucede es que da 0, es decir, que la H-base estd compuesta
Unicamente por f, f> y seguimos sin tener un sistema mas sencillo. De hecho es el mismo, por tanto lo
que debemos hacer es reducir un elemento de la base inicial con respecto al otro.

Como el grado de f; es mucho mayor que el de f, vamos a intentar reducir f; respecto a f» obte-
niendo los elementos de la base B desde f, y siguiendo los mismos pasos que anteriormente, obtenemos
que fi se puede expresar como X + y y por tanto, nuestro base inicial quedard como F’ = [x +y,y — x].
Viéndolo como sistema obtenemos que nuestro sistema inicial es equivalente a:

Se trata de un sistema muy sencillo cuya solucién es:

x(t) = cos(t)x(0) — sin(¢)y(0)
y(t) = sin(#)x(0) + cos(z)y(0)

Para la obtencién de los resultados en Sage se ha tenido que realizar un cambio de notacién, de
modo que a x se le ha llamado xj a X se le llama x; y a X, x, y de manera andloga con la y, de esta forma
es necesario definir lo que es derivar.

También hay que observar que el anillo estara formado por xg,x1,X2, Y0, 1,2, pasa a ser finito y por
tanto no se puede derivar de nuevo x; e y;, es decir, tomamos la licencia de impedir la existencia de
derivadas terceras ya que en nuestras ecuaciones iniciales no aparecen. Como consecuencia de esto el
algoritmo realizado no sirve en general sino en unos casos determinados. Pero la modificacién para otro
tipo de casos no siendo compleja escapa de los objetivos de este trabajo.

Bibliografia

[1] DAVID CoX, JOHN LITTLE, DONAL O’SHEA, Ideals, Varieties and Algorithms, Coleccion Sprin-
ger, Tercera Edicién, 2007.

[2] GIOVANI GALLO, BHUBANESWAR MISHRA, FRANCOIS OLLIVER, Some Constructions in Rings
of Differential Polynomials, Applied algebra, algebraic algorithms and error-correcting codes (New
Orleans, LA, 1991), 171-182, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991.

[3] FRANCOIS BOULIER, Differential elimination and biological modelling, Grobner bases in sym-
bolic analysis, 109-137, Radon Ser. Comput. Appl. Math., 2, Walter de Gruyter, Berlin, 2007

25

Indice alfabético

H-base, 20
S-polinomio, 16

Algoritmo de Buchberger, 16

Algoritmo de la divisién, 6

Algoritmo de la division en varias variables, 11
Anillo diferencial, 19

Base de Grobner, 15
Base de Grobner minimal, 17
Base de Grobner reducida, 17
Bases de Grobner, 9

Coeficiente principal, 11

Componente cuasi-homogénea, 19
Condicién de las cadeas ascendentes, 15
Criterio de Buchberger, 16

Espacio afin, 3

Ideal, 4
Ideal diferencial, 19
Ideal monomial, 13

Lema de Dixon, 14

Maximo comun divisor, 7
Monomio, 3

Monomio principal, 11
Multigrado, 11

Orden lexicogréfico, 10

Orden lexicogréafico graduado, 10

Orden lexicografico graduado inverso, 10
Orden monomial, 10

Peso de los monomios, 19

Peso de un polinomio, 19
Polinomio, 3

Polinomio cuasi-homogéneo, 19
Polinomios en una variable, 5
Proceso de reduccion, 20

Teorema de las bases de Hilbert, 15
Termino principal, 11

Varieda afin, 4

27

28

Capitulo 4. Bibliografia

Anexo

Se muestran aqui los algoritmos empleados para la resolucién de los ejemplos. Comenzamos con
los programas empleados en el caso de anillos de polinomios no diferenciales

= S_polinomio.

Input (P, f,g). Donde P es el anillo, y f y g dos polinomios.
Output (s). s es un polinomio, concretamente el S-polinomio obtenido de f'y g.

def S_polinomio(P,f,g):
a=P(£) .1mQO
b=P(g) .1m()
c=lcm(a,b)
s=P((c/a)*f-(c/b)*g)
return s

= alg. Algoritmo de la division.

Input (P, G, f). Donde P es el anillo, y G es una lista de polinomios y f un polinomio.
Output (1, r). Una lista de dos elementos, donde 7 es una lista de polinomios, los cuales corresponden
a los cocientes al aplicar el algoritmo de la divisién, r un polinomio que corresponde al resto.

def alg(P,G,f):
n=len(G)
p==f
I=nx*[0]
r=0
while p!=0:
i=0
do=False
while i<n and do==False:
a=P(G[i]) .1t ()
b=P(p) .1t
if bla==0:
coci=P(b/a)
I[i]=I[i]+coci
p=p-cocix*G[i]
do=True
else:
i=i+1
if do==False:
r=r+b
p=p-b

29

30 Capitulo 4. Anexo

return (I,r)

= baseG. Algoritmo de Buchberger.

Input (P,I). P es un anillo, / una lista de polinomios.
Output (G). G es una lista de polinomios, que forman una base de Grobner.

def baseG(P,I):
n=len(I)
G=I
for i in [0..n-2]:
for j in [i+1..n-1]:
S=S_polinomio(P2,G[1],G[j])
M=alg(P,G,S)
if M[1]!'=0:
G=G+[M[1]]
return baseG(P,G)
return G

» baseGmin. Calculo de base minimal.

Input (P,1,k =0). P es un anillo, / una lista de polinomios,k es un numero que si no se indica es 0.
Output (G2). G2 es una lista de polinomios, que forman una base de Grobner minimal.

def baseGmin(P,I,k=0):

G=baseG(P,I)

n=len(G)

for i in [k..n-1]:
GO=[G[j] for j in [0..n-1] if j<>i]
G1=[G[j] for j in [k..n-1] if j<>i]
M=alg(P,G1,G[i])
if M[1]==0:

return baseGmin(P,GO0,i)

G2=[G[s]/G[s].1c() for s in range(n)]
return G2

Las siguientes funciones corresponden al caso de polinomios diferenciales
= derivada.

Input (p). p es un polinomio.
Output (d). d es un polinomio, resultante de calcular la derivada de p.

def derivada(p):
mon=p.monomials ()
coe=[p.monomial_coefficient(_) for
n=len(mon)
d=0
for i in range(n):
if mon[i]%x2==0 or mon[i]%y2==0:
return ’hay que cambiar el anillo’
m=[x0,x1,y0,y1]

in mon]

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 31

dm=[x1,x2,y1,y2]
for j in range(4):
k=1
while mon[i]%m[j] "k==0:
k=k+1
d=d+coe[i]l*(k-1)*dm[j]*mon[il/m[j]

return d
= grmon. Grado de un monomio.

Input (m). m es un monomio.

Output (gr, f,e). Es una lista formada por 3 elementos, gr es un niimero, el grado del monomio, f es
una lista de nimeros, los pesos de cada una de las variables,e es una lista de niimeros, los exponentes
de las variables del monomio.

def grmon(m):
g=0
if mjx3==0 or m%y3==0:
return ’hay que cambiar el anillo’
v=[x0,x1,x2,y0,y1,y2]

e=6%[0]
for j in range(len(v)):
k=1
while m)v[j] k==0:
k=k+1

eljl=el[j1+(k-1)
f=[e[0],2*e[1],3*e[2],e[3],2*e[4],3*e[5]]
return e[0]+e[3]+2*x(e[1]+e[4])+3*(e[2]+e[5]) ,f,e

= resta.

Input (a,b). a'y b son dos listas.

Output (r) r es una lista, obtenida de restar cada los valores de las listas a y b. Si las listas son de
distinto tamafio devuelve que no puede restar.

def resta(a,b):

n=len(a)
m=1len (b)
if n'!=m:
return ’no se pueden restar’
else:
r=[a[i]l-b[i] for i in range(n)]
return r

= tplex. Término y monomio principal por el orden lexicografico.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal
y otro mon, correspondiente al monomio principal, ambos por el orden lexicografico.

def tplex(p):
mon=(p) .monomials ()

32 Capitulo 4. Anexo

coe=[p.monomial_coefficient(_) for _ in mon]
n=len(mon)
g=[grmon(i) [1] for i in mon]
h=[grmon(i) [2] for i in mon]
t=g[0]
e=h[0]
c=coe[0]
for j in [1..n-1]:
r=resta(t,gljl)
k=0
while r[k]==0:
k=k+1
if r[k]<O0:
t=g[j]
e=h[j]
c=coe[j]
else:
t=t
e=e
c=c
ter=c*x0"e[0]*x1"e[1]*x2 e [2]*y0~e[3]*y1 e [4] *y2~e[5]
mo=x0"e [0]*x1"e[1]*x2 e [2] *y0~e[3] *y1~e[4] *y2~e[5]
return ter,mo

= tplex. Término y monomio principal por el orden lexicografico graduado.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal
y otro mon, correspondiente al monomio principal, ambos por el orden lexicografico graduado.

def tplexg(p):
mon=(p) .monomials ()
coe=[p.monomial_coefficient(_) for _ in mon]
n=len (mon)
o=[grmon(i) [0] for i in mon]
g=[grmon(i) [1] for i in mon]
h=[grmon(i) [2] for i in mon]
0=0[0]
t=g[0]
e=h[0]
c=coe[0]
for j in [1,n-1]:
if 0<ol[jl:
0=0[j]
t=g[j]
e=h[j]
c=coe[j]
if 0>0[j]:
0=0
t=t
e=e
c=c

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 33

c=0
=0
while s<n:
if O==o[s]:
c=c+1
s=s+1
if c<2:
ter=c*xx0"e[0] *x1"e[1]1*x2"e[2] *y0~e[3] *y1~e[4]*y2~e[5]
mo=x0"e[0] *x1"e[1]*x2 e [2] *y0~e[3] *y1~e[4] *y2 e [5]
return ter,mo

else:
pos=[i for i in [0..n-1] if o[i]==0]
q=0
for k in pos:

g=qg+mon [k]
return tplex(q)

» tplexi. Término y monomio principal por el orden lexicografico inverso.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal
y otro mon, correspondiente al monomio principal, ambos por el orden lexicografico inverso.

def tplexi(p):
mon=(p) .monomials ()
coe=[p.monomial_coefficient(_) for
n=1len(mon)
g=[grmon(i) [1] for i in mon]
h=[grmon(i) [2] for i in mon]
t=g[0]
e=h[0]
c=coe[0]
for j in [1..n-1]:
r=resta(t,gljl)
k=len(r)-1
while r[k]==0:
k=k-1
if r[k]>0:
t=g[j]
e=h[j]
c=coe[j]
else:
t=t
e=e

in mon]

c=c
ter=c*x0”e[0]*x1"e[1]*x2 e [2] *y0~e[3]*yl1~e[4] *xy2~e[5]
mo=x0"e [0]*x1"e[1]*x2"e[2] *y0~e[3] *y1~e[4] *y2~e[5]
return ter,mo

= tplex. Término y monomio principal por el orden lexicografico inverso graduado.

Input (p). Donde p es un polinomio.
Output (ter,mon). Una lista formada por dos elementos uno ter, correspondiente al término principal
y otro mon, correspondiente al monomio principal, ambos por el orden lexicogréfico inverso graduado.

34 Capitulo 4. Anexo

def tplexgi(p):
mon=(p) .monomials ()
coe=[p.monomial_coefficient(_) for
n=len(mon)
o=[grmon(i) [0] for i in mon]
g=[grmon(i) [1] for i in mon]
h=[grmon (i) [2] for i in mon]
0=0[0]
t=g[0]
e=h[0]
c=coe[0]
for j in [1,n-1]:
if 0<o[j]:
0=o0[j]
t=g[j]
e=h[j]
c=coel[j]
if 0>0[j]:
0=0
t=t
e=e

in mon]

c=c
c=0
=0
while s<n:
if O==o[s]:
c=c+1
s=s+1
if c<2:
ter=cxx0"e[0] *x1"e[1]*x2"e[2]*y0~e [3]*y1l~e[4]*y2~e[5]
mo=x0"e [0]*x1"e[1]*x2"e[2] *y0~e[3]*y1~e[4] *y2~e[5]
return ter,mo

else:
pos=[i for i in [0..n-1] if o[i]==0]
q=0
for k in pos:

g=q+mon [k]
return tplexi(q)

= dS_polinomio.

Input (orden,A, f,g). orden es un nimero del 1 al 4 que indica el tipo de orden monomial con el
que se va a calcular el S-polinomio. (1-lexicogréfico, 2-lexicografico graduado, 3-lexicogréfico inverso,
4-lexicografico graduado inverso). A es el anillo, f y g son dos polinomios.

Output (s), donde s es un polinomio correspondiente al S-polinomio.

def dS_polinomio(orden,A,f,g):
if orden==1:
a=tplex(f) [1]
b=tplex(g) [1]
if orden==2:
a=tplexg(f) [1]

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 35

b=tplexg(g) [1]
if orden==3:
a=tplexi(f) [1]
b=tplexi(g) [1]
if orden==4:
a=tplexgi(f) [1]
b=tplexgi(g) [1]
c=1lcm(a,b)
s=A((c/a)*f-(c/b)*g)
return s

= eli.

Input (lista). lista es una lista
Output (/). I es una lista igual que lista pero sin elementos repetidos.

def eli(lista):
1=[]
for i in lista:
if i not in 1:
1.append (i)
return sorted(1)

= comgh. Componentes quasi-homogénas

Input (p). p es un polinomio.
Output (s) s es una lista formada por las componentes quasi-homogéneas de p es decir una lista
polinomios que tienen todos los términos con el mismo peso.

def comgh(p):
mon=(p) .monomials ()
coe=[p.monomial_coefficient(_) for
n=len (mon)

in mon]

o=[grmon(i) [0] for i in mon]

1=eli(o)
m=len (1)
s=m* [0]
i=0
while i<n:
j=0
while j<m:
if ol[il==1[j]:
s[jl=s[jl+coel[i]*mon[i]
j=j+1
i=i+l
return s

= comghp. Componente quasi-homogénea principal.

Input (p). p es un polinomio.
Output (s). s es un polinomio con todos sus términos con el mismo peso siendo este el peso mayor
de todas las componentes quasi-homogéneas, es decir s es la componente quasi-homogénea principal.

36 Capitulo 4. Anexo

def comghp(p):
mon=(p) .monomials ()
coe=[p.monomial_coefficient(_) for
n=len(mon)
o=[grmon(i) [0] for i in mon]
1=eli(o)
m=len (1)
g=1[m-1]
=0
i=0
while i<n:
if o[il==g:
s=s+coe[i]*mon[i]
i=i+1
return s

in mon]

= wp. Peso de un polinomio

Input (p). p es un polinomio.
Output g. g es un nimero que corresponde al peso de p.

def wp(p):
mon=(p) .monomials ()
n=len(mon)
o=[grmon(i) [0] for i in mon]
1=eli(o)
m=len (1)
g=1[m-1]
return g

m eliw

Input (/1,w). 1 es una lista de listas, donde cada sublista tiene 2 elementos es decir I'1 = [[a;, b1]...[an, by]]
donde a; es la componente quasi-homogénea de b;. w es un nimero.

Output (Lw,L). Devuelve 2 listas de listas, la primeralLw estd formada por los elementos de /1 cuya
primera componente (g;) tiene peso w. La segunda L estd formada por los elementos de /1 cuya primera
componente tiene peso menos que w.

def eliw(Il,w):
n=len(I1)
Lw=[]
L=[]
for j in range(n):
if wp(I1[j][0])==w:
Lw=Lw+[I1[j]]
if wp(I1[j1[0])<w:
L=L+[I1[j]]
return Lw,L

= eliminar.

Input (L). L es una lista de listas formadas donde cada sublista tiene 2 elementos es decir L =
[[ai,b1]...[an, by]] donde a; es la componente quasi-homogénea de b;.

Output (L). L es igual que la L del input, la diferencia es que se han eliminado las sublistas que
tenian el a; repetido.

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 37

def eliminar(L):

n=len(L)

aux=L

for i in range(n-1):

for j in [i+1..n-1]:
if aux[i] [0]==aux[j][0]:

aux=[aux[k] for k in [0..j-1]1+[j+1..n-1]]
return eliminar (aux)

return L

= baseSmul.

Input (1,w). I es una lista de listas donde cada sublista tiene 2 elementos es decir I = [[a;, b1]...[an, by]]
donde a; es la componente quasi-homogénea de b;. w es un nimero.

Output (Lw).Lw es una lista de listas donde cada sublista tiene 2 elementos es decir Lw = [[a;, b1]...[an, Dy]]
donde a; es la componente quasi-homogénea de b; y todas las a; tienen peso w.

def baseSmul(I,w):

Lw=eliw(I,w) [0]

L=eliw(I,w) [1]

V=[x0,x1,x2,y0,y1,y2]

n=len(L)

while n!=0:
LO=[[L[0] [0]*i,L[0] [1]*i] for i in V]
Li=eliw(LO,w) [O]
L2=eliw(LO,w) [1]
Lw=Lw+L1
L=[1i for i in L if i<>L[0]]+L2
n=len(L)

return eliminar (Lw)

= baseSw.Base S de polinomios de peso w.

Input (7,gr,R). I es una lista de polinomios,gr es un nimero R es el anillo de polinomios.
Output (L). Lw es una lista de listas donde cada sublista tiene 2 elementos es decir Lw = [[a;, b1]...[ay, by]]
donde a; es la componente quasi-homogénea de b; y todas las q; tienen peso w

def baseSw(I,gr,R):
I1=[[comghp(i),i] for i in I]
L=baseSmul (I1,gr)
Li=[[comghp(i),i] for i in I if alg(R, [x2,y2],comghp(i)) [0]!=[0,0]]
L2=[[comghp(i),i] for i in alg(R, [x2,y2],comghp(i)) [0]==[0,0]]
L3=baseSmul(L1,gr)
L4=[[R(derivada(L2[j][0])),R(derivada(L2[j]1[1]))] for j in range(len(L2))]
L5=eliw(L4,gr) [0]
L6é=eliw(L4,gr) [1]
n=len(L6)
while n!=0:
11=[i for i in L6 if alg(R, [x2,y2],i[0]) [0]!=[0,0]1]
12=[i for i in L6 if alg(R, [x2,y2],i[0]) [0]==[0,0]]
L3=L3+baseSmul (11,gr)
L4=[[R(derivada(12[j] [0])) ,R(derivada(12[j]l[1]))] for j in range(len(12))]
L5=L5+eliw(L4+L3,gr) [0]

38 Capitulo 4. Anexo

L6=eliw(L4+L3,gr) [1]
n=len(L6)
return eliminar (L+L3+L5)

= GL

Input (L). L es una lista de listas donde cada sublista tiene 2 elementos, es decir, Lw = [[a;, b1]...[an, by]]
donde g; es la componente quasi-homogénea de b; y todas las a; tienen peso w

Output (L). L es una lista de listas donde cada sublista tiene 2 elementos es decir L = [[a;, b1]...[an, by]]
donde a; es la componente quasi-homogénea de b; y todas las a; tienen peso w principal, la diferencia
es que sus coeficientes forman un matriz triangular superior.

def GL(L):
Li=sorted(L,reverse=True)
n=len(L1)
i=0
while i<n-1:
j=i+1
while j<n:
c=alg(R, [L1[i]1[0]],L1[j1[01)
if c[0]!=[0]:
L2=[L1[k] for k in [0..n-1] if k<>j]
L3=[[L1[i] [0]-c[0] [0]*L1[j][0],L1[i][1]-c[0] [01*L1[j][1]1]]
L1=L2+L3
=3+
else:
j=j+
i=i+1
Li=sorted(L1,reverse=True)
Li=sorted(L1,reverse=True)
return sorted(Ll,reverse=True)

= reducgh. Método de reduccién para componente quasi-homogéneas.

Input (p,I,R). p es un polinomio quasi-homogéneo, I es una lista de polinomios, R es un anillo.
Output (g). g es un polinomio obtenido del proceso de reduccién de p respecto a la base S obtenida
de I.

def reducgh(p,I,R):
w=wp (p)
S=baseSw(I,w,R)
S0=GL(S)
S1=[i[0] for i in SO if i[0]<>0]
c=alg(R,S1,p) [0]
L=[[c[i],S0[i]1[1]] for i in range(len(S0)) if c[i]!=0]
qQ=pP
for j in range(len(L)):

g=q-L[j1[0]*L[j][1]

return q

= reducp. Método de reduccién.

Input (p,I,R). p es un polinomio, es una lista de polinomios, R es un anillo.
Output (g1). g1 es un polinomio obtenido del proceso de reduccién de p respecto a la base S obte-
nida de /.

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 39

def reducp(p,I,R):
pl=comghp(p)
g=reducqgh(pl,I,R)
ql=p-pl+q
H=[wp(i) for i in I]
Hi=sorted (H)

h=H1[0]
if q1==0:
return ql

if wp(ql)>=h:

return reducp(ql,I,R)
else:

return ql

» reduc. Proceso de reduccion.

Input (I,R,orden). I es un ideal, R es un anillo, orden es un nimero del 1 al 4 que indica el tipo
de orden monomial (1-lexicogréfico, 2-lexicografico graduado, 3-lexicogréfico inverso, 4-lexicogréfico
graduado inverso).

Output (G). G es un lista de polinomios, que constituye una H-base.

def reduc(I,R,orden):
n=len(I)
G=I
for i in [0..n-2]:
for j in [i+1..n-1]:
S=dS_polinomio(orden,R,G[i],G[j])
M=reducp(S,I,R)
if M!=0:
G=G+[M]
return reduc(S,G)
return G

Tras realizar todos estos algoritmos y probar algtin ejemplo como:

gl = x0x1+y1?
g2 = 3x0+y0x1 +y13

G = [g1,g2] es el ideal, con el que obtenemos resultados como que el S-polinomio es:
—x1y1% — x12y0 — 2x0x1 + y12.

Y al reducirlo nos da O y al construir la H-base obtenemos que nos da el mismo ideal G.

Pero al hacerlo con polinomios de mayor peso el calculo de la base S tarda mucho pues ha de realizar
muchas operaciones por eso algunas de las funciones han sido mejoradas para que en lugar de calcular
toda la base S solo calcule los elementos que son necesarios para realizar la reduccion. Estas funciones
se muestra a continuacion.

= baseSmull

Input (p,I,R). p es un polinomio,/ es una lista de polinomios,R es un anillo.

Output (Lw). Lw es una lista de lista, con cada sublista formada por dos elementos [a;,)], el pri-
mero, las componentes quasi-homogéneas de peso el de p formada a partir de las componentes quasi-
homogéneas de / y el segundo los polinomios de peso el de p de los cuales a; son las componentes
quasi-homogéneas principales.

40 Capitulo 4. Anexo

def baseSmull(p,I,R):
pl=comghp(p)
w=wp (p)
I1=[[comghp(i),i] for i in I]
n=len(I)
I2=[i for i in I1 if alg(R, [R(i[0]1)],R(p1)) [1]==0]
Lw=eliw(I2,w) [0]
L=eliw(I2,w) [1]
L=[1 for i in L if alg(R,[i[0]],p1) [1]==0]
n=len(L)
m=1len (Lw)
if m!=0:
return eliminar(Lw)
else:
while n!=0:
a=[alg(R, [R(L[1]1[0])],R(p1)) [0][0] for i in range(n)]
Lo=[[L[0] [0]*a[i],L[0] [1]*a[i]] for i in range(n)]
Li=eliw(LO,w) [0]
L2=eliw(LO,w) [1]
Lw=eliminar (Lw+L1)
m=len (Lw)
if m!=0:
return eliminar (Lw)
else:
L=[1i for i in L if i<>L[0]]+L2
L=[L[i] for i in [0..len(L)-1] if alg(R,[L[i][0]],p1) [1]==0]
n=len(L)
return eliminar(Lw)

= baseSwl.

Input (p,I,R). p es un polinomio,/ es una lista de polinomios,R es un anillo.

Output (Lw). Lw es una lista de lista, con cada sublista formada por dos elementos [a;,)], el pri-
mero, las componentes quasi-homogéneas de peso el de p formada a partir de las componentes quasi-
homogéneas de I y el segundo los polinomios de peso el de p de los cuales a; son las componentes
quasi-homogéneas principales.

def baseSwl(p,I,R):

gr=wp (p)

L=baseSmull(p,I,R)

m=len(L)

if m!=0:
return eliminar(L)

else:
pl=comghp (p)
I1=[[comghp(i),i] for i in I]
Li=[i for i in I if alg(R, [x2,y2],comghp(i)) [0]'!=[0,0]]
L2=[[comghp(i),i] for i in I if alg(R, [x2,y2],comghp(i)) [0]==[0,0]]
e=len(L2)
L3=baseSmull(p,L1,R)
L4=[[R(derivada(L2[j] [0])) ,R(derivada(L2[j]l[1]))] for j in range(e)]
L4=[i for i in L4 if alg(R,[i[0]],p1) [1]1==0]

Bases de Grobner e ideales diferenciables - Celia Aguelo Jiménez 41

L5=eliw(L4,gr) [0]

L6é=eliw(L4,gr) [1]

n=len(L6)

while n!=0:
11=[i[1] for i in L6 if alg(R, [x2,y2],i[0])[0]'=[0,0]]
12=[i for i in L6 if alg(R, [x2,y2],i[0]) [0]==[0,0]]
L3=L3+baseSmull(p,11,R)
e2=len(12)
L4a=[[R(derivada(12[j][0])),R(derivada(12[j]1[1]))] for j in range(e2)]
L4=[i for i in L4 if alg(R,[i[0]1]1,p1) [1]1==0]
L5=L5+eliw(L4+L3,gr) [0]
L6=eliw(L4+L3,gr) [1]
n=len(L6)

return eliminar (L+L3+L5)

= reducghl. Método de reduccion para componente quasi-homogéneas.

Input (p,I,R). p es un polinomio quasi-homogéneo, I es una lista de polinomios, R es un anillo.
Output (g). g es un polinomio obtenido del proceso de reduccién de p respecto a la base S obtenida
de I.

def reducghl(p,I,R):

w=wp (p)

S=baseSw1l(p,I,R)

S0=GL(S)

S1=[i[0] for i in SO if i[0]<>0]
q9=p

if len(81)!=0:
c=alg(R,S1,p) [0]
L=[[c[i],S0[i]1[1]] for i in range(len(S0)) if c[i]!'=0]
for j in range(len(L)):
g=q-L[jI[01*L[;j][1]
return q

= reducpl. Método de reduccion.

Input (p,I,R). p es un polinomio, es una lista de polinomios, R es un anillo.
Output (g1). g1 es un polinomio obtenido del proceso de reduccién de p respecto a la base S obte-
nida de /.

def reducpl(p,I,R):
pl=comghp (p)
g=reducghl(p1,I,R)
ql=p-pi+q
if ql==p:
return qil
H=[wp(i) for i in I]
Hi=sorted (H)
h=H1[0]
if q1==0:
return ql
if wp(ql)>=h:
return reducpl(ql,I,R)
return qil

42 Capitulo 4. Anexo

» basedG. H-base.

Input (P,I,0orden). P es un anillo, I es una lista de ideales, orden es un nimero del 1 al 4 que
indica el tipo de orden monomial (1-lexicografico, 2-lexicografico graduado, 3-lexicografico inverso,
4-lexicografico graduado inverso).

Output (G). G es una lista de polinomios.

def basedG(P,I,orden):
n=len(I)
G=I
for i in [0..n-2]:
for j in [i+1..n-1]:
S=dS_polinomio(orden,P,G[i],G[j])
M=reducp1(S,G,P)
if M!=0:
G=G+[M]
return basedG(P,G,orden)
return G

= basedGmin. H-base minimal.

Input (P,1,0orden,k = 0). P es un anillo, / es una lista de polinomios, orden es un nimero del 1
al 4 que indica el tipo de orden monomial (1-lexicografico, 2-lexicografico graduado, 3-lexicografico
inverso, 4-lexicografico graduado inverso) y k es un nimero que si no se da vale 0.

Output (G2). G2 es una lista de polinomios.

def basedGmin(P,I,orden,k=0):
G=basedG(P,I,orden)
n=len(G)
if n==len(I):
H=[[wp(i),i] for i in I]
Hi=sorted(H,reverse=True)
h=H1[0] [1]
I1=[i for i in I if i<>h]
r=reducpl(h,I1,P)
G=[r]+I1
G2=[G[s]/G[s].1c() for s in range(n)]
return G2
for i in [k..n-1]:
GO=[G[j] for j in [0..n-1] if j<>il
G1=[G[j] for j in [k..n-1] if j<>i]
M=alg(P,G1,G[i])
if M[1]==0:
return basedGmin(P,GO,orden,i)
G2=[G[s]/G[s].1c() for s in range(n)]
return G2

	Abstract
	Introducción
	Primeras definiciones
	Polinomios y espacio afín
	Variedades afines
	Ideales
	Polinomios de una variable

	Bases de Gröbner
	Orden monomial en k[x1,…,xn].
	El algoritmo de la división en k[x1,…,xn].
	Ideales monomiales y lema de Dickson
	El teorema de las bases de Hilbert y bases de Gröbner.
	Propiedades de las Bases de Gröbner.
	Algoritmo de Buchberger.

	Anillos de polinomios diferenciales
	H-Bases de ideales

	Ejemplo
	Bibliografía
	Índice alfabético
	Anexo

