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Resumen / Abstract

Un flujo de ldmina libre, cuando la longitud de onda se puede comparar en magnitud con
la profundidad, se denomina de aguas poco profundas (shallow water). Las ondas de rotura
de presa son ejemplos de estos problemas, caracterizadas por una discontinuidad inicial en la
que se forma un frente de onda de alta velocidad. Las ecuaciones de aguas poco profundas
que rigen su dinamica se discretizan con volimenes finitos y se resuelven numéricamente
mediante el resolvedor de Roe. El objetivo es desarrollar, programar y validar un modelo
computacional unidimensional utilizando soluciones exactas de situaciones ideales y, por otro
lado, medidas experimentales tomadas en el laboratorio LNEC de Lisboa o en el laboratorio
del Area de Mecénica de Fluidos de la Universidad de Zaragoza.

A free-surface flow in which wave length is similar to water depth is called shallow
water. Dam break waves are an example of these shallow water flows, characterized by wa-
vefronts with high wvelocity originated by initial discontinuity. Shallow water equations will
be discretized with a finite volume technique and numerically solved through Roe solver. The
main purpose is to develop, to program and to validate a 1D computational model with exact
solutions of ideal situations and with experimental data from the LNEC laboratory in Lisbon
and the Mecanica de Fluidos’ laboratory in Universidad de Zaragoza.
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1. Introducciéon

La Fisica se desarrolla mediante la interaccién entre métodos experimentales y modelos tedri-
cos con el uso de diferentes técnicas bien depuradas en los primeros y de herramientas ma-
tematicas en los segundos. Las herramientas computacionales de simulacién numérica son una
tecnologia reciente que complementa a los dos anteriores. El principal cometido del estudiante
de fisica es aprender a manejar estas técnicas y herramientas con la destreza suficiente que
le permita analizar sistemas complejos, realizar un modelo adaptado a la profundidad que se
desee y compararlo finalmente con los datos extraidos del sistema real [1].

El modelo se construye primero mediante una descripcién matematica, constituida
esencialmente por ecuaciones y condiciones de contorno, y a continuacion se lleva a cabo su
resolucién. En muchos casos no existen soluciones analiticas a los problemas, por lo que se
tienen que resolver mediante métodos numeéricos [§] [1g].

Los resultados computacionales presentan una ventaja pues, cuando proceden de un
modelo bien verificado, pueden proporcionar una mayor cantidad de informacién. Se obtiene
de esta manera un conjunto de ntimeros que describen el sistema para un tiempo dado y un
conjunto de operaciones que representan las leyes fisicas y que llevan el sistema a un tiempo
posterior.

Dentro del marco de la mecédnica de fluidos es posible identificar los flujos de super-
ficie libre. Un flujo con superficie libre se define matematicamente como aquel en el que el
tamaifio y la forma de la regién de la solucién son parte de la propia solucion. Las condiciones
de contorno se tienen que aplicar a esta superficie incégnita. Cuando la longitud de onda se
puede comparar en magnitud con la profundidad el problema se denomina de aguas poco
profundas (Shallow water) [I5]. Un ejemplo de ello, aunque poco intuitivo, es el océano,
donde se cumpliria la condicién para fendmenos como tsunamis y mareas, pero no para olas
superficiales. El fenémeno de rotura de presa suele estudiarse bajo este modelo también. El
rasgo esencial de una rotura de presa instantdnea es una gran discontinuidad que se produce
cuando el agua acumulada a mayor altura se desprende y fluye sobre el cauce inferior. El
frente de onda que avanza de manera abrupta con elevadas velocidades fruto de la rotura
puede inundar los margenes del rio, provocando pérdidas y perjuicios de todo tipo. Cuando el
flujo se da en un canal se le puede asimilar a éste un cardcter unidimensional. De acuerdo con
ello, la rotura de presa se considera de aguas poco profundas. Esta rotura puede deberse
a causas naturales, como fenémenos atmosféricos, que llevan a caudales superiores a los es-
perados, o bien a fallos en la integridad estructural de la presa. Los organismos profesionales
se enfrentan al trabajo de simular el comportamiento del agua tras una rotura de presa, de
forma que puedan prever los efectos y desarrollar planes de emergencia, asi como el estudio
del impacto medioambiental [17].

Para la formulacién matematica, se parte de leyes de conservacién fundamentales de
masa, momento y energia, que se expresan en forma de ecuaciones en derivadas parciales
[2] [3] [11] [25]. Estas ecuaciones se compactan en un sistema hiperbdlico no lineal [7]
[8]. Este se caracteriza por la aparicién de discontinuidades en las soluciones por lo que
las soluciones cldsicas no son suficientes [I8]. Debido a esto interesa resolver correctamente
el sistema original con un problema de valor inicial discontinuo o, lo que es lo mismo, un
problema de Riemann [23]. En la solucién de un problema de Riemann no lineal aparecen
dos tipos de ondas: de choque y de rarefaccion. Esto depende de las condiciones iniciales a
ambos lados de un determinado punto, se pueden producir zonas de compresién que generan
ondas de choque, cuando la magnitud conservada es inicialmente mayor a la izquierda del
punto; o regiones de expansion, con ondas de rarefaccion, cuando la magnitud es mayor a la
derecha [24].



Los denominados resolvedores de Riemann (Riemann solvers) son métodos numéri-
cos que permiten calcular dichos problemas de manera exacta. Teniendo en cuenta las apro-
ximaciones unidimensional y de aguas poco profundas, un buen método de resolucién del
problema de Riemann aproximado es el método de Roe [23] [18] [7]. Basado en el esquema
de Godunov [10] explicito y de volumen finito, calcula el flujo numérico que actualiza el valor
en cada celda promediando los valores de diferentes soluciones aproximadas que aparecen
cuando se define un problema local de Riemann entre una celda y sus vecinas [19].

El objetivo principal de este trabajo es desarrollar, programar y validar un modelo compu-
tacional unidimensional de rotura de presa. Para ello se partird de unas ecuaciones cuyas pro-
piedades matematicas serd necesario conocer detalladamente para poder encontrar un modelo
de discretizaciéon adecuado. A continuacién se buscard un método de resolucién numérico de
dichas ecuaciones que consiga dentro de la sencillez de un modelo unidimensional abarcar
fenémenos fisicos de la manera mas general posible.

La evaluacién del modelo se hard por medio de la comparacién en primer lugar con
las soluciones exactas de los problemas que, aunque no representan la realidad del fenémeno,
verifican las ecuaciones [5]. Como resultados de referencia més realistas, servirdn los datos
experimentales recogidos en el laboratorio LNEC [4] y los medidos en el laboratorio del Area
de Mecénica de Fluidos de Zaragoza. Para esto iltimo se conté con un canal a escala y con
una camara Kinect que proporciona medidas de la profundidad del agua a lo largo del tiempo
[16].

Ademds, se busca consolidar conocimientos previos adquiridos durante el grado acerca
de programacion y de la fisica que subyace al comportamiento de los fluidos; y, por otro
lado, con el mayor detenimiento que permite el formato de este trabajo, profundizar en la
resolucién numérica de ecuaciones, tanto teérica como computacionalmente.



2. Formulacién de flujos transitorios
de lAmina libre en 1D

2.1. Ecuaciones

Las ecuaciones que rigen el comportamiento del flujo en ldmina libre en 1D escritas en forma
conservativa son las siguientes:

0A 0Q
I 2.1
ot + ox 0 (2.12)
0Q 0 (Q _
e <A+911> = glo+gA(So)— Sy) (2.1b)
o (Q* A o (@  AQ\ _ @
o <A? +92b> o0 <2A? +gb> = 94 (=5 (210

Se trata de un sistema de ecuaciones diferenciales en derivadas parciales que se obtienen
promediando en la seccién transversal a partir de leyes fundamentales de la fisica: conservacién
de la masa, conservacién de la cantidad de movimiento y conservacién de la energia. En el
Anexo A se desarrolla al completo el proceso de derivacién de las mismas.

Las variables conservadas son: A(x,t), que representa el drea transversal y que es una
funcién del calado h(z,t), y el caudal Q(z,t) = A(z,t)u(z,t), donde u(z,t) es la velocidad
media. gl es la integral de presién hidrostatica en cada seccién. En cuanto a los términos
fuente: la reaccién debida a las variaciones en la anchura del canal es recogida por g¢ls;

So = —a—z es la pendiente del lecho; y la pendiente de friccion formulada a partir de la ley
z
semiempirica de Manning es:
292
n
%= A21§*/ ’
h

donde n es el coeficiente de Manning y Ry, el radio hidrdulico [I1].

Segun la teoria de las ecuaciones diferenciales se requieren solamente dos de las tres
ecuaciones (2.1a), (2.1b) y (2.1c) para resolver las variables A y Q. Cabe preguntarse en
este punto qué pareja de ecuaciones se utiliza y si las soluciones que se obtendrian con
cualquiera de las posibles permutaciones serian equivalentes. Abbott en [2] sostiene que, para
una descripcion diferencial del flujo, es decir continua, las ecuaciones de conservacién de
cantidad de momento y de energia son equivalentes. Sin embargo, el caso que concierne a este
trabajo contiene una discontinuidad en la rotura de presa, pues se trata de un problema de
valor inicial discontinuo o, lo que es lo mismo, un problema de Riemann. Este fenémeno tiene
un caso concreto conocido como salto hidrdulico [11], que va acompanado por turbulencias y
pérdidas de energfa. Debido a esto dltimo, ya no son equivalentes ambas formulaciones y se
requiere la utilizacion de la ecuacién de la cantidad de movimiento.

2.2. Propiedades y formulacion caracteristica

Las ecuaciones de masa ([2.1a)) y cantidad de movimiento ([2.1b]) forman un sistema no lineal
e hiperbdlico que se puede compactar en su forma conservativa:

87U N JF (U)
ot ox

=S (U) (2:2)



donde el vector de variables conservadas, U, el vector de flujos de dichas variables, F, y los
términos fuente, S, son:

U:<g>; F: 6124239[1 ; S:<g[12+f4(()50—5f)}> 2

Un sistema de ecuaciones se denomina hiperbdlico cuando su matriz jacobiana de dimensién
n X n tiene n valores propios reales, A;, y un conjunto de n vectores propios linealmente
independientes, e;, que forman una base del espacio n-dimensional. En este caso, la matriz
jacobiana de dimensién 2 x 2 es:

0 1
_OF B 0 1
Jzai_ A Q2 2@ _<c2—u2 2u> (24)
9% " 74
ol A . . . .
donde ¢ = ga—A = gz es la velocidad de las perturbaciones superficiales, siendo b la

anchura del canal en caso de que sea rectangular. Esta serd la hipdtesis en adelante. Se tienen
los valores propios: Ay = u —cy A2 = u + ¢; y los vectores propios:

a=(,0) = (i)

Esto permite encontrar su forma no conservativa, dada por la ecuacion:

ouU ou

—+J—=S(U 2.5

ot * ox (U) (25)
Sea E la matriz formada por los n vectores propios dispuestos en columnas. Se puede sustituir
el jacobiano en la ecuacién (2.5) por la matriz diagonal A, formada por los valores propios,
teniendo en cuenta: A = ET'JE = EA =JE = EAE~! = J. Multiplicando (2.5)) por la
izquierda por E~! se obtiene el sistema desacoplado:

oW OW

—+A—=S8 2.6

at Mo W (2:6)

Aparecen asf unas nuevas variables llamadas variables caracteristicas: {W = E~1§U.
Del sistema desacoplado (2.6) se puede llegar facilmente a:

Ot 20+ (ut o) o (ut2) = (u—0)ohr+gA (S~ )
0 g = I A(Sy— S
O w20t ) 2 (u—20) = (ut)lghr+gA (S~ 5y)

La interpretacién de estas ecuaciones es la siguiente: las cantidades wy = u+2cy wo = u—2c se
mantienen constantes a lo largo de sus lineas caracteristicas en el plano (z, t), cuyas pendientes
son los valores propios, es decir, Ay = u+ ¢y Ao = u — ¢ respectivamente. En ausencia de
términos fuente se tiene:

de dwy  d(u—2c) B
E—Al—u—ci T 7 =0 = u—2c=cte

(2.7)
dx dwy  d(u+ 2c)
_— = g = = 2 -
7 =u+c = 7 7 0 = u+2c=cte



En el denominado método de las caracteristicas se pueden resolver ecuaciones diferen-
ciales en derivadas parciales sustituyéndolas por ecuaciones diferenciales ordinarias. Se hace
uso de las dos direcciones caracteristicas, C~ y C'" y las variables conservadas, denominadas
invariantes de Riemann, J~ =u —2cy JT = u + 2c.

\ 4

A B x

Figura 2.1: Dominio de dependencia de un punto P.

En cada punto P del plano (z,t) se cortan dos lineas caracteristicas. La solucién que
se busca, (4, Q), viene determinada por ambos invariantes, J* y J~, definidos por las con-
diciones iniciales en t = 0. La solucién en P depende de todos los puntos que abarca el darea
comprendida entre ambas lineas caracteristicas, como se muestra en la figura . Es decir,
cémo cambia JT a lo largo de CF estd influido por cémo lo hace J~ a lo largo de C~ y
viceversa. El punto P es el limite en el que pueden ser utilizada la informaciéon procedente
del origen de manera independiente. Esta teoria también ayuda a disenar las condiciones de
contorno necesarias.



3. Soluciéon numeérica

Existen diferentes métodos de discretizacion de las ecuaciones diferenciales en derivadas par-
ciales, como los volumenes finitos, que se utilizan en este trabajo, o las diferencias finitas,
que se describen en el Anexo C. Existen a su vez distintas maneras de resolver numéricamen-
te estas ecuaciones discretizadas. Son herramientas computacionales que tratan de simular
los procesos que representan las ecuaciones mediante el manejo de ntimeros y operaciones
simples.

Las celdas computacionales se consideran volimenes de control en un esquema de
volimenes finitos, segin el cual las variables conservadas se integran calculando valores me-
dios. Se tiene asi una red regular de celdas como se muestra en la figura (3.1) [I8], en un
dominio total de longitud L.

Ax
x=0 —ep x=1L
t
n+1 ® ® . ® ® ® ®
Xi—1/2 Xi+1/2
n ® L ® ® ® ® *
Xq Xi_q X; Xitq Xy X

Figura 3.1: Red unidimensional regular de celdas.

De esta manera, la celda ¢, que se corresponde con la posicién z; tiene una anchura

Az, cuyo dominio abarca de la pared z;_;/; a la x;,;/5. Cada nuevo tiempo =7 4 At

se calcula resolviendo secuencias de problemas de Riemann y suponiendo que en cada celda
las variables son constantes definidas a trozos.

Los problemas de Riemann consisten en n+1 estados

A . .
2 : separados por n ondas que salen del origen, asociada cada
1
una a un valor propio; si se supone el sistema de SWE;,
v n = 2, se tienen dos ondas que separan tres estados. Los
14

resolvedores de Riemann son métodos numéricos utilizados
para resolver de manera aproximada dichos problemas de
Riemann. Uno de los méas conocidos en dindmica de fluidos
computacional es el desarrollado por Godunov [10], pues
el primero en dotar de solucién exacta a las ecuaciones
Figura 3.2: Problema de Riemann n = 2. de Kuler y, por lo tanto, a las leyes de conservacién que
expresan en su forma de sistemas no lineales hiperbélicos.
Llegar a la solucién exacta que permiten estos resolvedores supone un alto coste compu-
tacional en el caso de ecuaciones no lineales pues requiere la resolucién temporal de cada
problema de Riemann en todas las celdas, lo cual dificulta enormemente la convergencia a la
solucién exacta. Es por ello por lo que se utiliza el resolvedor de Roe [23] que basicamente
aproxima los valores del jacobiano para linelizar el sistema de ecuaciones como se vera mas
adelante.

i i+1 x

El método de discretizacion escogido es un esquema upwind de primer orden explicito
de tipo Godunov [I0]. El término upwind hace referencia a la derivada espacial. Este método
envia la informacion en un sentido o en otro segun el signo del valor propio.



Respecto a la integracion temporal, los métodos explicitos se caracterizan por utilizar
la informacién conocida siempre de un paso temporal anterior ¢t". Mientras que los implicitos
para calcular las variables conservadas en un tiempo t"*! necesitan ademds de sus valores
en t" también otros datos del propio t"*!. Esto genera mayor complejidad algebraica. Los
explicitos son mas sencillos, pero estan sometidos a una condicién de estabilidad temporal,
como se explica en el Anexo C. El trabajo de esta memoria estd basado en la utilizacion de
un esquema explicito.

3.1. Volumenes finitos

Se va a utilizar un ejemplo sencillo para mostrar lo esencial del método numérico. Supongamos
una ley de conservacién escalar:

ot ox
donde u es la variable conservada y f(u) su flujo. Si se integra sobre el volumen de control
delimitado espacialmente por las paredes x;_1/o y ;112 y temporalmente por " y "+l ge
obtiene:

Ou 01 _, (3.1)

/%ﬂ/2 [u(z, ") — u(z, t")] dz + /t " [f (w@irajo,t) = f (ulmimaye, )] dt =0 (3.2)

i—1/2

Se puede definir el valor medio de la variable conservada u(x,t) en la celda i en el tiempo ¢"

como:
1 Tit1/2
ul = Am/ u(z, t")dx (3.3)

Ti—1/2
Y los flujos medios en cada pared, denominados flujos numéricos:

tn+1

. 1
fix1)2 = At/tn f(u(@izry2,t)) dt (3.4)
La ecuacion (3.2)) queda:
up ™= — Ar <fi+1/2 - fi71/2> (3.5)

El esquema puede ser de tipo explicito si f* ~ f(u"), de forma que la variable en un tiempo
t"*1 depende exclusivamente de informacién en el tiempo anterior t”; o de tipo implicito si el
flujo depende de la variable en otro tiempo distinto de n. El Anexo C analiza la estabilidad
de ambos tipos de esquemas.

Atn suponiendo formulacién explicita, la eleccion del tipo de flujos numéricos deter-
minard qué esquema actia. Godunov propone: f* = f(u*). En el caso particular:

ou ou
T Wit .
5 + o 0 t (3.6)
con \ = cte tendria la forma: f* = \u* (figura (3.3)). A
Godunov define la variable intermedia como: u; ur
% U; — S (ui+1 — ul) Ui
= 3.7
" { Uip1 — s (wi — uit1) (3.7)
. 1 .
Siendo: s = 3 (1 £ sig(N)). l. iv12 41 %

Figura 3.3: Variable intermedia u* de Godunov.
7 Caso escalar lineal.



Asi que se puede escribir como:

1 1 ) 1 1 .
W= [ 5 (U sigO0) (e = )| 4 e = (14 sig00) (05— )| =
1 1 .
=3 (wit1 + wi) — 5519 (A) (i1 — i)
« w1 1
Fivrye = 2" = 5 (i + Auigr) = 5 [A] (i1 — wi) (3.8)

Entonces, la ecuacién se desarrolla como la formulacién en flujos numéricos. La
informacién de la celda i se actualiza de la siguiente manera: la variable f' ; /o Tecoge la
informacién procedente de la celda inmediatamente anterior, i — 1, y la vuelca en la i; al
mismo tiempo, ff /2 extrae la informacién necesaria de la celda 7 para actualizar la 7 + 1.
Estas definiciones dotan de estructura matemaética al método upwind, pues asi discrimina en

qué sentido viaja la informacién segun el signo de .

Alternativamente:
At [1 1 1 1 "
uftt =l — g |30 (u; +uir1) — 3 Al (wit1 —ui) — % (u; +ui—1) + 3 Al (wi —uim1)| =
At n
=u; — Az AT (s — wio1) + A7 (wig1 — ug)]
donde:
AN
2= 2‘ | (3.9)

Se pueden escribir el flujo definido por Godunov, ecuacién (3.8), como sigue:

* 1 _
Fivrye = M+ 5 (A=A Ouipryo = fi+ A7 Uiy

Ademds, se tiene f | /2= fi + XTou;_, /2. Con esto se obtiene la formulaciéon en ondas:

At n
n+1 n -
= - (51’;1/2 +6 Z.H/Q) (3.10)

donde 6 f* = A*(u)du.

Con se puede apreciar de una manera mas evidente el aporte a cada celda de
sus paredes vecinas. La interpretacion seniala que la variable en la celda i se actualiza en el
tiempo t = t"*! por medio de los flujos de informacién que vienen por un lado desde su celda
izquierda cruzando la pared intermedia ¢ — 1/2 hacia la derecha, & fztl jor ¥ desde la derecha

cruzando la pared i+1/2 hacia la izquierda, § f; 120 La comparacién de ambas formulaciones

se ve en la figura (3.4).



t
fi—1/2 fi+1/2
—_— >
6fit1/2 = 7\+6ui—1/2 8fiv1/2 = A 0Upqy2
L & ‘-\ L
i—1 i i+1

Figura 3.4: Formulaciones en flujo numérico y en ondas.

3.2. Resolvedor de Roe

El resolvedor de Roe es un resolvedor de Riemann aproximado para extender el método ante-
rior a ecuaciones no lineales. Para ello plantea una matriz jacobiana linealizada y localmente
constante que reduce el problema a un sistema lineal de ecuaciones. Esta nueva matriz jaco-
biana depende de los estados iniciales del problema de Riemann: J=1J (U;, U;41), de forma
que el sistema:

oU OF (U)
ot or WU
se aproxime por: A A
ou -0U
= = = A1
BN +J8x 0 (3.11)

con la condiciones iniciales:

. U; st x < Tit1/2
U= (3.12)
Uip1 si x> x4,

El jacobiano tiene que cumplir la condicién de consistencia. Integrando la ecuacién (2.2)) en
el volumen de control de la celda:

Tit1 At Tit1 AL
/ [U(z, At) — U(z,0)] dzx + / [F(xiy1,t) — F(z,t)] dt = / / Sdzdt
T 0 T 0

Haciendo lo mismo con la ecuacién (3.11)):

Tit+1

A~

Tit1 ~
/ U(z, At)dz — U(z,0)dr +JAt (Ui —U;) =0

2 Zq

La condicion de consistencia sostiene que se debe cumplir la siguiente igualdad:

Tit1 Ti+1
U(x, At)dx = U(x, At)dx
Lo cual conduce a: _
OFi1172 — Siy12 = Jiz1/20U441)2 (3.13)

donde 6F; 1/ = F(U;11) — F(U;) y Uy = Ui — Uy,



Esto garantiza que la generalizacién de (3.10) a sistemas de ecuaciones con términos
fuente se pueda formular como:

At n
n+1 __ n
U =U -5 [(5F S)i 12+ (OF — S)z+1/2i| (3.14)
Teniendo en cuenta:
e é a - o~
U172 =Ei1120W; 10 = ( éi; éz; > < d; ) = Q1681 + (282

Sit12 = Eit12Bij12 = 5181 + B8
Podemos expresar en funcién de los valores y vectores propios como:
N ~ ~ m
0F 112 — Siq12 = mz::l K)\a - 5) e] 1o
Entonces, la ecuacién queda:

zk: < aé— e )z " + zk: <)\ ae — 66)21/2] (3.15)

El sistema SWE tiene dos dimensiones, asi que esta ecuacién quedaré:

ut = - g [((raa)a) o+ (e R)a) 4

+((Ara - 4) él)m/2 F((Mar-p)a) /J

3.3. Términos fuente

At

Az

U?—H Un

(3.16)

La discretizacién de los términos fuente de fondo es muy determinante en situaciones realistas.
Para garantizar que la soluciéon numérica conserve la energia en ausencia de friccién, Murillo
y Navas proponen en [2I] discretizar los términos fuente mediante una combinacién lineal de
los métodos integral y diferencial:

S=(1-1Ig)S* +IpS° (3.17)
donde el coeficiente es [20]:
2 2
(%) » (%)
Ir = _ _ 3.18

y siendo los métodos diferencial e integral respectivamente:

S = — A6 + A(‘?—M)
A ) (3.19)

gb — ég Az+1/252+ A”H—l/? (b *5h

con:

A . Al St Az < Ai+1
2T A st A > A

Una desarrollo més detallado se encuentra en el Anexo B.
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3.4. Paso temporal

El paso temporal, At, es un elemento requerido para actualizar las variables conservadas, tal
y como se indica en la ecuacién (3.16). Esta cantidad, para no exceder la geometria de las
celdas numéricas, tiene que cumplir:

At < Azx/\

Si a esto se le anade la condicién de convergencia de Courant, Friedrichs y Lewy [6], que
establece:

CFL = At/ Aty < 1 (3.20)

entonces se llega a la siguiente formulacién del calculo del paso temporal:

Ax

At = CFLmin <n> (3.21)
i

Es necesario evaluar en cada instante de tiempo n los valores propios A; de cada celda para

utilizar el mayor de ellos y, por lo tanto, més restrictivo. De esta forma, controlando el tamano

del paso temporal, se garantiza la estabilidad del método. En el Anexo C se desarrolla esto

mas detalladamente.
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4. Resultados

4.1. Casos test académicos

Una manera de comprobar que el método numérico funciona adecuadamente es comparar
los resultados que de él se obtengan con las soluciones exactas de aquellos problemas que
efectivamente las tengan. Esto permite verificar la calidad de la aproximaciéon numérica pero
nunca ofrece respuestas a si el modelo es adecuado. Se estudiaran tres ejemplos de ello: la
ecuacién lineal advectiva y la ecuacién de Burgers en el Anexo E y la rotura de presa. Se
presentan 6 casos distintos que vienen determinados por sus condiciones iniciales:

Tabla 4.1: Casos test académicos de rotura de presa. Condiciones iniciales .

Casol Caso2 Caso3 Caso4 Casob Caso 6

Q. (m3/s) 0,000 0000 0800 4,000 0,800 2,000
/s) 0,000 0,000 0000 0000 0,000 0,000

hy (m) 1,000 4,000 0600 0600 0,700 0,700
(m) 01100 0692 1,000 1,000 1,000 1,000

(m) 0,000 0,000 0,000 0,000 0,000 0,000
(m) 0,000 3,000 0,400 0,400 0,000 0,000
br, (m) 0,000 0,000 1,000 1,000 0,500 0,500
(m) 0,000 0,000 1,000 1,000 1,000 1,000

4.1.1. Caso 1: rotura de presa ideal

Este es uno de los ejemplos clasicos de problema transitorio de ldmina libre con solucién
exacta discontinua. Se trata de un problema de Riemann resuelto por vez primera por Stoker
[24] para el caso ideal, es decir, sin rozamiento ni pendiente. Se prepara una simulacién para
un canal de L = 200 m, con los calados y caudales indicados en la tabla .

T T T T T
1.0 1 N Solucion exac{a -
: X Inicial
Sin correccién entrépica
0.8 - -‘ = Con correcmoh entropica
= 0.6 1 -
E
< I \Y%
0.4 1 ]
0.2 1 i
xﬁxxxxxxxxxxxxx‘
00 T ‘ T T T . T T T
0 50 100 150 200

x (m)

Figura 4.1: caso 1: soluciones exacta y numérica de una rotura de presa ideal. t = 20 s.
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La figura recoge cual es la solucién transcurrido un tiempo ¢ = 20 s superpuesta
con las condiciones iniciales y la solucion exacta. Se diferencian 4 regiones separadas por
las lineas caracteristicas y por la trayectoria de la propagacién de la discontinuidad. En
las regiones I y IV de la figura todavia no se ha dejado notar la perturbacién, asi
que permanecen con sus condiciones iniciales. La regién I1 es una zona de transicién que
se corresponde con la expansién, donde se genera la onda de rarefaccién. La regién 111
determina el frente de onda, sucede una compresién. Esta ha de verificar la condicién de
Rankine-Hugoniot que describe la relacion entre los estados a ambos lados de la onda de
choque:

(Ur—UL)U = (Fr—Fy) (4.1)

donde U es la velocidad de la onda de choque.

0.50 A ) T T T T T
.‘.
\'o. m==  Solucién exacta
KX Inicial
.o.. —e— Sin correccion de la entropia
0.48 + LN = eCon correccion de la entropia| ]|
e
:...."Om
N
0.46 . .
£ .
~ \
e

0.44 \ -

0.42 ---~:>. -
0.40 . ; : . : e,
<) 95 100 105 110

Figura 4.2: Soluciones exacta y numérica de una rotura de presa: detalle mostrando resultados con y sin correccién de
la entropia.

El método de Roe que se ha seguido puede proporcionar resultados erréneos cuando uno
de los valores propios discretos se anula localmente. En el Anexo D se detalla el procedimiento
seguido para corregir este problema, conocido como correccion de la entropia. En la figura
(4.2)) se aprecia una zona ampliada. Cuando se corrige la entropia la solucién obtenida presenta
una pendiente suave que se asemeja a la solucién exacta; sin embargo, si no se corrige hay
una pequena zona en la que los datos numéricos simulan un comportamiento poco realista
del flujo.

4.1.2. Caso 2: rotura de presa con términos fuente

La utilidad de discretizar los términos fuente como combinacion lineal de los métodos diferen-
cial e integral se muestra usando un ejemplo de flujo transitorio sobre un escalén y sin friccién
propuesto en [19]. Las condiciones iniciales son las correspondientes al caso 2 de la tabla .
La figura muestra perfiles longitudinales de la condicién inicial de la altura del fondo,
de la superficie del agua en t =5 s y de la linea de energia definida por H = % +h+z.

13



I ! I i I i I i I
$ 900 T PO O C O

34 0 et Came .
— ] e Fnergia |
S X Inicial OO
= 2 [== Simulacién de Murillo .
= e Diferencial
] Lecho .
1 ]
0 i ; , . , : . , .
-40 -20 0 20 40

X (m)

Figura 4.3: Método diferencial de discretizacion de los términos fuente.

T T T T T T T T T
4 S XOKHAKIKHAHIHAKHKHK B
X
3 \ - et -
1 [ % Inicial 1
e e 1 g12 O
= 2 == Simulacién de Murillo .
= e Combinacion de métodos
] Lecho .
14 a
0 I ' 1 ' I ' I N I
-40 -20 0 20 40

X (m)

Figura 4.4: Combinacién lineal de los métodos diferencial e integral de discretizacién de los términos fuente.

La energia no tiene que ser constante, pero necesariamente no puede incrementarse. En
esta simulacidén, realizada con el método diferencial de discretizacién de los términos fuente,
al contrario de lo que se puede esperar, aumenta. El método integral tampoco garantiza que
no aumente, por lo que es necesario el uso de la combinacién lineal de ambos que en régimen
estacionario asegura la conservacion de la energia. La figura ilustra este método.
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4.1.3. Casos 3, 4, 5 y 6: convergencia al estado estacionario con términos
fuente

El correcto comportamiento del programa frente a los propios términos fuente se puede com-
probar analizando cudl es el resultado que predicen las ecuaciones. La energia H ha de
mantenerse constante en ausencia de friccién. Se plantean cuatro casos particulares en los
que varian la anchura o el lecho. Las condiciones iniciales se recogen en la tabla para
los casos 3, 4, 5y 6.

Sea, en primer lugar, la anchura constante: B = cte. Si se tiene un flujo estacionario,
() = cte = uBh, entonces:

d@ dh du U
Ademas, puesto que la energia es constante: il =0 = udu + dh + dz = 0.
dx gdr dx dx

dh u? dz
—|1-——+—=0
dx gh dx
Que se puede reordenar para obtener una condicién que indicara la relacion entre la variacion

del lecho y del calado:
dh dz 1

dr  dzFr? —1
De esta manera, existen dos situaciones diferentes que dependen del tipo de flujo, que se
presentan con los casos 4 y 5 de la tabla. Si el flujo es subcritico, F'r < 1, la parte derecha

de la igualdad (4.2)) quedara con signo negativo, lo cual implica que si el lecho disminuye la

d dh
altura del calado aumentara: d—z T = Tr J. En la figura 1) se comprueba este hecho;
x x

ademads, la energia se mantiene constante, cumpliendo la premisa de la que se partia. Si, por
otro lado, el flujo es supercritico, F'r > 1, ambas variables se modificaran solidariamente:

% = @ 1, como muestra la figura 1}
dx dx

(4.2)

T T T T T
14 1 A G AT A AT A G g ATAS G paAY -1.4
| ' 4
| | | 4 I
1.2 1 : i e -1.2
| | i
: : . —
H - o @ - - - - - - = o
104 PR e SR 1.0 §,
1 : — R
_ 3 . 3 X Inicial . )
e 0.8 § = e Intermedio (t=12,69s) | 0.8 ©
- ‘ . ‘ == Estacionario c
= . L
‘ U ‘ Energia &
0.6 pOOBOMMOMOOOOOOPOOOCOOHHA o Froude 0.6 ©
| 3 3 Lecho 8
i 3 =
044 3 04 -
0000000000000
0.2 1 : : 0.2
olelelslvelsls’olelcislolelc’slolelelclelelelelel
0.0 i y ; : T y T y T 0.0
-40 -20 0 20 40
x (m)

Figura 4.5: Flujo estacionario subcritico, caso 3.
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E’ 0.75 - I and Estacpnarlo L 1.5 W
‘ Energia o)
'mm%xxwxmxxmm O Froude g
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0.25 L 0.5
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Figura 4.6: Flujo estacionario supercritico, caso 4.

En ambos ejemplos, si se discretizan los términos fuente con los métodos diferencial
e integral, la energia en estado estacionario no se mantiene constante. Es una diferencia
inapreciable, por lo que no se representa en ninguna figura, pero existen dos valores distintos
de la energia. Este fallo se soluciona con la combinacién lineal de ambos métodos, que como
se aprecia en las figuras se conserva a lo largo de todo el canal.

Otro caso particular serfa aquel que considerara el lecho plano (z = cte) y en el que
variara la anchura. En esa situacion se tiene:

dQ dh du dB
— Bu— 4+ Bh— = _
I 0 = uda:+ hdx+hudx 0

La derivada espacial de la energia, puesto que el lecho es constante, se reduce a:

dH wdu  dh

el -4

dx gdx dx
De la union de ambas ecuaciones se llega a:

dh u? dB

de ~ gB(1—Fr?) dx

dB h
Si el flujo es subcritico, F'r < 1, se tiene: — 1 = — 1. Teniendo en cuenta esto se llega

x x
a que, si aumenta la anchura, aumenta también la altura del agua, como se ve en la figura

ED).
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Para flujo supercritico, F'r > 1, es: Tr T = ar J. En la figura 1) se aprecia que,
x x

para un flujo supercrit

T
-40 20 40

Figura 4.7: Flujo estacionario subcritico, caso 5.

ico, el calado desciende si aumenta la anchura.
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T T T T T
00000000000O000000000000]
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TPO000000000O0000OOOOOO00O
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Figura 4.8: Flujo estacionario supercritico, caso 6.
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4.2. Casos test experimentales

Una vez verificado el correcto funcionamiento del método de resolucién de las ecuaciones con
ejemplos analiticos es interesante comparar los datos numéricos con medidas experimentales
para contrastar como de realistas son. Para ello se van a utilizar medidas tomadas en el
Laboratério Nacional de Engenharia Civil (LNEC) de Lisboa por Anténio Bento Franco [4]
y otras realizadas en la Universidad de Zaragoza en el laboratorio del Area de Mecanica de
Fluidos [16].

4.2.1. Medidas del laboratorio LNEC

Compuerta

En su tesis, Modelacdo computacional e experi-

61m l 132m
mental de escoamentos provocados por roturas de

barragens [4], Bento Franco presenta resultados
experimentales de un montaje de rotura de pre-

0,5m

S2 i S3 LS

sa para diferentes condiciones iniciales. La geo- !
metria del canal utilizado es la mostrada en la | i 2,05m
figura . Se trata de un canal rectangular de 6,1m
ancho constante y con pendiente longitudinal nu- | |
la.

10,05 m

, . . L=193m
Se evalia la validez de los datos simulados,

por un lado a partir de valores de la velocidad de
avance del frente de onda medidos en tres zonas
diferentes del canal y, por otro lado, mediante hy y

hg

datos instantaneos de la altura del agua sobre el T
fondo del canal recogidos por la sonda S3
cada 0,04 s. Con estos tultimos datos se podran
comparar los tiempos de llegada del frente de onda a la posicién de la sonda.

Las medidas de la altura se realizaron con sondas de conductancia. Estas sondas estas
conformadas por un transductor, donde se realiza la deteccién, un conversor acoplado y un
acondicionador de senial. El transductor se basa en la proporcionalidad de la conductancia
(inverso a la resistencia eléctrica) al producto de la altura y la conductibidad: G ~ ch.
El transductor tiene dos electrodos a los que alimenta el conversor acoplado con una senal
alterna de amplitud constante. Por tanto, la altura serd proporcional a la diferencia de tensién
medida.

Bento plantea diferentes ensayos, caracterizado cada uno por las condiciones iniciales
impuestas sobre la altura del agua a ambos lados de la compuerta. En ellos mide la velocidad
media del frente de onda recogiendo el tiempo que tarda en llegar a cada sonda. En la
tabla se muestran los datos experimentales y simulados. La primera zona, entre la
compuerta y la sonda S2, es la que mayor error relativo presenta. Esto podria ser debido
a que experimentalmente es imposible conseguir una apertura instantdnea de la compuerta,
como se supone en el modelo numeérico. Por otro lado, el error relativo se reduce en la segunda
zona (S2 < x < S3) y es practicamente despreciable en la tercera zona (S3 < x < S4) en
todos los experimentos simulados.

Figura 4.9: Geometria del canal del laboratorio LNEC.

18



Tabla 4.2: Velocidades promedio de los frentes de onda en las distintas zonas del canal.

Condiciones iniciales Velocidad del frente de onda (m/s)
hr (m) hr (m) Ensayo Gate<x <52 S2<x<S3 S3<z<S4
F1B02 2,720 2,409 2,173
0,401 0,004 Numérico 2,496 2,304 2,167
Error relativo (%) 8,24 4,36 0,30
F1B10 2,210 1,888 1,837
0,400 0,095 Numérico 2,500 1,820 1,855
Error relativo (%) 13,12 3,60 0,98
F1B16 2,720 1,426 1,607
0,301 0,148 Numérico 2,075 1,640 1,617
Error relativo (%) 23,71 14,98 0,60
F1B18 1,684 1,519 1,512
0,249 0,149 Numérico 1,960 1,536 1,493
Error relativo (%) 16,37 1,14 1,27

A continuacién, se utilizan los datos instantaneos de calado medidos por la sonda S3, situada
en x = 6,1 m aguas abajo de la compuerta, para testar la precisién del modelo numérico.
Dicha comparacion se lleva a cabo para las siguientes condiciones iniciales:

h(x):{ hp =0,408m si x<0m (4.3)

hr=0,006 m si x>0m

Atendiendo a los datos medidos (tabla del Anexo I), el primer instante en el que se
registra una variacion de la altura inicial en la sonda S3 es en el tiempo t = 2,48 s y la altura
es h = 0,017 m. La simulacién se ha llevado a cabo con tres valores distintos del coeficiente
de Manning. Estos valores son los calibrados por Bento Franco para cemento en fondo liso.
La figura muestra la comparacion de la variacion temporal de calado en la sonda S3
para los tres valores de coeficiente de Manning considerados.

0.12 T T T T
v Sonda
2~ Video
0104 | n=0,0098 s/m"?
—s— n=0,0128 s/m"?
—o—n=0,0172 s/m"?
0.08 -
£ 0.064
<
0.04 -
0.02
0.00 T T T T T T T T T T
0 1 2 3 4 5 6
t(s)

Figura 4.10: Evolucién temporal de calados experimentales y simulados en la sonda S3.
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Los resultados numéricos alcanzan mayores alturas que los experimentales. El mejor de
los resultados es el correspondiente al Manning de menor valor (n = 0,0098 s/m!/3). Ademas,
el frente de onda experimental alcanza la posicion de la sonda S3 aproximadamente 0,13 s
antes que en la simulacién numérica.

4.2.2. Medidas en el laboratorio AMF de la Universidad de Zaragoza

Finalmente, se realiza una validacién del mo- 157 em

delo computacional con una serie de experi- Imm Inna de grabacitn _
mentos llevadqs a cabo en el canal del la- <z : et
boratorio del Area de Mecanica de Fluidos Tangue de agua I“m i Mscm :
(Depart. de Ciencia y Tecn. de Materiales y T
Fluidos) de la Universidad de Zaragoza. La 128,5cm RREhE EEER

geometria del canal incluye variaciones lon-

gitudinales de la pendiente del fondo y un

estrechamiento tipo Venturi, como muestra

la figura (4.11)). Y { Venturi |
Un sensor RGB-D, denominado Ki- [hL

nect (Microsoft, 2010), mide mediante re- P ——

i Compuerta

Azado

Renth= 0'00092% § Pé’ndiente =0,0404

fraccién la posicién instantinea de la super- * 326cm 1 274,78 em

ficie libre del flujo a lo largo de la zona del
estrechamiento. Se detallan en el Anexo G
la geometria del canal y el método de adquisicién-procesado de datos experimentales. Dos
experimentos diferentes, uno en régimen estacionario y otro en transitorio, serdn motivo de
comparacién con la prediccién numérica.

Figura 4.11: Canal AMF.

4.2.2.1. Régimen estacionario

Previamente a la simulacién de los experimentos, se realiza la calibracién del coeficiente de
Manning para el modelo 1D presentado en este trabajo , estimando un valor éptimo de
rugosidad para el material del canal n = 0,0088 s/m!'/3 [I6]. Para la simulacién del caso
estacionario se partié de una condicién inicial de caudal Q = 11,66 m?/h y calados iniciales
hr, = 0,1 m en el depédsito y hg = 0,01 m en el canal. Imponiendo una condicién de contorno
aguas arriba de caudal constante y de salida libre aguas abajo la simulacion alcanzé el estado
estacionario. En la figura se muestra el perfil longitudinal de superficie libre simulado y
medido en la zona de captacion de datos de la Kinect. Las mediciones del laboratorio abarcan
tan sélo una pequena zona del canal que contiene el estrechamiento, por lo que se prescinde
de mostrar el resto de canal, a pesar de que la simulacion si que obtuvo resultados para éste.
La conclusién més inmediata a la que se puede llegar observando la figura es que el
programa es capaz de llegar al estado estacionario. Ademaés, realiza de manera correcta el
cambio de régimen que se da cuando el Froude vale 1, lo que demuestra que el esquema
numérico es well-balanced, es decir, estd bien equilibrado. El flujo pasa de ser subcritico a
supercritico justo en el punto central del estrechamiento. Por otro lado, también merece la
pena mencionar que la calibracién del Manning se ha llevado a cabo con éxito pues, de no
ser asi, el método sobrestimaria o subestimaria el perfil de calado estacionario a lo largo del
eje longitudinal del canal y los datos numéricos aparecerian desplazados en el eje vertical.
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Figura 4.12: Perfiles longitudinales de calado numérico y experimental para el caso de régimen estacionario.

4.2.2.2. Régimen transitorio
El experimento con flujo transitorio consiste en una rotura de presa, donde las elevaciones
iniciales de la superficie libre aguas arriba y abajo de la compuesta neumatica son:

h(z) = hr, =9,2cm st <0
| hg=0,0cm si >0

Una vez la compuerta es elevada, la onda de rotura de presa avanza a lo largo del canal, hasta
alcanzar la zona de medida del sensor RGB-D. El tiempo experimental de llegada del frente
de onda al estrechamiento y los perfiles instantaneos de calado a lo largo del eje longitudinal
del canal obtenidos a partir de las medidas del sensor Kinect son comparados con los obte-

nidos numéricamente. Las figuras (4.13) y (4.14) muestran los perfiles longitudinal de calado
experimental y numérico para distintos tiempos después de la apertura de la compuerta.

0.10 T T T T 0.10 T
0.08 Numérico B 0.08 4 Numerico
* Experimental * Experimental
0.06 0.06 4
B E
ey ey
0.04 0.04 -
0.02 0.02 4
0.00 T T T T 0.00 T T T T
2.0 2.2 2.4 2.6 2.8 2.0 2.2 2.4 2.6 2.8
x (m)

x (m)

Figura 4.13: Datos experimentales y simulados en Unizar: (a) t = 2,54 sy (b) t = 5,86 s.

La figura (4.13]) muestra dicha comparacién en t = 2,54 s (a) y en t = 5,86 s (b). En
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el Anexo I se recoge la secuencia temporal de avance del frente de onda en el estrechamiento.
En general los datos medidos en laboratorio y computados numéricamente muestran un buen
acuerdo, aunque un pequeno retraso en la llegada del frente de onda al estrechamiento es
observado para los datos experimentales (aproximadamente 0,3 — 0,5 s). Esto puede ser
debido a que el tiempo de apertura de la compuerta en el laboratorio no es instantdneo
(como se supone en el modelo numérico), sino que se estima una duracién real para la apertura
completa en torno a 0,2 —0,4 s. Sin embargo, este retraso solo afecta a los primeros instantes
después de la apertura de la compuerta. La maxima altura de la superficie libre sobre el
fondo del canal en la zona de estrechamiento se da para un tiempo t = 5,86 s después de la
apertura de compuerta, como se observa en la figura b). A partir de ese momento, el
calado disminuye progresivamente con una aparicién reiterada de ondas secundarias rebotadas
en el fondo del tanque, como se ve en la figura a).

0.10 T T T T 0.10 T T T T
0.08 - Numérico N 0.08 4 Numeérico i
* Experimental e Experimental
0.06 E 0.06 4
£ £
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0.02 4 0.02 . 1
o : :’
< - -t
000 T T T T 000 T T T T
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x (m) X (m)

Figura 4.14: Datos experimentales y simulados en Unizar: (a) t = 15,82 sy (b) ¢ = 20,71 s.

El método numérico es capaz de predecir razonablemente bien estos efectos de rebote
y la llegada de las ondas secundarias asociadas. Por ultimo, la altura de agua en el estrecha-
miento acaba descendiendo progresivamente, figura b), hasta que el agua almacenada
inicialmente en el depdsito de cabecera es totalmente evacuada.
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5. Conclusiones

Al término de este trabajo conviene hacer una sintesis del aprendizaje obtenido en su rea-
lizacién. En cuanto a los conocimientos y herramientas que se han consolidado se pueden
mencionar el tratamiento de ecuaciones diferenciales en derivadas parciales y la programa-
cién en C. Por otro lado, se han ampliado considerablemente en el &mbito de la mecédnica de
fluidos respecto a los adquiridos en la asignatura Fisica de fluidos; esto mediante la profun-
dizacién en la procedencia y uso de las ecuaciones que rigen el movimiento de un fluido, asi
como en las aproximaciones que se deben llevar a cabo para considerarlo con mayor o menor
complejidad y con menor o mayor facilidad.

Se han generado nuevos conocimientos y competencias en la modelizacién matematica
y en la resolucion numeérica de ecuaciones. Para esto ha sido necesario un periodo de practica
previo al trabajo en el que se redactaron programas que resolvieran problemas més sencillos,
como la ecuacion lineal advectiva y la ecuacién de Burgers. Asimismo, el procesamiento de
los datos experimentales ha requerido el uso de programas y filtros en distintos &mbitos de
trabajo, como MatLab o Paraview.

Se ha podido comprobar que la formulaciéon del fenémeno descrito, flujo en lamina
libre, se ha formulado de la manera correcta por medio de las ecuaciones de aguas poco
profundas. Estas ecuaciones, en el caso concreto unidimensional, consideran y representan
razonablemente bien aspectos realistas de importancia del flujo como son las variaciones de
lecho y de anchura, asi como la friccién de las paredes en los términos fuente.

Este modelo del flujo es mejorable, sin embargo, en cuanto al método de resolucion
numérica de las ecuaciones, dentro de la gran variedad que existe, el utilizado en este trabajo
se ha explotado a su méaximo nivel. Para ello se ha optimizado en diversos aspectos. La po-
sible aparicién de resultados no realistas, como el problema de la entropia, ha sido resuelto
correctamente, aportando resultados consistentes con las leyes fisicas. También se han pro-
puesto tres maneras distintas de discretizar los términos fuente que tratan de alcanzar un
cierto balance energético.

La solucién exacta del problema no es realista, pues carece de efectos como la friccion,
tan solo verifica las ecuaciones. En contraposicion, la solucién experimental tiene mucha
incertidumbre, fruto del modelo matematico, de la solucién numérica y de las propias medidas.

Se ha tratado de llegar a un buen convenio al respecto. Esta primera pero amplia apro-
ximacién a la simulacién llevada hasta término, desde las ecuaciones que rigen el fenémeno,
pasando por su discretizacion y su resolucion numérica y llegando hasta la comparacién de
los resultados computacionales y experimentales, finalmente ha resultado arrojar soluciones
y conclusiones satisfactorias y sobradamente enriquecedoras con las que clausurar el dltimo
curso del grado de fisica.
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