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Resumen / Abstract

Un flujo de lámina libre, cuando la longitud de onda se puede comparar en magnitud con
la profundidad, se denomina de aguas poco profundas (shallow water). Las ondas de rotura
de presa son ejemplos de estos problemas, caracterizadas por una discontinuidad inicial en la
que se forma un frente de onda de alta velocidad. Las ecuaciones de aguas poco profundas
que rigen su dinámica se discretizan con volúmenes finitos y se resuelven numéricamente
mediante el resolvedor de Roe. El objetivo es desarrollar, programar y validar un modelo
computacional unidimensional utilizando soluciones exactas de situaciones ideales y, por otro
lado, medidas experimentales tomadas en el laboratorio LNEC de Lisboa o en el laboratorio
del Área de Mecánica de Fluidos de la Universidad de Zaragoza.

A free-surface flow in which wave length is similar to water depth is called shallow
water. Dam break waves are an example of these shallow water flows, characterized by wa-
vefronts with high velocity originated by initial discontinuity. Shallow water equations will
be discretized with a finite volume technique and numerically solved through Roe solver. The
main purpose is to develop, to program and to validate a 1D computational model with exact
solutions of ideal situations and with experimental data from the LNEC laboratory in Lisbon
and the Mecánica de Fluidos’ laboratory in Universidad de Zaragoza.
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A.6. Conservación de la enerǵıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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F.2.3. Problema de la entroṕıa . . . . . . . . . . . . . . . . . . . . . . . . . . 71
F.2.4. Actualización de las variables conservadas . . . . . . . . . . . . . . . . 72
F.2.5. Condiciones de contorno . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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1. Introducción

La F́ısica se desarrolla mediante la interacción entre métodos experimentales y modelos teóri-
cos con el uso de diferentes técnicas bien depuradas en los primeros y de herramientas ma-
temáticas en los segundos. Las herramientas computacionales de simulación numérica son una
tecnoloǵıa reciente que complementa a los dos anteriores. El principal cometido del estudiante
de f́ısica es aprender a manejar estas técnicas y herramientas con la destreza suficiente que
le permita analizar sistemas complejos, realizar un modelo adaptado a la profundidad que se
desee y compararlo finalmente con los datos extráıdos del sistema real [1].

El modelo se construye primero mediante una descripción matemática, constituida
esencialmente por ecuaciones y condiciones de contorno, y a continuación se lleva a cabo su
resolución. En muchos casos no existen soluciones anaĺıticas a los problemas, por lo que se
tienen que resolver mediante métodos numéricos [8] [18].

Los resultados computacionales presentan una ventaja pues, cuando proceden de un
modelo bien verificado, pueden proporcionar una mayor cantidad de información. Se obtiene
de esta manera un conjunto de números que describen el sistema para un tiempo dado y un
conjunto de operaciones que representan las leyes f́ısicas y que llevan el sistema a un tiempo
posterior.

Dentro del marco de la mecánica de fluidos es posible identificar los flujos de super-
ficie libre. Un flujo con superficie libre se define matemáticamente como aquel en el que el
tamaño y la forma de la región de la solución son parte de la propia solución. Las condiciones
de contorno se tienen que aplicar a esta superficie incógnita. Cuando la longitud de onda se
puede comparar en magnitud con la profundidad el problema se denomina de aguas poco
profundas (Shallow water) [15]. Un ejemplo de ello, aunque poco intuitivo, es el océano,
donde se cumpliŕıa la condición para fenómenos como tsunamis y mareas, pero no para olas
superficiales. El fenómeno de rotura de presa suele estudiarse bajo este modelo también. El
rasgo esencial de una rotura de presa instantánea es una gran discontinuidad que se produce
cuando el agua acumulada a mayor altura se desprende y fluye sobre el cauce inferior. El
frente de onda que avanza de manera abrupta con elevadas velocidades fruto de la rotura
puede inundar los márgenes del ŕıo, provocando pérdidas y perjuicios de todo tipo. Cuando el
flujo se da en un canal se le puede asimilar a éste un carácter unidimensional. De acuerdo con
ello, la rotura de presa se considera de aguas poco profundas. Esta rotura puede deberse
a causas naturales, como fenómenos atmosféricos, que llevan a caudales superiores a los es-
perados, o bien a fallos en la integridad estructural de la presa. Los organismos profesionales
se enfrentan al trabajo de simular el comportamiento del agua tras una rotura de presa, de
forma que puedan prever los efectos y desarrollar planes de emergencia, aśı como el estudio
del impacto medioambiental [17].

Para la formulación matemática, se parte de leyes de conservación fundamentales de
masa, momento y enerǵıa, que se expresan en forma de ecuaciones en derivadas parciales
[2] [3] [11] [25]. Estas ecuaciones se compactan en un sistema hiperbólico no lineal [7]
[8]. Éste se caracteriza por la aparición de discontinuidades en las soluciones por lo que
las soluciones clásicas no son suficientes [18]. Debido a esto interesa resolver correctamente
el sistema original con un problema de valor inicial discontinuo o, lo que es lo mismo, un
problema de Riemann [23]. En la solución de un problema de Riemann no lineal aparecen
dos tipos de ondas: de choque y de rarefacción. Esto depende de las condiciones iniciales a
ambos lados de un determinado punto, se pueden producir zonas de compresión que generan
ondas de choque, cuando la magnitud conservada es inicialmente mayor a la izquierda del
punto; o regiones de expansión, con ondas de rarefacción, cuando la magnitud es mayor a la
derecha [24].
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Los denominados resolvedores de Riemann (Riemann solvers) son métodos numéri-
cos que permiten calcular dichos problemas de manera exacta. Teniendo en cuenta las apro-
ximaciones unidimensional y de aguas poco profundas, un buen método de resolución del
problema de Riemann aproximado es el método de Roe [23] [18] [7]. Basado en el esquema
de Godunov [10] expĺıcito y de volumen finito, calcula el flujo numérico que actualiza el valor
en cada celda promediando los valores de diferentes soluciones aproximadas que aparecen
cuando se define un problema local de Riemann entre una celda y sus vecinas [19].

El objetivo principal de este trabajo es desarrollar, programar y validar un modelo compu-
tacional unidimensional de rotura de presa. Para ello se partirá de unas ecuaciones cuyas pro-
piedades matemáticas será necesario conocer detalladamente para poder encontrar un modelo
de discretización adecuado. A continuación se buscará un método de resolución numérico de
dichas ecuaciones que consiga dentro de la sencillez de un modelo unidimensional abarcar
fenómenos f́ısicos de la manera más general posible.

La evaluación del modelo se hará por medio de la comparación en primer lugar con
las soluciones exactas de los problemas que, aunque no representan la realidad del fenómeno,
verifican las ecuaciones [5]. Como resultados de referencia más realistas, servirán los datos
experimentales recogidos en el laboratorio LNEC [4] y los medidos en el laboratorio del Área
de Mecánica de Fluidos de Zaragoza. Para esto último se contó con un canal a escala y con
una cámara Kinect que proporciona medidas de la profundidad del agua a lo largo del tiempo
[16].

Además, se busca consolidar conocimientos previos adquiridos durante el grado acerca
de programación y de la f́ısica que subyace al comportamiento de los fluidos; y, por otro
lado, con el mayor detenimiento que permite el formato de este trabajo, profundizar en la
resolución numérica de ecuaciones, tanto teórica como computacionalmente.
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2. Formulación de flujos transitorios
de lámina libre en 1D

2.1. Ecuaciones

Las ecuaciones que rigen el comportamiento del flujo en lámina libre en 1D escritas en forma
conservativa son las siguientes:

∂A

∂t
+
∂Q

∂x
= 0 (2.1a)

∂Q

∂t
+

∂

∂x

(
Q2

A
+ gI1

)
= gI2 + gA (S0 − Sf ) (2.1b)

∂

∂t

(
Q2

A2
+ g

A2

2b

)
+

∂

∂x

(
Q3

2A2
+ g

AQ

b

)
= g

Q

A
(S0 − Sf ) (2.1c)

Se trata de un sistema de ecuaciones diferenciales en derivadas parciales que se obtienen
promediando en la sección transversal a partir de leyes fundamentales de la f́ısica: conservación
de la masa, conservación de la cantidad de movimiento y conservación de la enerǵıa. En el
Anexo A se desarrolla al completo el proceso de derivación de las mismas.

Las variables conservadas son: A(x, t), que representa el área transversal y que es una
función del calado h(x, t), y el caudal Q(x, t) = A(x, t)u(x, t), donde u(x, t) es la velocidad
media. gI1 es la integral de presión hidrostática en cada sección. En cuanto a los términos
fuente: la reacción debida a las variaciones en la anchura del canal es recogida por gI2;

S0 = −∂z
∂x

es la pendiente del lecho; y la pendiente de fricción formulada a partir de la ley

semiempiŕıca de Manning es:

Sf =
n2Q2

A2R
4/3
h

donde n es el coeficiente de Manning y Rh el radio hidráulico [11].
Según la teoŕıa de las ecuaciones diferenciales se requieren solamente dos de las tres

ecuaciones (2.1a), (2.1b) y (2.1c) para resolver las variables A y Q. Cabe preguntarse en
este punto qué pareja de ecuaciones se utiliza y si las soluciones que se obtendŕıan con
cualquiera de las posibles permutaciones seŕıan equivalentes. Abbott en [2] sostiene que, para
una descripción diferencial del flujo, es decir continua, las ecuaciones de conservación de
cantidad de momento y de enerǵıa son equivalentes. Sin embargo, el caso que concierne a este
trabajo contiene una discontinuidad en la rotura de presa, pues se trata de un problema de
valor inicial discontinuo o, lo que es lo mismo, un problema de Riemann. Este fenómeno tiene
un caso concreto conocido como salto hidráulico [11], que va acompañado por turbulencias y
pérdidas de enerǵıa. Debido a esto último, ya no son equivalentes ambas formulaciones y se
requiere la utilización de la ecuación de la cantidad de movimiento.

2.2. Propiedades y formulación caracteŕıstica

Las ecuaciones de masa (2.1a) y cantidad de movimiento (2.1b) forman un sistema no lineal
e hiperbólico que se puede compactar en su forma conservativa:

∂U

∂t
+
∂F (U)

∂x
= S (U) (2.2)
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donde el vector de variables conservadas, U, el vector de flujos de dichas variables, F, y los
términos fuente, S, son:

U =

(
A
Q

)
; F =

 Q
Q2

A
+ gI1

 ; S =

(
0

g [I2 +A (S0 − Sf )]

)
(2.3)

Un sistema de ecuaciones se denomina hiperbólico cuando su matriz jacobiana de dimensión
n × n tiene n valores propios reales, λi, y un conjunto de n vectores propios linealmente
independientes, ei, que forman una base del espacio n-dimensional. En este caso, la matriz
jacobiana de dimensión 2× 2 es:

J ≡ ∂F

∂U
=


0 1

g
A

b
− Q2

A2
2
Q

A

 =

(
0 1

c2 − u2 2u

)
(2.4)

donde c ≡
√
g
∂I1

∂A
=

√
g
A

b
es la velocidad de las perturbaciones superficiales, siendo b la

anchura del canal en caso de que sea rectangular. Esta será la hipótesis en adelante. Se tienen
los valores propios: λ1 = u− c y λ2 = u+ c; y los vectores propios:

e1 =

(
1

u− c

)
e2 =

(
1

u+ c

)
Esto permite encontrar su forma no conservativa, dada por la ecuación:

∂U

∂t
+ J

∂U

∂x
= S (U) (2.5)

Sea E la matriz formada por los n vectores propios dispuestos en columnas. Se puede sustituir
el jacobiano en la ecuación (2.5) por la matriz diagonal ΛΛΛ, formada por los valores propios,
teniendo en cuenta: ΛΛΛ = E−1JE ⇒ EΛΛΛ = JE ⇒ EΛΛΛE−1 = J. Multiplicando (2.5) por la
izquierda por E−1 se obtiene el sistema desacoplado:

∂W

∂t
+ ΛΛΛ

∂W

∂x
= SW (2.6)

Aparecen aśı unas nuevas variables llamadas variables caracteŕısticas: δW = E−1δU.
Del sistema desacoplado (2.6) se puede llegar fácilmente a:

∂

∂t
(u+ 2c) + (u+ c)

∂

∂x
(u+ 2c) = (u− c) [gI2 + gA (S0 − Sf )]

∂

∂t
(u− 2c) + (u− c) ∂

∂x
(u− 2c) = (u+ c) [gI2 + gA (S0 − Sf )]

La interpretación de estas ecuaciones es la siguiente: las cantidades w1 = u+2c y w2 = u−2c se
mantienen constantes a lo largo de sus ĺıneas caracteŕısticas en el plano (x, t), cuyas pendientes
son los valores propios, es decir, λ1 = u + c y λ2 = u − c respectivamente. En ausencia de
términos fuente se tiene:

dx

dt
= λ1 = u− c ⇒ dw1

dt
=
d (u− 2c)

dt
= 0 ⇒ u− 2c = cte

dx

dt
= λ2 = u+ c ⇒ dw2

dt
=
d (u+ 2c)

dt
= 0 ⇒ u+ 2c = cte

(2.7)
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En el denominado método de las caracteŕısticas se pueden resolver ecuaciones diferen-
ciales en derivadas parciales sustituyéndolas por ecuaciones diferenciales ordinarias. Se hace
uso de las dos direcciones caracteŕısticas, C− y C+ y las variables conservadas, denominadas
invariantes de Riemann, J− = u− 2c y J+ = u+ 2c.

Figura 2.1: Dominio de dependencia de un punto P .

En cada punto P del plano (x, t) se cortan dos ĺıneas caracteŕısticas. La solución que
se busca, (A,Q), viene determinada por ambos invariantes, J+ y J−, definidos por las con-
diciones iniciales en t = 0. La solución en P depende de todos los puntos que abarca el área
comprendida entre ambas ĺıneas caracteŕısticas, como se muestra en la figura (2.1). Es decir,
cómo cambia J+ a lo largo de C+ está influido por cómo lo hace J− a lo largo de C− y
viceversa. El punto P es el ĺımite en el que pueden ser utilizada la información procedente
del origen de manera independiente. Esta teoŕıa también ayuda a diseñar las condiciones de
contorno necesarias.
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3. Solución numérica

Existen diferentes métodos de discretización de las ecuaciones diferenciales en derivadas par-
ciales, como los volúmenes finitos, que se utilizan en este trabajo, o las diferencias finitas,
que se describen en el Anexo C. Existen a su vez distintas maneras de resolver numéricamen-
te estas ecuaciones discretizadas. Son herramientas computacionales que tratan de simular
los procesos que representan las ecuaciones mediante el manejo de números y operaciones
simples.

Las celdas computacionales se consideran volúmenes de control en un esquema de
volúmenes finitos, según el cual las variables conservadas se integran calculando valores me-
dios. Se tiene aśı una red regular de celdas como se muestra en la figura (3.1) [18], en un
dominio total de longitud L.

Figura 3.1: Red unidimensional regular de celdas.

De esta manera, la celda i, que se corresponde con la posición xi tiene una anchura
∆x, cuyo dominio abarca de la pared xi−1/2 a la xi+1/2. Cada nuevo tiempo tn+1 = tn + ∆t
se calcula resolviendo secuencias de problemas de Riemann y suponiendo que en cada celda
las variables son constantes definidas a trozos.

Figura 3.2: Problema de Riemann n = 2.

Los problemas de Riemann consisten en n+1 estados
separados por n ondas que salen del origen, asociada cada
una a un valor propio; si se supone el sistema de SWE,
n = 2, se tienen dos ondas que separan tres estados. Los
resolvedores de Riemann son métodos numéricos utilizados
para resolver de manera aproximada dichos problemas de
Riemann. Uno de los más conocidos en dinámica de fluidos
computacional es el desarrollado por Godunov [10], pues
el primero en dotar de solución exacta a las ecuaciones
de Euler y, por lo tanto, a las leyes de conservación que
expresan en su forma de sistemas no lineales hiperbólicos.

Llegar a la solución exacta que permiten estos resolvedores supone un alto coste compu-
tacional en el caso de ecuaciones no lineales pues requiere la resolución temporal de cada
problema de Riemann en todas las celdas, lo cual dificulta enormemente la convergencia a la
solución exacta. Es por ello por lo que se utiliza el resolvedor de Roe [23] que básicamente
aproxima los valores del jacobiano para linelizar el sistema de ecuaciones como se verá más
adelante.

El método de discretización escogido es un esquema upwind de primer orden expĺıcito
de tipo Godunov [10]. El término upwind hace referencia a la derivada espacial. Este método
env́ıa la información en un sentido o en otro según el signo del valor propio.
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Respecto a la integración temporal, los métodos expĺıcitos se caracterizan por utilizar
la información conocida siempre de un paso temporal anterior tn. Mientras que los impĺıcitos
para calcular las variables conservadas en un tiempo tn+1 necesitan además de sus valores
en tn también otros datos del propio tn+1. Esto genera mayor complejidad algebraica. Los
expĺıcitos son más sencillos, pero están sometidos a una condición de estabilidad temporal,
como se explica en el Anexo C. El trabajo de esta memoria está basado en la utilización de
un esquema expĺıcito.

3.1. Volúmenes finitos

Se va a utilizar un ejemplo sencillo para mostrar lo esencial del método numérico. Supongamos
una ley de conservación escalar:

∂u

∂t
+
∂f(u)

∂x
= 0 (3.1)

donde u es la variable conservada y f(u) su flujo. Si se integra sobre el volumen de control
delimitado espacialmente por las paredes xi−1/2 y xi+1/2 y temporalmente por tn y tn+1 se
obtiene:∫ xi+1/2

xi−1/2

[
u(x, tn+1)− u(x, tn)

]
dx+

∫ tn+1

tn

[
f
(
u(xi+1/2, t)

)
− f

(
u(xi−1/2, t)

)]
dt = 0 (3.2)

Se puede definir el valor medio de la variable conservada u(x, t) en la celda i en el tiempo tn

como:

uni ≡
1

∆x

∫ xi+1/2

xi−1/2

u(x, tn)dx (3.3)

Y los flujos medios en cada pared, denominados flujos numéricos:

f∗i±1/2 ≡
1

∆t

∫ tn+1

tn
f
(
u(xi±1/2, t)

)
dt (3.4)

La ecuación (3.2) queda:

un+1
i = uni −

∆t

∆x

(
f∗i+1/2 − f

∗
i−1/2

)
(3.5)

El esquema puede ser de tipo expĺıcito si f∗ ≈ f(un), de forma que la variable en un tiempo
tn+1 depende exclusivamente de información en el tiempo anterior tn; o de tipo impĺıcito si el
flujo depende de la variable en otro tiempo distinto de n. El Anexo C analiza la estabilidad
de ambos tipos de esquemas.

Aún suponiendo formulación expĺıcita, la elección del tipo de flujos numéricos deter-
minará qué esquema actúa. Godunov propone: f∗ = f(u∗). En el caso particular:

∂u

∂t
+ λ

∂u

∂x
= 0 (3.6)

Figura 3.3: Variable intermedia u∗ de Godunov.
Caso escalar lineal.

con λ = cte tendŕıa la forma: f∗ = λu∗ (figura (3.3)).
Godunov define la variable intermedia como:

u∗ =

{
ui − s− (ui+1 − ui)
ui+1 − s+ (ui − ui+1)

(3.7)

Siendo: s± =
1

2
(1± sig(λ)).
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Aśı que se puede escribir como:

u∗ =
1

2

[
ui −

1

2
(1− sig(λ)) (ui+1 − ui)

]
+

1

2

[
ui+1 −

1

2
(1 + sig(λ)) (ui − ui+1)

]
=

=
1

2
(ui+1 + ui)−

1

2
sig (λ) (ui+1 − ui)

f∗i+1/2 = λu∗ =
1

2
(λui + λui+1)− 1

2
|λ| (ui+1 − ui) (3.8)

Entonces, la ecuación (3.5) se desarrolla como la formulación en flujos numéricos. La
información de la celda i se actualiza de la siguiente manera: la variable f∗i−1/2 recoge la
información procedente de la celda inmediatamente anterior, i − 1, y la vuelca en la i; al
mismo tiempo, f∗i+1/2 extrae la información necesaria de la celda i para actualizar la i + 1.
Estas definiciones dotan de estructura matemática al método upwind, pues aśı discrimina en
qué sentido viaja la información según el signo de λ.
Alternativamente:

un+1
i = uni −

∆t

∆x

[
1

2
λ (ui + ui+1)− 1

2
|λ| (ui+1 − ui)−

1

2
λ (ui + ui−1) +

1

2
|λ| (ui − ui−1)

]n
=

= uni −
∆t

∆x
[λ+ (ui − ui−1) + λ− (ui+1 − ui)]n

donde:

λ± ≡ λ± |λ|
2

(3.9)

Se pueden escribir el flujo definido por Godunov, ecuación (3.8), como sigue:

f∗i+1/2 = λui +
1

2
(λ− |λ|) δui+1/2 = fi + λ−δui+1/2

Además, se tiene f∗i−1/2 = fi + λ+δui−1/2. Con esto se obtiene la formulación en ondas:

un+1
i = uni −

∆t

∆x

(
δf+
i−1/2 + δf−i+1/2

)n
(3.10)

donde δf± = λ±(u)δu.
Con (3.10) se puede apreciar de una manera más evidente el aporte a cada celda de

sus paredes vecinas. La interpretación señala que la variable en la celda i se actualiza en el
tiempo t = tn+1 por medio de los flujos de información que vienen por un lado desde su celda
izquierda cruzando la pared intermedia i− 1/2 hacia la derecha, δf+

i−1/2, y desde la derecha

cruzando la pared i+1/2 hacia la izquierda, δf−i+1/2. La comparación de ambas formulaciones

se ve en la figura (3.4).
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Figura 3.4: Formulaciones en flujo numérico y en ondas.

3.2. Resolvedor de Roe

El resolvedor de Roe es un resolvedor de Riemann aproximado para extender el método ante-
rior a ecuaciones no lineales. Para ello plantea una matriz jacobiana linealizada y localmente
constante que reduce el problema a un sistema lineal de ecuaciones. Esta nueva matriz jaco-
biana depende de los estados iniciales del problema de Riemann: J̃ = J̃ (Ui,Ui+1), de forma
que el sistema:

∂U

∂t
+
∂F (U)

∂x
= S (U)

se aproxime por:
∂Û

∂t
+ J̃

∂Û

∂x
= 0 (3.11)

con la condiciones iniciales:

Û =


Ui si x < xi+1/2

Ui+1 si x > xi+1/2

(3.12)

El jacobiano tiene que cumplir la condición de consistencia. Integrando la ecuación (2.2) en
el volumen de control de la celda:∫ xi+1

xi

[U(x,∆t)−U(x, 0)] dx+

∫ ∆t

0
[F(xi+1, t)− F(xi, t)] dt =

∫ xi+1

xi

∫ ∆t

0
Sdxdt

Haciendo lo mismo con la ecuación (3.11):∫ xi+1

xi

Û(x,∆t)dx−
∫ xi+1

xi

Û(x, 0)dx+ J̃∆t (Ui+1 −Ui) = 0

La condición de consistencia sostiene que se debe cumplir la siguiente igualdad:∫ xi+1

xi

Û(x,∆t)dx =

∫ xi+1

xi

U(x,∆t)dx

Lo cual conduce a:
δFi+1/2 − Si+1/2 = J̃i+1/2δUi+1/2 (3.13)

donde δFi+1/2 = F(Ui+1)− F(Ui) y δUi+1/2 = Ui+1 −Ui.
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Esto garantiza que la generalización de (3.10) a sistemas de ecuaciones con términos
fuente se pueda formular como:

Un+1
i = Un

i −
∆t

∆x

[
(δF− S)+

i−1/2 + (δF− S)−i+1/2

]n
(3.14)

Teniendo en cuenta:

δUi+1/2 = Ei+1/2δWi+1/2 =

(
ẽ11 ẽ21

ẽ12 ẽ22

)(
α̃1

α̃2

)
= α̃1ẽ1 + α̃2ẽ2

Si+1/2 = Ei+1/2Bi+1/2 = β̃1ẽ1 + β̃2ẽ2

Podemos expresar (3.13) en función de los valores y vectores propios como:

δFi+1/2 − Si+1/2 =
N∑
m=1

[(
λ̃α̃− β̃

)
ẽ
]m
i+1/2

Entonces, la ecuación (3.14) queda:

Un+1
i = Un

i −
∆t

∆x

[∑
k

(
λ̃+α̃ẽ− β̃+ẽ

)k
i−1/2

+
∑
k

(
λ̃−α̃ẽ− β̃−ẽ

)k
i+1/2

]n
(3.15)

El sistema SWE tiene dos dimensiones, aśı que esta ecuación quedará:

Un+1
i = Un

i − ∆t

∆x

[((
λ̃+

1 α̃1 − β̃1

)
ẽ1

)
i−1/2

+
((
λ̃+

2 α̃2 − β̃2

)
ẽ2

)
i−1/2

+

+
((
λ̃−1 α̃1 − β̃1

)
ẽ1

)
i+1/2

+
((
λ̃−2 α̃2 − β̃2

)
ẽ2

)
i+1/2

] (3.16)

3.3. Términos fuente

La discretización de los términos fuente de fondo es muy determinante en situaciones realistas.
Para garantizar que la solución numérica conserve la enerǵıa en ausencia de fricción, Murillo
y Navas proponen en [21] discretizar los términos fuente mediante una combinación lineal de
los métodos integral y diferencial:

S̄ = (1−ΠE) S̄a + ΠES̄
b (3.17)

donde el coeficiente es [20]:

ΠE =

δ

(
Q2

A

)
− Ãδ

(
1

2

Q2

A

)
(
S̄b − S̄a

) (3.18)

y siendo los métodos diferencial e integral respectivamente:
S̄a = − g

2c̃
Ãδz +

g

2c̃
Ã

(
δA

b̃
− δh

)
S̄b = − g

2c̃
Ai+1/2δz +

g

2c̃
Ai+1/2

(
δA

b̃
− δh

) (3.19)

con:

Ai+1/2 =

{
Ai si Ai < Ai+1

Ai+1 si Ai > Ai+1

Una desarrollo más detallado se encuentra en el Anexo B.
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3.4. Paso temporal

El paso temporal, ∆t, es un elemento requerido para actualizar las variables conservadas, tal
y como se indica en la ecuación (3.16). Esta cantidad, para no exceder la geometŕıa de las
celdas numéricas, tiene que cumplir:

∆t ≤ ∆x/λ

Si a esto se le añade la condición de convergencia de Courant, Friedrichs y Lewy [6], que
establece:

CFL = ∆t/∆tmax ≤ 1 (3.20)

entonces se llega a la siguiente formulación del cálculo del paso temporal:

∆t = CFLmı́n

(
∆x

λni

)
(3.21)

Es necesario evaluar en cada instante de tiempo n los valores propios λi de cada celda para
utilizar el mayor de ellos y, por lo tanto, más restrictivo. De esta forma, controlando el tamaño
del paso temporal, se garantiza la estabilidad del método. En el Anexo C se desarrolla esto
más detalladamente.
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4. Resultados

4.1. Casos test académicos

Una manera de comprobar que el método numérico funciona adecuadamente es comparar
los resultados que de él se obtengan con las soluciones exactas de aquellos problemas que
efectivamente las tengan. Esto permite verificar la calidad de la aproximación numérica pero
nunca ofrece respuestas a si el modelo es adecuado. Se estudiarán tres ejemplos de ello: la
ecuación lineal advectiva y la ecuación de Burgers en el Anexo E y la rotura de presa. Se
presentan 6 casos distintos que vienen determinados por sus condiciones iniciales:

Tabla 4.1: Casos test académicos de rotura de presa. Condiciones iniciales .

Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 Caso 6

QL (m3/s) 0,000 0,000 0,800 4,000 0,800 2,000
QR (m3/s) 0,000 0,000 0,000 0,000 0,000 0,000
hL (m) 1,000 4,000 0,600 0,600 0,700 0,700
hR (m) 0,100 0,692 1,000 1,000 1,000 1,000
zL (m) 0,000 0,000 0,000 0,000 0,000 0,000
zR (m) 0,000 3,000 0,400 0,400 0,000 0,000
bL (m) 0,000 0,000 1,000 1,000 0,500 0,500
bR (m) 0,000 0,000 1,000 1,000 1,000 1,000

4.1.1. Caso 1: rotura de presa ideal

Éste es uno de los ejemplos clásicos de problema transitorio de lámina libre con solución
exacta discontinua. Se trata de un problema de Riemann resuelto por vez primera por Stoker
[24] para el caso ideal, es decir, sin rozamiento ni pendiente. Se prepara una simulación para
un canal de L = 200 m, con los calados y caudales indicados en la tabla (4.1).

Figura 4.1: caso 1: soluciones exacta y numérica de una rotura de presa ideal. t = 20 s.
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La figura (4.1) recoge cuál es la solución transcurrido un tiempo t = 20 s superpuesta
con las condiciones iniciales y la solución exacta. Se diferencian 4 regiones separadas por
las ĺıneas caracteŕısticas y por la trayectoria de la propagación de la discontinuidad. En
las regiones I y IV de la figura (4.1) todav́ıa no se ha dejado notar la perturbación, aśı
que permanecen con sus condiciones iniciales. La región II es una zona de transición que
se corresponde con la expansión, donde se genera la onda de rarefacción. La región III
determina el frente de onda, sucede una compresión. Esta ha de verificar la condición de
Rankine-Hugoniot que describe la relación entre los estados a ambos lados de la onda de
choque:

(UR −UL)U = (FR − FL) (4.1)

donde U es la velocidad de la onda de choque.

Figura 4.2: Soluciones exacta y numérica de una rotura de presa: detalle mostrando resultados con y sin corrección de
la entroṕıa.

El método de Roe que se ha seguido puede proporcionar resultados erróneos cuando uno
de los valores propios discretos se anula localmente. En el Anexo D se detalla el procedimiento
seguido para corregir este problema, conocido como corrección de la entroṕıa. En la figura
(4.2) se aprecia una zona ampliada. Cuando se corrige la entroṕıa la solución obtenida presenta
una pendiente suave que se asemeja a la solución exacta; sin embargo, si no se corrige hay
una pequeña zona en la que los datos numéricos simulan un comportamiento poco realista
del flujo.

4.1.2. Caso 2: rotura de presa con términos fuente

La utilidad de discretizar los términos fuente como combinación lineal de los métodos diferen-
cial e integral se muestra usando un ejemplo de flujo transitorio sobre un escalón y sin fricción
propuesto en [19]. Las condiciones iniciales son las correspondientes al caso 2 de la tabla (4.1).
La figura (4.3) muestra perfiles longitudinales de la condición inicial de la altura del fondo,

de la superficie del agua en t = 5 s y de la ĺınea de enerǵıa definida por H = u2

2g + h+ z.
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Figura 4.3: Método diferencial de discretización de los términos fuente.

Figura 4.4: Combinación lineal de los métodos diferencial e integral de discretización de los términos fuente.

La enerǵıa no tiene que ser constante, pero necesariamente no puede incrementarse. En
esta simulación, realizada con el método diferencial de discretización de los términos fuente,
al contrario de lo que se puede esperar, aumenta. El método integral tampoco garantiza que
no aumente, por lo que es necesario el uso de la combinación lineal de ambos que en régimen
estacionario asegura la conservación de la enerǵıa. La figura (4.4) ilustra este método.
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4.1.3. Casos 3, 4, 5 y 6: convergencia al estado estacionario con términos
fuente

El correcto comportamiento del programa frente a los propios términos fuente se puede com-
probar analizando cuál es el resultado que predicen las ecuaciones. La enerǵıa H ha de
mantenerse constante en ausencia de fricción. Se plantean cuatro casos particulares en los
que vaŕıan la anchura o el lecho. Las condiciones iniciales se recogen en la tabla (4.1) para
los casos 3, 4, 5 y 6.

Sea, en primer lugar, la anchura constante: B = cte. Si se tiene un flujo estacionario,
Q = cte = uBh, entonces:

dQ

dx
= 0 ⇒ Bu

dh

dx
+Bh

du

dx
⇒ du = −u

h
dh

Además, puesto que la enerǵıa es constante:
dH

dx
= 0 ⇒ u

g

du

dx
+
dh

dx
+
dz

dx
= 0.

dh

dx

(
1− u2

gh

)
+
dz

dx
= 0

Que se puede reordenar para obtener una condición que indicará la relación entre la variación
del lecho y del calado:

dh

dx
=
dz

dz

1

Fr2 − 1
(4.2)

De esta manera, existen dos situaciones diferentes que dependen del tipo de flujo, que se
presentan con los casos 4 y 5 de la tabla. Si el flujo es subcŕıtico, Fr < 1, la parte derecha
de la igualdad (4.2) quedará con signo negativo, lo cual implica que si el lecho disminuye la

altura del calado aumentará:
dz

dx
↑ ⇒ dh

dx
↓. En la figura (4.5) se comprueba este hecho;

además, la enerǵıa se mantiene constante, cumpliendo la premisa de la que se part́ıa. Si, por
otro lado, el flujo es supercŕıtico, Fr > 1, ambas variables se modificarán solidariamente:
dz

dx
↑ ⇒ dh

dx
↑, como muestra la figura (4.6).

Figura 4.5: Flujo estacionario subcŕıtico, caso 3.
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Figura 4.6: Flujo estacionario supercŕıtico, caso 4.

En ambos ejemplos, si se discretizan los términos fuente con los métodos diferencial
e integral, la enerǵıa en estado estacionario no se mantiene constante. Es una diferencia
inapreciable, por lo que no se representa en ninguna figura, pero existen dos valores distintos
de la enerǵıa. Este fallo se soluciona con la combinación lineal de ambos métodos, que como
se aprecia en las figuras se conserva a lo largo de todo el canal.

Otro caso particular seŕıa aquel que considerara el lecho plano (z = cte) y en el que
variara la anchura. En esa situación se tiene:

dQ

dx
= 0 ⇒ Bu

dh

dx
+Bh

du

dx
+ hu

dB

dx
= 0

La derivada espacial de la enerǵıa, puesto que el lecho es constante, se reduce a:

dH

dx
= 0 ⇒ u

g

du

dx
+
dh

dx

De la unión de ambas ecuaciones se llega a:

dh

dx
=

u2

gB (1− Fr2)

dB

dx

Si el flujo es subcŕıtico, Fr < 1, se tiene:
dB

dx
↑ ⇒ dh

dx
↑. Teniendo en cuenta esto se llega

a que, si aumenta la anchura, aumenta también la altura del agua, como se ve en la figura
(4.7).
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Figura 4.7: Flujo estacionario subcŕıtico, caso 5.

Para flujo supercŕıtico, Fr > 1, es:
dB

dx
↑ ⇒ dh

dx
↓. En la figura (4.8) se aprecia que,

para un flujo supercŕıtico, el calado desciende si aumenta la anchura.

Figura 4.8: Flujo estacionario supercŕıtico, caso 6.
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4.2. Casos test experimentales

Una vez verificado el correcto funcionamiento del método de resolución de las ecuaciones con
ejemplos anaĺıticos es interesante comparar los datos numéricos con medidas experimentales
para contrastar cómo de realistas son. Para ello se van a utilizar medidas tomadas en el
Laboratório Nacional de Engenharia Civil (LNEC) de Lisboa por António Bento Franco [4]
y otras realizadas en la Universidad de Zaragoza en el laboratorio del Área de Mecánica de
Fluidos [16].

4.2.1. Medidas del laboratorio LNEC

Figura 4.9: Geometŕıa del canal del laboratorio LNEC.

En su tesis, Modelação computacional e experi-
mental de escoamentos provocados por roturas de
barragens [4], Bento Franco presenta resultados
experimentales de un montaje de rotura de pre-
sa para diferentes condiciones iniciales. La geo-
metŕıa del canal utilizado es la mostrada en la
figura (4.9). Se trata de un canal rectangular de
ancho constante y con pendiente longitudinal nu-
la.

Se evalúa la validez de los datos simulados,
por un lado a partir de valores de la velocidad de
avance del frente de onda medidos en tres zonas
diferentes del canal y, por otro lado, mediante
datos instantáneos de la altura del agua sobre el
fondo del canal recogidos por la sonda S3 (4.9)
cada 0,04 s. Con estos últimos datos se podrán
comparar los tiempos de llegada del frente de onda a la posición de la sonda.

Las medidas de la altura se realizaron con sondas de conductancia. Estas sondas estás
conformadas por un transductor, donde se realiza la detección, un conversor acoplado y un
acondicionador de señal. El transductor se basa en la proporcionalidad de la conductancia
(inverso a la resistencia eléctrica) al producto de la altura y la conductibidad: G ≈ σh.
El transductor tiene dos electrodos a los que alimenta el conversor acoplado con una señal
alterna de amplitud constante. Por tanto, la altura será proporcional a la diferencia de tensión
medida.

Bento plantea diferentes ensayos, caracterizado cada uno por las condiciones iniciales
impuestas sobre la altura del agua a ambos lados de la compuerta. En ellos mide la velocidad
media del frente de onda recogiendo el tiempo que tarda en llegar a cada sonda. En la
tabla (4.2) se muestran los datos experimentales y simulados. La primera zona, entre la
compuerta y la sonda S2, es la que mayor error relativo presenta. Esto podŕıa ser debido
a que experimentalmente es imposible conseguir una apertura instantánea de la compuerta,
como se supone en el modelo numérico. Por otro lado, el error relativo se reduce en la segunda
zona (S2 < x < S3) y es prácticamente despreciable en la tercera zona (S3 < x < S4) en
todos los experimentos simulados.
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Tabla 4.2: Velocidades promedio de los frentes de onda en las distintas zonas del canal.

Condiciones iniciales Velocidad del frente de onda (m/s)
hL (m) hR (m) Ensayo Gate < x < S2 S2 < x < S3 S3 < x < S4

0,401 0,004

F1B02 2,720 2,409 2,173
Numérico 2,496 2,304 2,167

Error relativo ( %) 8,24 4,36 0,30

0,400 0,095

F1B10 2,210 1,888 1,837
Numérico 2,500 1,820 1,855

Error relativo ( %) 13,12 3,60 0,98

0,301 0,148

F1B16 2,720 1,426 1,607
Numérico 2,075 1,640 1,617

Error relativo ( %) 23,71 14,98 0,60

0,249 0,149

F1B18 1,684 1,519 1,512
Numérico 1,960 1,536 1,493

Error relativo ( %) 16,37 1,14 1,27

A continuación, se utilizan los datos instantáneos de calado medidos por la sonda S3, situada
en x = 6, 1 m aguas abajo de la compuerta, para testar la precisión del modelo numérico.
Dicha comparación se lleva a cabo para las siguientes condiciones iniciales:

h(x) =

{
hL = 0, 408 m si x < 0 m
hR = 0, 006 m si x > 0 m

(4.3)

Atendiendo a los datos medidos (tabla (I.1) del Anexo I), el primer instante en el que se
registra una variación de la altura inicial en la sonda S3 es en el tiempo t = 2, 48 s y la altura
es h = 0, 017 m. La simulación se ha llevado a cabo con tres valores distintos del coeficiente
de Manning. Estos valores son los calibrados por Bento Franco para cemento en fondo liso.
La figura (4.10) muestra la comparación de la variación temporal de calado en la sonda S3
para los tres valores de coeficiente de Manning considerados.

Figura 4.10: Evolución temporal de calados experimentales y simulados en la sonda S3.

19



Los resultados numéricos alcanzan mayores alturas que los experimentales. El mejor de
los resultados es el correspondiente al Manning de menor valor (n = 0,0098 s/m1/3). Además,
el frente de onda experimental alcanza la posición de la sonda S3 aproximadamente 0, 13 s
antes que en la simulación numérica.

4.2.2. Medidas en el laboratorio AMF de la Universidad de Zaragoza

Figura 4.11: Canal AMF.

Finalmente, se realiza una validación del mo-
delo computacional con una serie de experi-
mentos llevados a cabo en el canal del la-
boratorio del Área de Mecánica de Fluidos
(Depart. de Ciencia y Tecn. de Materiales y
Fluidos) de la Universidad de Zaragoza. La
geometŕıa del canal incluye variaciones lon-
gitudinales de la pendiente del fondo y un
estrechamiento tipo Venturi, como muestra
la figura (4.11).

Un sensor RGB-D, denominado Ki-
nect (Microsoft, 2010), mide mediante re-
fracción la posición instantánea de la super-
ficie libre del flujo a lo largo de la zona del
estrechamiento. Se detallan en el Anexo G
la geometŕıa del canal y el método de adquisición-procesado de datos experimentales. Dos
experimentos diferentes, uno en régimen estacionario y otro en transitorio, serán motivo de
comparación con la predicción numérica.

4.2.2.1. Régimen estacionario

Previamente a la simulación de los experimentos, se realiza la calibración del coeficiente de
Manning para el modelo 1D presentado en este trabajo (H), estimando un valor óptimo de
rugosidad para el material del canal n = 0, 0088 s/m1/3 [16]. Para la simulación del caso
estacionario se partió de una condición inicial de caudal Q = 11, 66 m3/h y calados iniciales
hL = 0, 1 m en el depósito y hR = 0, 01 m en el canal. Imponiendo una condición de contorno
aguas arriba de caudal constante y de salida libre aguas abajo la simulación alcanzó el estado
estacionario. En la figura (4.12) se muestra el perfil longitudinal de superficie libre simulado y
medido en la zona de captación de datos de la Kinect. Las mediciones del laboratorio abarcan
tan sólo una pequeña zona del canal que contiene el estrechamiento, por lo que se prescinde
de mostrar el resto de canal, a pesar de que la simulación śı que obtuvo resultados para éste.

La conclusión más inmediata a la que se puede llegar observando la figura es que el
programa es capaz de llegar al estado estacionario. Además, realiza de manera correcta el
cambio de régimen que se da cuando el Froude vale 1, lo que demuestra que el esquema
numérico es well-balanced, es decir, está bien equilibrado. El flujo pasa de ser subcŕıtico a
supercŕıtico justo en el punto central del estrechamiento. Por otro lado, también merece la
pena mencionar que la calibración del Manning se ha llevado a cabo con éxito pues, de no
ser aśı, el método sobrestimaŕıa o subestimaŕıa el perfil de calado estacionario a lo largo del
eje longitudinal del canal y los datos numéricos apareceŕıan desplazados en el eje vertical.
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Figura 4.12: Perfiles longitudinales de calado numérico y experimental para el caso de régimen estacionario.

4.2.2.2. Régimen transitorio

El experimento con flujo transitorio consiste en una rotura de presa, donde las elevaciones
iniciales de la superficie libre aguas arriba y abajo de la compuesta neumática son:

h(x) =

{
hL = 9, 2 cm si x < 0
hR = 0, 0 cm si x > 0

Una vez la compuerta es elevada, la onda de rotura de presa avanza a lo largo del canal, hasta
alcanzar la zona de medida del sensor RGB-D. El tiempo experimental de llegada del frente
de onda al estrechamiento y los perfiles instantáneos de calado a lo largo del eje longitudinal
del canal obtenidos a partir de las medidas del sensor Kinect son comparados con los obte-
nidos numéricamente. Las figuras (4.13) y (4.14) muestran los perfiles longitudinal de calado
experimental y numérico para distintos tiempos después de la apertura de la compuerta.

Figura 4.13: Datos experimentales y simulados en Unizar: (a) t = 2, 54 s y (b) t = 5, 86 s.

La figura (4.13) muestra dicha comparación en t = 2, 54 s (a) y en t = 5, 86 s (b). En
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el Anexo I se recoge la secuencia temporal de avance del frente de onda en el estrechamiento.
En general los datos medidos en laboratorio y computados numéricamente muestran un buen
acuerdo, aunque un pequeño retraso en la llegada del frente de onda al estrechamiento es
observado para los datos experimentales (aproximadamente 0, 3 − 0, 5 s). Esto puede ser
debido a que el tiempo de apertura de la compuerta en el laboratorio no es instantáneo
(como se supone en el modelo numérico), sino que se estima una duración real para la apertura
completa en torno a 0,2− 0,4 s. Sin embargo, este retraso solo afecta a los primeros instantes
después de la apertura de la compuerta. La máxima altura de la superficie libre sobre el
fondo del canal en la zona de estrechamiento se da para un tiempo t = 5, 86 s después de la
apertura de compuerta, como se observa en la figura (4.13-b). A partir de ese momento, el
calado disminuye progresivamente con una aparición reiterada de ondas secundarias rebotadas
en el fondo del tanque, como se ve en la figura (4.14-a).

Figura 4.14: Datos experimentales y simulados en Unizar: (a) t = 15, 82 s y (b) t = 20, 71 s.

El método numérico es capaz de predecir razonablemente bien estos efectos de rebote
y la llegada de las ondas secundarias asociadas. Por último, la altura de agua en el estrecha-
miento acaba descendiendo progresivamente, figura (4.14-b), hasta que el agua almacenada
inicialmente en el depósito de cabecera es totalmente evacuada.
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5. Conclusiones

Al término de este trabajo conviene hacer una śıntesis del aprendizaje obtenido en su rea-
lización. En cuanto a los conocimientos y herramientas que se han consolidado se pueden
mencionar el tratamiento de ecuaciones diferenciales en derivadas parciales y la programa-
ción en C. Por otro lado, se han ampliado considerablemente en el ámbito de la mecánica de
fluidos respecto a los adquiridos en la asignatura F́ısica de fluidos; esto mediante la profun-
dización en la procedencia y uso de las ecuaciones que rigen el movimiento de un fluido, aśı
como en las aproximaciones que se deben llevar a cabo para considerarlo con mayor o menor
complejidad y con menor o mayor facilidad.

Se han generado nuevos conocimientos y competencias en la modelización matemática
y en la resolución numérica de ecuaciones. Para esto ha sido necesario un periodo de práctica
previo al trabajo en el que se redactaron programas que resolvieran problemas más sencillos,
como la ecuación lineal advectiva y la ecuación de Burgers. Asimismo, el procesamiento de
los datos experimentales ha requerido el uso de programas y filtros en distintos ámbitos de
trabajo, como MatLab o Paraview.

Se ha podido comprobar que la formulación del fenómeno descrito, flujo en lámina
libre, se ha formulado de la manera correcta por medio de las ecuaciones de aguas poco
profundas. Estas ecuaciones, en el caso concreto unidimensional, consideran y representan
razonablemente bien aspectos realistas de importancia del flujo como son las variaciones de
lecho y de anchura, aśı como la fricción de las paredes en los términos fuente.

Este modelo del flujo es mejorable, sin embargo, en cuanto al método de resolución
numérica de las ecuaciones, dentro de la gran variedad que existe, el utilizado en este trabajo
se ha explotado a su máximo nivel. Para ello se ha optimizado en diversos aspectos. La po-
sible aparición de resultados no realistas, como el problema de la entroṕıa, ha sido resuelto
correctamente, aportando resultados consistentes con las leyes f́ısicas. También se han pro-
puesto tres maneras distintas de discretizar los términos fuente que tratan de alcanzar un
cierto balance energético.

La solución exacta del problema no es realista, pues carece de efectos como la fricción,
tan sólo verifica las ecuaciones. En contraposición, la solución experimental tiene mucha
incertidumbre, fruto del modelo matemático, de la solución numérica y de las propias medidas.

Se ha tratado de llegar a un buen convenio al respecto. Esta primera pero amplia apro-
ximación a la simulación llevada hasta término, desde las ecuaciones que rigen el fenómeno,
pasando por su discretización y su resolución numérica y llegando hasta la comparación de
los resultados computacionales y experimentales, finalmente ha resultado arrojar soluciones
y conclusiones satisfactorias y sobradamente enriquecedoras con las que clausurar el último
curso del grado de f́ısica.
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[19] Murillo, J. - Garćıa-Navarro, P. (2009) Weak solutions for partial differential
equations with source terms: Application to the shallow water equations. Journal of
Computational Physics, 229 (2010), 4327-4368.
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