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Resumen

Una de las conjeturas abiertas en la teoría de grafos, la conjetura de Harary-Hill, afirma que el número
mínimo de cruces necesarios para trazar en el plano el grafo completo Kn (grafo de n vertices conectados
todos entre si) es igual a
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A lo largo de nuestro trabajo estudiamos las principales técnicas para calcular o estimar dicho valor

mínimo del número de cruces, además de exponer algunos de los últimos avances acerca de dicha
conjetura.

Dedicamos el primer capítulo a hacer una breve revisíon de las definiciones y conceptos más básicos
de la teoría de grafos: qué es un grafo, cuales son sus principales características y cuales son los tipos
más detacados de grafos.

Ya en el segundo cápitulo entramos de lleno al estudio del número de cruces. Hablamos de los
grafos planos, aquellos que pueden ser trazados sin necesidad de cruces, destacando tres resultados
clásicos en torno a ellos: la fórmula de Euler, el teorema de Fary-Wagner y el teorema de Kuratowski.
A su vez, damos una demostración del famoso crossing lemma, que nos proporciona una cota inferior
para el número de cruces de grafos con uno o más cruces en cualquiera de sus trazados (grafos no
planos). Viendo además que aunque dicha cota es aceptable para el grafo completo, no es comparable a
la conjeturada por Hill.

En el tercer capítulo hablamos en profundidad de los trazados topológicos. Definiendo una variente
de ellos, los trazados simples, en nuestro camino en busca de una forma de minimizar el número de
cruces. Su característica principal será que cada par de ejes se cruza a lo sumo una única vez. Definimos
también dos tipos de isomorfismos de trazados. Se dice que dos trazados son débilmente isomorfos si
existe una biyección tal que dos ejes se cruzan en un trazado si y solo si sus imágenes en el otro trazado
también lo hacen. Existe un teorema que demuestra que para un grafo completo, las clases de isomorfía
débil de los trazados simples están completamente determinadas por su sistema de rotación, un concepto
computacionalmente más sencillo, que facilita en cierta medida la tarea de calcular el número de cruces,
y es herramienta indispensable en otro tipo de problemas ligados al grafo completo.

Entender el grafo completo como una nube de n puntos dispuestos en el plano, e introducir aqui los
conceptos de k-conjuntos o j-ejes, nos permite tratar de estimar el número de subconjuntos de cuatro
elementos de la nube que forman un cuadrilátero, lo cual equivale a intentar determinar el número
de cruces que aparecen cuando se quieren conectar los n puntos, todos entre si (las diagonales del
cuadrilátero determinarán un cruce).

Aplicando estas ideas a trazados con líneas rectas, se demuestra en el cuarto capítulo que existe una
diferencia asintóticamente significativa entre el número mínimo de cruces en trazados rectilíneos y el
valor dado por la fórmula de Harary-Hill para trazados topológicos generales.

En el ultimo capítulo, estudiamos una gran familia de trazados de Kn, los trazados s-shellable.
Usando una extensión del concepto de k-ejes para trazados topológicos del grafo completo se prueba
que los trazados s-shellable para algún s≥ n/2 satisfacen la conjetura de Harary-Hill.
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IV Resumen

Finalmente, vemos que esta familia contiene a otros trazados importantes como los monotonos, los
x-acotados, los 2-page book y los cilindricos (trazados propuestos por Hill para satisfacer su conjetura),
y por tanto todos ellos satisfacen la conjetura de Harary-Hill.



Introduction

One of the open conjectures in the graph theory, the Harary-Hill conjecture, talks about the lowest
number of crossings in any drawing of the complete graph in the plane. Another similar conjecture, the
Zarankizwicz’s conjecture, focuses on the minimal number of crossings in any drawing of the complete
bipartite graph in the plane. Although both problems were formally exposed around 1950s, in recent
years there has been a long list of articles presenting significant advances in this area.

Our aim will be to study the main techniques for calculating or estimating this minimal number of
crossings and to expose the last results about the Harary-Hill conjecture, trying to unify several of the
most outstanding approaches that have been given to these subjects.

The lowest number of edge-crossings of a topological drawing of a graph G is known as the crossing
number cr(G) of such graph. If the edges are represented as straight-line segments we will talk about
rectilinear crossing number. In addition, our study will turn around two kind of graphs: The complete
graph of order n, denoted by Kn, which has all its pairs of vertices connected; and the complete bipartite
graph, denoted by K(n1,n2), which has the vertices divided into two partitions (with n1 and n2 vertices
each one) and all pairs of vertices from different partitions are connected. Having said that, we can give
the formal statement for both conjectures.

Theorem (Harary-Hill conjecture). The crossing number of the complete graph Kn is equal to
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Theorem (Zarankiewicz’s conjecture). The crossing number of the complete bipartite graph K(n1,n2)
is equal to
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It has already proved that Z(n) and Z(n1,n2) are upper bounds of cr(K(n)) and cr(K(n1,n2)), re-

spectively. The other sides of the conjectures are still open and they are currently called Harary-Hill
conjecture and Zarankiewicz’s conjecture.

We will devote the second chapter to study the classical results about the crossing number cr(G) of
a graph G.

On the one hand, we will study a particularly interesting case, Planar graphs, which have no cross-
ings. The boundary between planar and non-planar graph are the triangulated planar graphs (maximal).
There are three interesting results around (maximal) planar graphs : the Euler’s formula, which relates
the number of edges, vertices and regions of a planar graph in the plane by a simple linear equation; the
Fary-Wagner theorem, which states, although it may sound obvious, that each planar graph can be draw
without crossings in the plane using straight-line segments; and the Kuratowski’s theorem, which gives
a characterization of the planar graphs in relation to the non-planar graphs K5 and K(3,3).

On the other hand, determining the (rectilinear) crossing number for any graph is an NP-Hard
problem. However, it is not difficult to find an upper bound, and there exist a well known result that
gives a not bad lower bound (we will see that, for the complete graph, it is worse than the bound given
by Hill).
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VI Introduction

Theorem (Crossing lemma). Given a graph G with n vertices and e edges such that e > 4n, the crossing
number cr(G) obeys the inequality

cr(G)≥ e3

64n2

The third chapter focuses on topological drawings of graphs, giving a more rigorous definition.
Looking for a way to minimize the number of crossings in topological drawings of Kn, good draw-

ings appear, which has the extra property that any two edges intersect at most once, either at a common
endpoint or at a crossing. Good drawings also allows us to count the crossings by the overall sum of the
number of points in which each pair of edges crossses instead of the number of crossing-edges pairs.

We will also introduce the concept of isomorphism of drawings, which preserve the vertex-edge-
face incidences, weak isomorphism, which preserve the edge-crossings pairs, and rotation system, the
set of the clockwise cyclic order of edges incident to a vertex for all vertices.

Beside, the main two theorems of this chapter state that for complete graphs, the rotation systems
and the weak isomorphism classes are mutually determined. Thus, if it were possible to compute all the
different rotation systems of a complete graph and then check which correspond to weak isomorphism
classes, we could select those good drawings with the lowest number of crossings. Rotation systems
also are very useful concepts in other open problems around the complete graph.

The problem of finding the rectilinear crossing number can be state in an alternative way by consid-
ering a set S of n points in the plane and trying to find the number of subsets of four points which form
a convex quadrilateral. In the fourth chapter we will use that to give a result proving that the rectilinear
crossing number and the crossing number differ in an assymptotically relevant term.

Theorem. Let S be a set of n points in the plane in general position. Then the number of convex
quadrilaterals determined by S is at least

(3/8+ ε)

(
n
4

)
+O(n3)> 0.37501

(
n
4

)
where ε ≈ 1.0872 ·10−5.

Our main tools to prove this theorem will be the concepts of k-sets of S, subsets of cardinality k that
can be separated from S by a line; and j-edges of S, an ordered edge determined by two points of S such
that there are exactly j points on its right side.

A drawing of Kn is s-shellable if there exists a subset S = {v1,v2, ...,vs} of the vertices and a region
R of the drawing such that for 1 ≤ i ≤ j ≤ s the drawing obtained from the drawing by removing
v1,v2, ...,vi−1,v j+1,v j+2, ...,vs has a region that contains R with the vertices vi and v j on the boundary.

In the last chapter we will generalize the geometrical concept of k-edge to good drawings of Kn.
This will allow us to prove that the Harary-Hill conjecture holds for s-shellable good drawings of Kn for
some s≥ n/2.

In order to prove the conjecture, Hill described a way of drawing the complete graph in a cylinder
(cylindrical drawing), dividing the vertices in both lids and using the three faces of the figure to draw the
edges that connect the respective vertices. At the end of the chapter we will prove that every cylindrical,
2-page book, x-bounded or monotone drawing of Kn is s-shellable for some s ≥ n/2. Thus, these
drawings hold the Harary-Hill conjecture.
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Chapter 1

Basic definitions and concepts

In this chapter we are going to do a quick review of the most basic ideas about the graph theory; the
definition of a graph, its main characteristics and some outstanding types of graphs, which constitute
the set of concepts necessary to go deeper into the subject at hand. All that is shown below comes from
[1].

Definition 1.1. A graph is a pair G = (V,E), where V is a nonempty set, whose elements are called
vertices, and E is a possibly empty set of two-element subsets of distinct elements of V , whose elements
are called edges.

We will consider n = |V | and m = |E| as the order and the size of G respectively. Also, we will use ui

with i = 1, ...,n (also v j) to talk about vertices and ek = uiu j with k = 1, ...,m refering to edges.
The edge e = uv is said to join the vertices u and v, then u and v are adjacent vertices while u and

e are incident, as v and e. Furthermore, if e1 and e2 are distinct edges incident with a common vertex,
then they are adjacent edges.

In addition, we will focus our study on simple graphs, which do not have loops (edges connecting a
vertex with itself), multiple edges (different edges connecting the same vertices) or direction (uv = e =
vu, which is not specified in the previous definition).

Broadly speaking, the drawings of a graph are the different ways to represent a graph according
to the properties we are interested to study. We talk about a topological drawing of a graph when it is
represented in the plane with points as vertices and edges as Jordan arcs connecting its vertices. The
arcs are allowed to cross, but they do not pass through vertices except for their endpoints. If the edges
are represented as straight-line segments, we have a rectilinear drawing.

The degree (or valency) d(u) of a vertex u is the number of edges incident with it. A vertex is called
odd or even depending on whether its degree is odd or even. Here we have a useful result.

Theorem 1.1. In any graph, there is an even number of odd vertices.

Proof. It follows from the fact that ∑
n
i=1 d(ui) = 2m. Since the sum of the degrees of all the vertices is

even, there must be an even number of summands with an odd value.

Definition 1.2. A graph G = (V,E) is isomorphic to a graph G′ = (V ′,E ′) if there exists a one-to-one
mapping φ , called an isomorphism, from V onto V ′ such that φ preserves adjacency and nonadjacency;
i.e., uv ∈ E if and only if φ(u)φ(v) ∈ E ′.

It is easy to see that "isomorphic to" is an equivalence relation on graphs.

Definition 1.3. A graph G1 = (V1,E1) is a subgraph of a graph G = (V,E) if V1 ⊆ V and E1 ⊆ E. We
also say that G is a supergraph of G1.
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2 Chapter 1. Basic definitions and concepts

Whenever V1 =V we say that G1 is a spanning subgraph of G. An important kind of subgraphs which
we should consider are the induced subgraphs. The subgraph of G induced by the set of vertices V1
(vertex-induced) is G1 = (V1,E1) with E1 = E ∩ (V1×V1). In the same way the subgraph of G induced
by the set of edges E1 (edge-induced) is G1 = (V1,E1) with V1 the set of vertices incident with at least
one edge of E1.

We denote by G−u the subgraph obtained deleting the vertex u and its incident edges. G− e is the
subgraph built deleting e but keeping the vertices. The deletion of a set of vertices or set of edges is
defined analogously. Also G+e is the supergraph built adding a new edge e = uv conecting u, v vertices
of G.

Definition 1.4. A u-v walk of a graph G is a finite, sequence of vertices of G, beginning with u and
ending with v, such that for every two consecutive vertices in the sequence there is a edge in E whose
vertices are incident . A u-v trial is a u-v walk in which no edge is repeated, while if no vertex is
repeated it is a u-v path.

Notice that every path is therefore a trial. A u-v walk is closed or open depending on whether u = v
or u 6= v. A non-trivial closed trial is a circuit. A circuit in which no vertices are repeated (except first
and last) is called cycle. An acyclic graph has no cycles. The subgraph of G induced by the edges of a
trial, path, circuit or cycle is also called a trial, path, circuit or cycle of G. the number of occurrences
of edges in a walk is called its length. A cycle is odd or even depending on whether its length is odd or
even.

Two vertices u and v of a graph G are connected if there exists a u-v path in G. The graph G itself is
connected if every two of its vertices are connected. A graph which is not conected is disconnected.

Definition 1.5. A tree is an acyclic connected graph and a forest is an acyclic graph.

Thus each component of a forest is a tree.

Definition 1.6. A graph is complete if every two of its vertices are adjacent.

We denote by Kn the complete graph of order n. By definition the size of the this graph is m= n(n−1)/2.
A graph is regular of degree r if all its vertices have degree r. Kn is a regular graph of degree n−1.

Moreover, every graph is a subgraph of a regular graph; indeed, every graph of order n is a spanning
subgraph of Kn.

The complement G of a graph G is the graph with the same vertex set as that of G and such that two
vertices are adjacent in G if and only if they are not adjacent in G.

Definition 1.7. A graph G is l-partite , l ≥ 2, if it is possible to partition V into l subsets V1,V2,...,Vl
such that every element of E joins a vertex of Vi to a vertex of Vj with i 6= j.

For l = 2, such graph is called bipartite. A complete n-partite graph G is an n-partite graph with the
added property that if u ∈ Vi and v ∈ Vj with i 6= j, then e = uv ∈ E. If ni = |Vi| with i = 1, ..., l , then
this graph is denoted by K(n1, ...,nl). Notice that a complete n-partite graph is complete if and only if
ni = 1 for all i, in which case it is Kl .



Chapter 2

Crossing number

When we think about how to draw a graph we immediately come across the problem of how to interpret
the intersections between its edges, which is solved as soon as we take into account the following
definition.

Definition 2.1. the crossing number cr(G) of a graph G is the lowest number of edge-crossings of a
topological drawing of G.

A variation of this concept, the rectilinear crossing number, requires a rectilinear drawing of G. Deter-
mining the crossing number and the rectilinear crossing number are both NP-hard problems. See [2]
and references therein.

In addition, we can classify the graphs in two groups according to the crossing number. Let us
consider a graph G with n = cr(G), if n = 0 we will call G planar, otherwise if n > 0 we will say that
G is non-planar. In this chapter we will study separately some interesting results about both kinds of
graphs.We will use results from [1], [2] y [3].

2.1 Planar graphs

We will start by giving a more precise definition of this type of graphs.

Definition 2.2. A graph is planar if it can be embedded in the plane (or, equivalently, on the sphere),
i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

In other words, it can be drawn in such a way there are not edges-crossings. Such a drawing is called a
plane graph or planar embedding of the graph.

The regions (or faces) of a plane graph are the different portions of the plane delimitated by the
edges and vertex of the graph, which constitute the boundary of each of these regions. Every plane
graph contains an unbounded region called the exterior region.

The following theorem allows us to relate the number of edges, vertices and regions of a connected
plane graph using a simple linear equation. This equation does not have to be true for drawings of
non-planar graphs.

Theorem 2.1 (Euler’s formula). G is a connected plane graph with n vertices, m edges and r regions,
then

n−m+ r = 2

Proof. By induction on m. For m = 0, it is obvious since in this case n = 1 and r = 1 (We cannot
have more than 1 vertex without edges, the graph has to be connected). Assume the result is true for
all connected plane graphs with fewer than m, where m ≥ 1 and suppose G has m edges. There are
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4 Chapter 2. Crossing number

two cases: If G is a tree, then n = m+ 1 and r = 1 so that the formula follows. If G is not a tree, let
e ∈ E be part of a cycle of the graph and consider G− e, a connected plane graph with n vertices, m−1
edges, and r− 1 regions so that by the inductive hypothesis, n− (m− 1)+ (r− 1) = 2, which implies
that n−m+ r = 2.

An important consequence of this theorem is that any two planar embeddings of a planar graph have the
same number of regions; thus we can talk about the number of regions of a planar graph.

A planar graph G is called maximal planar if for every pair of non-adjacent vertices u and v the
graph G+ e , where e = uv is non-planar. Therefore, in any planar embedding of a maximal planar
graph having order n≥ 3 the boundary of every region is a triangle. This is the reason why the maximal
planar graphs are also named triangulated planar graphs. Also it is clear that any planar graph is a
spanning graph of a maximal planar graph.

As a consecuence of the definition of triangulated planar graph and the Euler’s Formula we have the
following results.

Theorem 2.2. If G is a maximal planar graph with n vertices and m edges, n≥ 3, then

m = 3n−6

Proof. Denote by r the number of regions of G. In G the boundary of every region is a triangle, and
each edge is on the boundary of two regions. Hence, if the number of edges on the boundary of a region
is summed over all regions, the result is 3r. On the other hand, such a sum counts each edge twice so
that 3r = 2m. Applying the Euler’s formula, we obtain m = 3n−6.

Corollary 2.3. If G is a planar graph with n vertices and m edges, n≥ 3, then

m≤ 3n−6

Proof. Add to G sufficiently many edges so that the resulting graph G′ with n′ vertices and m′ edges is
maximal planar. Clearly, n = n′ and m≤ m′. By theorem 2.2 , m≤ m′ = 3n′−6 = 3n−6.

Corollary 2.4. Every planar graph contains a vertex of degree at most five.

Proof. Let G be a planar graph with n vertices and m edges. Consider V = {u1,u2, ...,un}. If p ≤ 5,
then the result is obvious. Otherwise, m≤ 3n−6 implies that

n

∑
i=1

d(ui) = 2m≤ 6n−12.

Not all n vertices of G have degree six or more, for then 2m ≥ 6n. Thus G contains a vertex of degree
five or less.

A good property of the planar graphs is that all of them admit to rectilinear drawings. We show it in
the theorem below.

Theorem 2.5 (Fary-Wagner theorem). Each planar graph can be embedded in the plane so that every
edge is a straight-line segment (Rectilinear drawing).

Proof. It suffices to prove the theorem for maximal planar graphs. Assume every maximal planar graph
can be embedded in the plane so that each of its edges is a straight-line segment, and let H be an arbitrary
planar graph. We have observed that H is a spanning subgraph of a maximal planar graph G, which can
be embedded in the plane so that each of its edges is a straight-line segment. By deleting the appropriate
edges from G we can produce an embedding of H which each edge is a straight-line segment.
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Let G0 be a maximal planar graph and further assume it to be a plane graph. Without loss of
generality, we suppose G0 to have order p≥ 4. As we have already noted, the boundary of every region
of G0 (including the exterior region) is a triangle.

Our procedure will be to disassemble G0 by removing one vertex at a time until only the exterior
triangle remains. We then reassemble G0 using only straight-line segments.

Select a vertex of G0 not belonging to the exterior triangle and denote it by v1. Delete v1 and its
incident edges from G0 , and leave all other vertices and edges of G0 exactly as originally placed. The
boundary of all regions of G1 = G0−v1 are triangles except possibly one, the region in which v1 would
be inserted to reproduce G0. Denote this region by R1 and the cycle which forms its boundary by C1.
Among the vertices of C1 not belonging to the exterior triangle of G1, let v2 be any one vertex having
degree two (It is not the boundary of a triangular region). If there is no such vertex of degree two, select
as v2 any vertex of C1 not on the exterior triangle. Let G2 = G1− v2, and denote by R2 the region of G2
into which v2 would be inserted to obtain G1. We continue this procedure until only the exterior triangle
remains; thus we obtain vertices v1, v2,...,vp−3, the plane graphs G1, G2,...,Gp−3 and the regions R1,
R2,...,Rp−3. From the manner in which the vertices vi, 1 ≤ i ≤ p− 3, were selected, it follows that for
each i = 1,2, ..., p−3, the vertex vi together with at least two edges are placed in region Ri to produce
the graph Gi−1.

Before we proceed further with the proof, an observation is useful her. First, we define an additional
term. A region of a plane graph is said to be starlike if there exists an open set O in the region such
that for any point x ∈O , a straight-line segment can be drawn from x to each vertex on the boundary of
the region such that the entire line segment (except the vertex on the boundary) lies completely in the
region. then, it follows that if a vertex v is placed in the distinguished open set of a starlike region R
and straight-line segments are drawn from v to two or more vertices on the boundary of R, the resulting
regions on whose boundary v lies are all starlike.

Denote by Gp−3 the graph K3. Surely Gp−3 may be embedded in the plane so that each of its edges
is a straight-line segment. It is obvious that the interior region of Gp−3 is starlike; indeed in this case, the
open set of interest may be taken as the entire region. Place a vertex in the interior region Rp−3 of Gp−3
label it vp−3, and join it to the two or three vertices of Gp−3, depending on the number of vertices of
Gp−3 to which vp−3 is adjacent in the final step of disassembling G0. Denote the resulting graph Gp−4.
As we have just observed, the two or three regions formed in constructing Gp−4 are starlike. Label the
appropriate region Rp−4, insert the vertex vp−4 in the suitable open set of Rp−4, and join vp−4 to the
appropriate vertices of Gp−4 by straight-line segments. We thus obtain an embedding of Gp−5 in the
plane in which every edge is a straight-line segment. We can continue this procedure until arriving at an
embedding of G0 in which every edge is a straight-line segment.

To finish this section we will give a characterization of the planar graphs, but first we have to
introduce a few concepts.

An elementary subdivision of a nonempty graph G is a graph obtained from it by removal of some
edge e = uv and the addition of a new vertex w and the edges e1 = uw and e2 = vw. A subdivision of G
is a graph obtained from it by a succession of elementary subdivisions.

A graph H is defined to be homeomorphic from G if either H = G or H is a subdivison of G. A
graph G1 is homeomorphic with a graph G2 if there exists a graph G3 such that each of G1 and G2
is homeomorphic from G3. Furthermore, if H is homeomorphic from G, then H is a homeomorphic
image of G while if H is homeomorphic with G, then H is a homeomorph of G. "Homeomorphic with"
is an equivalence relation on graphs. Thus we refer to two graph as being homeomorphic if either is
homeomorphic with the other.

Theorem 2.6. The graphs K5 and K(3,3) are non-planar.

Proof. Since K5 has n = 5 vertices and m = 10 edges,

10 = m > 3n−6 = 3 ·5−6 = 9
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Corrollary 2.3 implies reciprocally that K5 is non-planar. Now suppose, to the contrary, that K(3,3) is
planar, and consider any plane graph of it. Since the graph is bipartite, It has no triangles; thus each of
its regions is bounded by at least four edges. Consider N the sum over all its regions r of the number
of edges bounding them. Thus N ≥ 4r. Since N counts each edge twice and K(3,3) has m = 9 edges,
N = 18 so that r ≤ 9/2. However, K(3,3) has n = 6 vertices and by the Euler’s formula, r = 5 and this
is a contradiction. Hence K(3,3) is non-planar too.

Theorem 2.7 (Kuratowski’s theorem). A graph is planar if and only if it contains no subgraph homeo-
morphic with K5 or K(3,3).

The proof of the theorem above is beyond the scope of our study.

2.2 Crossing lemma

As we said at the begining of the chapter, determining the (rectilinear) crossing number of a non-planar
graph G is a NP-hard problem. But we can tackle this problem by looking for a lower and an upper
bound of cr(G). In this way we will have enclosed cr(G) between two values (more or less separated).

In this section we will prove a previous lemma and a theorem which will give us a lower bound of
cr(G), finding a upper bound of cr(G) will be much more easier.

Lemma 2.8. Consider a graph G with n≥ 3 vertices and e edges, then

cr(G)≥ e−3n

Proof. Consider a topological drawing of G which has exactly cr(G) crossings. Each of these crossings
can be removed by removing an edge from G. Thus we can find a graph with at least e− cr(G) edges
and n vertices with no crossings, therefore G is a planar graph. By corollary 2.3 we have e− cr(G) ≤
3n−6≤ 3n with n≥ 3, and the claim follows.

Theorem 2.9 (Crossing lemma). Given a graph G with n vertices and e edges such that e > 4n, the
crossing number cr(G) obeys the inequality

cr(G)≥ e3

64n2

Proof. We will use a probabilistic argument. Let 0 < p < 1 be a probability parameter which we will
choose later. Now we construct a random subgraph H of G by allowing each vertex of G to lie in H
independently with probability p, and allowing an edge of G to lie in H if and only if its two vertices
were chosen to lie in H. Let eH , nH and crH denote the number of edges, vertices and crossings of H,
respectively. Since H is a subgraph of G, a topological drawing of G contains a topological drawing of
H. By lemma 2.8 we have that

crH ≥ eH −3nH

Since each of the n vertices in G had a probability p of being in H, we can assume that nH ∼ B(n, p).
Similarly, each of the edges in G has a probability p2 of remaining in H since both endpoints need to
stay in H, so we can also assume that eH ∼ B(e, p2). Finally, every crossing in the drawing of G has
a probability p4 of remaining in H, since every crossing involves four distinct vertices (If we consider
a drawing of G with cr(G), then any two edges in the drawing with a common vertex are disjoint,
otherwise we could interchange the intersecting parts of the two edges and reduce the crossing number
by one ). Thus we can assume that crH ∼ B(cr(G), p4).

Now, taking expectations in the previous formula we obtain

E[crH ]≥ E[eH ]−3E[nH ]
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Also we know that E[X ] = np when X ∼ B(n, p). Then we have

cr(G)p4 ≥ ep2−3np

If we fix 0 < p = 4n/e < 1 (since we assumed that e > 4n), just simplifying we obtain

cr(G)≥ e3

64n2

Example 2.3. As we saw in chapter 1 the complete graph Kn has m = n(n− 1)/2. Also in chapter 3
we will prove that there are at most

(n
4

)
crossing in a good drawings of Kn. Combining this with the

crossing lemma we get
n4

512
≈ (n(n−1)/2)3

64n2 ≤ cr(Kn)≤
(

n
4

)
≈ n4

24

We can obtain a similar result for the complete bipartite graph K(n1,n2). We know that this graph
has n = n1 + n2 vertices and m = n1n2 edges. In chapter 3 we will also see that there are at most
n1(n1−1)n2(n2−1)/4 crossing in a good drawing of K(n1,n2). Combining again this with the crossing
lemma we obtain

(n1n2)
3

64(n1 +n2)2 ≤ cr(K(n1,n2))≤
n1(n1−1)n2(n2−1)

4

In the special case of a complete bipartite graph with n = n1 = n2 we can simplify the inequality as
follows

n4

256
≤ cr(K(n,n))≤ n4

4





Chapter 3

Topological drawings

In relation to the example at the end of the previous chapter, two of the most interesting open problems
in the graph theory are the following.

Theorem 3.1 (Harary-Hill conjecture). The crossing number of the complete graph Kn is equal to

Z(n) :=
1
4

⌊
n
2

⌋⌊
n−1

2

⌋⌊
n−2

2

⌋⌊
n−3

2

⌋
Theorem 3.2 (Zarankiewicz’s conjecture). The crossing number of the complete bipartite graph K(n1,n2)
is equal to

Z(n1,n2) :=
⌊

n1

2

⌋⌊
n1−1

2

⌋⌊
n2

2

⌋⌊
n2−1

2

⌋

It has already proved that cr(K(n)) and cr(K(n1,n2)) are at most Z(n) and Z(n1,n2), respectively.
The other sides of the conjectures are still open problems (They are currently called Harary-Hill con-
jecture and Zarankiewicz’s conjecture).

This chapter constitute the first step to be able to explain in detail some of the latest avances around
these conjectures, although in the following chapters we will focus our study on the complete graph.
The content we will see below comes mainly from [4] and [5].

First of all we will give a more rigorous definition of topological drawing of a graph.

Definition 3.1. A topological drawing D of a graph G is a drawing of the graph in the plane (or, respec-
tively, on the sphere), where the vertices are distinct points and the edges are Jordan arcs connecting
two (end) points. Edges are allowed to cross, but they do not pass through other vertices, tangencies are
forbbiden and no three edges pass through a single crossing.

Figure 3.1: Degenerate cases forbidden in topological drawings and how to make them valid. Tangen-
cies on both sides and a edge passing through other vertex in the middle.

9
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As we will see below topological drawings still have some disadventages we should try to avoid.
Just adding a few restrictions we obtain the following definition.

Definition 3.2. A good drawing is a topological drawing of a graph such that self-intersections of edges
are forbidden, and any two edges intersect at most once, either at a common endpoint or at a proper
crossing.

Our main motivation for considering good drawings comes from the problem of minimizing the number
of crossings in drawings of Kn. Using these drawings crossings are counted by the overall sum of the
number of crossing edges pairs, as opposed to the number of points in which each pair of edges crosses.
Indeed, for any topological drawing of a graph, there exits a good drawing of the same graph with at
most the same number of crossings.

Figure 3.2: Forbidden crossings in good drawings and how to make them good. From left to right:
incident edges, self-crossing edge, double-crossing.

Understading the differences between the following two types of isomorphism of drawings of a
graph is essensial in this chapter.

Definition 3.3. Two drawings are isomorphic if there is a homeomorphism of the plane (or, equivalently,
of the sphere) that transforms one drawing into the other.

This definition is equivalent to the fact that all vertex-edge-face incidences are the same.

Definition 3.4. Two good drawings are weakly isomorphic if there is an incidence-preserving bijection
between the drawings such that two edges cross in one drawing if and only if their images in the other
drawing cross as well.

If we have two good drawings of the same graph with different crossing number, for sure they are not
weakly isomorphic.

Isomorphic drawings are also weakly isomorphic. Unlike the isomorphism, weak isomorphism can
change the faces of the drawings. On the other hand, roughly speaking, weakly isomorphic drawings
that are non-isomorphic differ in the order in which their edges intersect.

Figure 3.3: Four drawings of the same weak isomorphism class of K6. The last two are also isomorphic
(consider the labeling horizontally mirrored), the other pairs are not.
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The definitions and theorems below are the tools that will allow us to deal with good drawings in a
much easier way.

The rotation ρD(v) (or ρ(v) when D is clear from the context) of a vertex v in D is the clockwise
cyclic order of edges incident to v, given as a sequence (which is interpreted circularly) of the second
vertices of all edges at v (Note that if G = Kn then ρD(v) is a cyclic permutation of V −{v}).

Definition 3.5. The rotation system of D is the set of rotations of all vertices of D and it is denoted by
R(D).

We consider that two rotation systems are equivalent if one can be obtained from the other by relabeling
and optional inversion of all rotations. A rotation system is called realizable if it is the rotation system
of a good drawing of a complete graph.

The following two results imply that for complete graphs, the rotation system uniquely determines
the weak isomorphism class of a good drawing. Thus we can work with rotation systems instead of
work with good drawings directly.

Theorem 3.3. The rotation system of a good drawing of the complete graph determines the pairs of
crossing edges.

Theorem 3.4. The set of crossings pairs of edges determines the equivalence class of the rotation system
of a good drawing of the complete graph.

Note that these two results are, in general, only true for complete graphs: Determining the crossing
number of any graph knowing its rotation system is NP-complete. A result similar to the above ones is
also known for isomorphism classes.

Theorem 3.5. Two good drawings are isomorphic if and only if there exists a bijection between their
vertices such that (i) they are weakly isomorphic, (ii) for each edge, the order of crossings along its
image is the same, and (iii) for each crossing the radial order of the edge parts emanating to the four
involved vertices is the same (or inverted for all crossings).

It is not difficult to prove that K4 has only two weak isomorphism classes. We denoted them by DX
4

and DY
4 . We can see drawings of them with their rotation system in figure 3.4.

Figure 3.4: The two weak isomorphism classes of K4.

From this property of K4 we say that a rotation system is consistent if each rotation system restricted
to any four of its vertices is either the one of DX

4 or DY
4 . Still, there exist non-realizable consistent rotation

systems.

Remark 3.6. For each set of 4 vertices of Kn there is at most one edge-crossing. Thus, cr(Kn) can
be as large as

(n
4

)
. Something similar happens with K(n1,n2). For each set of 4 vertices (2 from each

partition) there is at most one edge-crossing. Hence, cr(K(n1,n2)) can be as large as
(n1

2

)(n2
2

)
.

In figure 3.5 we show drawings of the seven different rotation systems of K5, in which all 4-tuples are
realizable. However, only drawings D1

5 to D5
5 are different weak isomorphism classes of K5. Drawings

D6
5 and D7

5 are not good drawings, because they contain edges that cross twice. For more details see [6].
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Figure 3.5: Drawings D1
5 to D7

5 of K5.



Chapter 4

Rectilinear drawings

Let S be a set of n points in general position in the plane (no three points are collinear). The subset of
four points in S which form the vertices of a convex quadrilateral are convex. We will be interested in
studying the number of these subsets in S. As we saw in the previous chapter, it can be as large as

(n
4

)
(if S is in convex position), but what it is its the minimum?. Another way of stating the problem, more
familiar to us, is to find the rectilinear crossing number of Kn.

We will prove at the end of the chapter that the number of convex quadrilaterals determined by the
set S is at least

(3/8+ ε)

(
n
4

)
+O(n3)> 0.37501

(
n
4

)
where ε ≈ 1.0872 ·10−5.

The small ε is significant for the following reason. If we skip the requirement that the edges have to
be represented by straight line segments and instead allows to use Jordan arcs, then Kn can be drawn
with 3/8

(n
4

)
+O(n3) crossings (Harary Hill conjecture). So, while there are studies which show that

the crossing number and the rectilinear crossing number of Kn differ for specific values of n, this lower
bound shows that the difference lies in the assymptotically relevant term.

We need to introduce few terms and results before give a proof of the theorem.

Definition 4.1. A k-set of S is a subset T ⊆ S of cardinality k such that T can be separated from its
complement S\T by a line. An i-set with 1≤ i≤ k is called an (≤ k)-set.

Our main tool will be the following lower bound on the number of (≤ k)-set.

Theorem 4.1. Let S be a set of n points in the plane in general position, and k ≤ bn/2c. Then the
number of (≤ k)-sets of S is at least 3

(k+1
2

)
.

We can find a proof in [8].

Despite the tempting result above, the following related object will be technically more convenient
than using k-sets directly.

Definition 4.2. A j-edge of S is an ordered pair uv, with u,v ∈ S and u 6= v, such that there are exactly j
points of S on the right side of the line uv.

Let E j = E j(S) denote the number of j-edges of S; it is well known and not hard to see that for 1≤ k ≤
n− 1, the number of k-sets is Ek−1. An i-edge with i < j will be called a (≤ j)-edge; we denote the
number of (≤ j)-edges by E≤ j = E0 + ...+E j.

Let � denote the number of 4-tuples of points in S that are in convex position, and let4 denote the
number of those in concave position. The following lemma gives an expression of � (up to some error
term) as a positive linear combination of the E j’s. Then we will be able to substitute any lower estimates
for the numbers E j to obtain a lower bound for �.

13
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Lemma 4.2. For every set of n points in the plane in general position,

�= ∑
j≤b n

2c−1

E j

(
n−2

2
− j
)2

− 3
4

(
n
3

)
Proof. Clearly we have

�+4=

(
n
4

)
We can get another linear equation between these quantities. Let us count, in two different ways,
ordered 4-tuples (u,v,w,z) such that w is on the right of the line uv and z is on the left of this line. First,
if (u,v,w,z) is in convex position, then we can order it in 4 ways to get such an ordered quadruple.
Second, if (u,v,w,z) is in concave position, then it has 6 such orderings. Hence the number of such
odered quadruples 4�+64. On the other hand, any j-edges uv can be completed to such a quadruple
in j(n− j−2) ways. So we have

4�+64=
n−2

∑
j=0

E j(n− j−2) j

From these two equation we get that

�=
1
2

(
6
(

n
4

)
−

n−2

∑
j=0

E j(n− j−2) j

)
Using that

n−2

∑
j=0

E j = n(n−1)

we can write

6
(

n
4

)
=

n−2

∑
j=0

E j
(n−2)(n−3)

4

to get

�=
1
2

(
n−2

∑
j=0

E j

(
(n−2)(n−3)

4
− j(n− j−2)

))
Adding and subtracting (n−2)2

4 to the expression inside the second parenthesis, and simplifying we obtain

�=
1
2

(
n−2

∑
j=0

E j

((
n−2

2
− j
)2

− (n−2)
4

))
Finally, from the fact that

1
2

n−2

∑
j=0

E j

(
n−2

2
− j
)2

= ∑
j≤b n

2c−1

E j

(
n−2

2
− j
)2

and using again the equation about E j the lemma follows by simple computation.

We can obtain easily a similar expression of � in terms of (≤ j)-edges as follows.

Lemma 4.3. For every set of n points in the plane in general position,

�= ∑
j≤b n

2c−1

E≤ j(n−2 j−3)− 3
4

(
n
3

)
+ cn

where

cn =

{
1
4 E≤ n−3

2
if n is odd

E≤ n−2
2

if n is even
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Proof. By the previous lemma we have that for every set of n points in the plane in general position,

�= ∑
j≤b n

2c−1

E j

(
n−2

2
− j
)2

− 3
4

(
n
3

)

Using that E j = E≤ j−E≤ j−1 we obtain

� = ∑
j≤b n

2c−1

(E≤ j−E≤ j−1)

(
n−2

2
− j
)2

− 3
4

(
n
3

)

= ∑
j≤b n

2c−1

E≤ j

(
n−2

2
− j
)2

− ∑
j≤b n

2c−1

E≤ j−1

(
n−2

2
− j
)2

− 3
4

(
n
3

)

Making the change of variable j−1 = k in the second term we get

� = ∑
j≤b n

2c−1

E≤ j

(
n−2

2
− j
)2

− ∑
k≤b n

2c−2

E≤k

(
n−2

2
− k−1

)2

− 3
4

(
n
3

)

= ∑
j≤b n

2c−1

E≤ j

((
n−2

2
− j
)2

−
(

n−2
2
− j−1

)2
)
+E≤b n

2c−1

(
n−2

2
−
⌊n

2

⌋)2

− 3
4

(
n
3

)

from which the lemma follows by simple computation.

We will just give the statement of the following theorem before we use it to prove the goal of this
chapter.

Theorem 4.4. Let S be a set of n points in the plane, and consider a (not necessarily contiguous) index
set K ⊆ {1,2, ..., j ≤ bn/2c}. Then the total number of k-sets with k ∈ K is at most

2n
√

2∑k∈K k

Theorem 4.5. Let S be a set of n points in the plane in general position. Then the number of convex
quadrilaterals determined by S is at least

(3/8+ ε)

(
n
4

)
+O(n3)> 0.37501

(
n
4

)
where ε ≈ 1.0872 ·10−5.

Proof. Let m= bn/2c, and apply theorem 4.4 to the intervals of the form { j+2, j+3, ...,m}. Observing
that Ei is preciselly the number of (i+1)-sets, we obtain that for all j ≤ m−1,

E≤m−1−E≤ j ≤ 2n
√

∑
m
i= j+2 i = 2n

√
m2 +m− j2−3 j−2

and since E≤m−1 ≥
(n

2

)
and m = bn/2c ≤ n/2,

E≤ j ≥
(

n
2

)
−2n

√
(n/2)2 +n/2− j2−3 j−2

Combining that with E≤ j ≥ 3
( j+2

2

)
with j < n/2, we get

E≤ j ≥ 3
(

j+2
2

)
+max

(
0,
(

n
2

)
−3
(

j+2
2

)
−2n

√
(n/2)2 +n/2− j2−3 j−2

)
≥ 3

(
j+2

2

)
+n2 max

(
0,

1−3( j/n)2

2
−
√

1−4( j/n)2

)
+O(n).
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The "max" term is positive for j/n≥ t0 =
√

(2
√

13−5)/9≈ 0.4956, so we do gain when j is very near
n/2. Using last lemma, we get

� = ∑
j≤m−1

E≤ j(n−2 j−3)+O(n3)

≥ ∑
j≤m−1

3
(

j+2
2

)
(n−2 j−3)

+n3
∑

t0n≤ j≤m
(1−2( j/n))

(
1−3( j/n)2

2
−
√

1−4( j/n)2

)
+O(n3)

=
3
8

(
n
4

)
+n4

∫ 1/2

t0
(1−2t)

(
1−3t2

2
−
√

1−4t2

)
dt +O(n3).

Thus,

�≥ (3/8+ ε)

(
n
4

)
+O(n3)

where

ε = 24
∫ 1/2

t0
(1−2t)

(
1−3t2

2
−
√

1−4t2

)
dt ≈ 1.0887 ·10−5.

In this chapter we have collected the main results from [8].



Chapter 5

Conjectures

Paul Turán described in a letter to Richard Guy a problem that came to his mind when he was working in
a brick factory near Budapest during World War II. Later it would be called the brick factory problem and
along with the houses-and-utilities problem of unknown origin, they can be described mathematically
as a problem of minimizing the number of edge-crossings on the complete bipartite graph.

In 1952, Kazimierz Zarankiewicz and Kazimierz Urbanik proposed solutions almost simultaneously.
In addition, the first one stated that Z(n1,n2) := bn1

2 cb
n1−1

2 cb
n2
2 cb

n2−1
2 c and he observed that this crossing

number can be obtained by dividing the n1 vertices into two groups of equal (or almost equal) size and
placing the two groups equally spaced on the x-axis on either side of the origin, doing the same with the
n2 vertices but placing them on the y-axis, and then joinining the appropriate pairs of vertices together
using straight-line segments. Even so, it has only been possible to test the upper bound problem. More
details in [11].

Figure 5.1: Zarankiewicz drawing of K(4,5).

Around 1958, the British artist Anthony Hill got interested in producing drawings of the complete
graph Kn with the least possible number of edges crossing. After several uncertain years of talking
and working with friends and current graph theory experts Hill and Harary produced a joint paper,
summarizing the progress on the (rectilinear) crossing number problem that had been made up to that
point. He exposed there a technique that consisted of drawing Kn on a cylinder, a cycle with n/2 vertices
on the rim of the top lid, and a cycle with the remaining n/2 vertices on the rim of the bottom lid. Then
he draw the remaining edges joining vertices on the same lid using straight-line segments across the lid.
Finally, for any two vertices on distinct lids, draw the edges joining them along the geodesic on the side
of the cylinder. These kind of drawings of Kn are now called cylindrical drawings and they have exactly
Z(n) := 1

4b
n
2cb

n−1
2 cb

n−2
2 cb

n−3
2 c crossings. We will see below a more concise definition.

At about the same time, Blažek and Koman got independently interested in drawings of Kn with as

17
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few crossings as possible. They developed a quite different constructions which also provide drawings
of Kn with exactly Z(n) crossings. They started by drawing a regular n-gon with the vertices, and then
drawing all diagonals with positive slope as straight-line segments and all other edges outside the regular
n-gon. As we will see below they are now known as 2-pages drawings. It should be noted that they also
confirmed Harary-Hill conjecture as upper bound. More details in [11].

Figure 5.2: Left: A 2-pages drawing of K8. Right: A cylindrical drawing of K8.

In this chapter we will review the latest advances around the Harary-Hill conjecture presented in [9],
we will also use results from [10]. We will introduce shellable drawings, a large class of drawings for
which we will show that this conjecture holds. Shellability will also allow us to extend the lower bound
to other kinds of drawings, including cylindrical, monotone, and x-bounded drawings. Let us start with
some definitions.

If a drawing D of a graph is regarded as a subset of the plane, then region of D is a connected
component of R2\D.

Definition 5.1. A drawing D of Kn is s-shellable if there exists a subset S = {v1,v2, ...,vs} of the vertices
and a region R of D with the following property. For 1≤ i≤ j ≤ s, if Di j denotes the drawing obtained
from D by removing v1,v2, ...,vi−1,v j+1,v j+2, ...,vs, then for all 1≤ i≤ j ≤ s, the vertices vi and v j are
on the boundary of the region of Di j that contains R.

The set S is an s-shelling of D witnessed by R.

Definition 5.2. In a 2-page book drawing, the vertices are placed on a line (the spine of the book), and
each edge (except for its endvertices) lies entirely on a open halfplane spanned by the spine (one of the
2 pages of the book).

Definition 5.3. In a cylindrical drawing, there are two concentric circles that host all the vertices, and
no edge is allowed to intersect these circles, other than at its endvertices.

Definition 5.4. A drawing is monotone if each vertical line intersecrs eac edge at most once.

Definition 5.5. A drawing is x-bounded if by labelling the vertices v1,v2, ...,vn in increasing order of
their x-coordinates, for all 1 ≤ i ≤ j ≤ n the edge viv j is contained in the strip bounded by the vertical
line that contains vi and the vertical line that contains v j.

Now we will generalize the geometrical concept of a k-edge seen in chapter 4 to good drawings of
Kn, as follows. Let D be a good drawing of Kn, uv a directed edge of D, and w a vertex of D distinct from
u and v. Then uvw denotes the oriented closed curve defined by the join of the edges uv, vw and wu. An
oriented, simple, and closed curve in the plane is oriented counterclockwise (respectively, clockwise) if
the bounded region it encloses is on the left (respectively, right) hand side of the curve. Further, w is on
the left (respectively, right) side of uw if uvw is oriented counterclockwise (respectively, clockwise). We
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Figure 5.3: Left: monotone drawing. Right: x-bounded drawing.

say that the edge uv is a k-edge of D if it has exactly k points of D on one side (left or right), and thus
n−2−k points on the other side. Hence, a k-edge is also an (n−2−k)-edge. The direction of the edge
pq is no longer relevant and every edge of D is a k-edge for some unique k such that 0≤ k≤ bn/2c−1.
Here we have an interesting expression of cr(D) in terms of the number of k-edges denoted by Ek(D).

Theorem 5.1. For any good drawing D of Kn in the plane the following identity holds,

Cr(D) = 3
(

n
4

)
−
bn/2c−1

∑
k=0

k(n−2− k)Ek(D)

Proof. In a good drawing of Kn, we say that an edge uv separates the vertices w1 and w2 if the orien-
tations od the triangles uvw1 and uvw2 are opposite. In this case, we say that the set {uv,w1,w2} is a
separation. It is straightforward to check that, up to ambient isotopy equivalence, there are only three
different good drawings A, B, C of K4, which we can see below.

We denote NA, NB and NC the number of vertex-induced subdrawings of D of type A, B and C,
respectively. Then

NA +NB +NC =

(
n
4

)
and since the subdrawings of types B or C are in one-to-one correspondence with the crossing of D, it
follows that

Cr(D) = NB +NC

We count the number of separations in D in two different ways. First, each subdrawing of type A has 3
separations, and each subdrawing of type B and C has 2 separations. This gives a total of 3NA +2NB +
2NC separations in D. Second, each k-edge belongs to exactly k(n−2− k) separations. Summing over
all k-edges for 0≤ k ≤ bn/2c−1 gives a total of ∑

bn/2c−1
k=0 k(n−2− k)Ek(D) separations in D. Thus

3NA +2NB +2NC =
bn/2c−1

∑
k=0

k(n−2− k)Ek(D)

Combining the three previous equations we easily obtain the claimed result.

For each 0≤ k≤ bn/2c−1 we define the set of (≤ k)-edges of D as all j-edges in D for j = 0, ...,k.
The number of (≤ k)-edges of D is denoted by

E≤k(D) :=
k

∑
j=0

E j(D)
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Similarly, we denote the number of (≤≤ k)-edges of D by

E≤≤k(D) :=
k

∑
j=0

E≤ j(D) =
k

∑
j=0

j

∑
i=0

Ei(D) =
k

∑
i=0

(k+1− i)Ei(D)

To avoid special cases we define E≤≤−1(D) = E≤≤−2(D) = 0.

The following result restates theorem 5.1 in terms of the number of (≤≤ k)-edges.

Proposition 5.2. Let D be a good drawing of Kn. Then

Cr(D) = 2
bn/2c−2

∑
k=0

E≤≤k(D)− 1
2

(
n
2

)⌊
n−2

2

⌋
− 1

2
(1+(−1)n)E≤≤bn/2c−2(D)

Proof. First of all, note that for 2 ≤ k ≤ bn/2c−1 we have that E≤≤k(D)−E≤≤k−1(D) = E≤k(D) and
E≤k(D)−E≤k−1(D) = Ek(D). Thus

Ek(D) = E≤≤k(D)−2E≤≤k−1(D)+E≤≤k−2(D).

We rewrite the last term in theorem 5.1.

bn/2c−1

∑
k=0

k(n−2− k)Ek(D)

=
bn/2c−1

∑
k=0

k(n−2− k) [E≤≤k(D)−2E≤≤k−1(D)+E≤≤k−2(D)]

=
bn/2c−3

∑
k=0

(k(n−2− k)−2(k+1)(n−3− k)+(k+2))E≤≤k(D)

+
(⌊n

2

⌋
−1
)(

n−1−
⌊n

2

⌋)
E≤≤bn/2c−1(D)

+
(
−2
(⌊n

2

⌋
−1
)(

n−1−
⌊n

2

⌋)
+
(⌊n

2

⌋
−2
)(

n−
⌊n

2

⌋))
E≤≤bn/2c−2(D)

= −2
bn/2c−3

∑
k=0

E≤≤k(D)+
(⌊n

2

⌋
−1
)(

n−1−
⌊n

2

⌋)
E≤≤bn/2c−1(D)

+
(
−2
(⌊n

2

⌋
−1
)(

n−1−
⌊n

2

⌋)
+
(⌊n

2

⌋
−2
)(

n−
⌊n

2

⌋))
E≤≤bn/2c−2(D)

Since E≤≤bn/2c−1(D) = E≤≤bn/2c−2(D)+E≤bn/2c−1(D) = E≤≤bn/2c−2(D)+
(n

2

)
, using theorem 5.1

we have that

Cr(D) = 3
(

n
4

)
−
bn/2c−1

∑
k=0

k(n−2− k)Ek(D) = 3
(

n
4

)
+2

bn/2c−3

∑
k=0

E≤≤k(D)

+
(

n+1−2
⌊n

2

⌋)
E≤≤bn/2c−2(D)−

(⌊n
2

⌋
−2
)(

n−
⌊n

2

⌋)(n
2

)
= 2

bn/2c−2

∑
k=0

E≤≤k(D)− 1
2

(
n
2

)⌊
n−2

2

⌋
+

{
2E≤≤bn/2c−2(D) if n is odd
E≤≤bn/2c−2(D) if n is even

which is equivalent to the equation of the statement.
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The last step is to give a lower bound on the number of (≤≤ k)-edges of s-shellable drawings of Kn

for a certain interval of k determined by s.

Proposition 5.3. Let D be an s-shellable good drawing of Kn, in which the region R that witnesses the s-
shellability of D is its unbounded region. Then E≤≤k(D)≥ 3

(k+3
3

)
for all 0≤ k≤min(s−2,b(n−3)/2c).

We can find a proof in [9].

At this point we can prove that s-shellable drawings of Kn, with restrictions on s, satisfy the Harary-
Hill conjecture.

Theorem 5.4. Let D be an s-shellable good drawing of Kn for some s≥ n/2. Then D has at least Z(n)
crossings.

Proof. Using a suitable inversion, if it is needed, we transform D into a drawing D′, with the same
number of crossings as D, such that the region that witnesses the s-shellability of D′ is the unbounded
region. Since min(s− 2,b(n− 3)/2c) = b(n− 3)/2c, it follows from proposition 5.3 that E≤≤k(D′) ≥
3
(k+3

3

)
for all 0≤ k ≤ b(n−3)/2c.

Since D′ is a good drawing, then by proposition 5.2 we have

Cr(D′) = 2
bn/2c−2

∑
k=0

E≤≤k(D′)−
1
2

(
n
2

)⌊
n−2

2

⌋
− 1

2
(1+(−1)n)E≤≤bn/2c−2(D

′)

By combining both results we obtain

Cr(D′) ≥ 2
bn/2c−2

∑
k=0

3
(

k+3
3

)
− 1

2

(
n
2

)⌊
n−2

2

⌋
− 3

2
(1+(−1)n)

(
bn/2c+1

3

)
= 6

(
bn/2c+2

4

)
− 1

2

(
n
2

)⌊
n−2

2

⌋
− 3

2
(1+(−1)n)

(
bn/2c+1

3

)
=

{ 1
64(n−1)2(n−3)2 if n is odd
1

64(n−2)2(n−4)2 if n is even
= Z(n)

Using the following two results we will extend finally theorem 5.4 to the rest of the drawings defined
at the begining of the chapter.

Lemma 5.5. Let D be a drawing of Kn. Suppose that C = v1v2...vs is a cycle that satisfies the following:
(i) the edge vsv1 has no crossings; and (ii) for k = 1, ...,s− 1 all crossings in the edge vkvk+1 involve
edges viv j with i < k and j > k+1. Then D is s-shellable.

Proof. Let R be a region of D containing the edge vsv1 on its boundary. Let 1≤ i < j≤ s and define Di j

as before. Let R′ be the region of Di j that contains R. Since the vertices v1,v2, ...,vi−1,v j+1,v j+2, ...,vs,
and consequently any edge incident to one of these vertices, are removed to obtain Di j, then v1 and
vs are in the interior of R′. Moreover, it follows from the crossing properties of the edges of C that the
edges v1v2, v2v3,...,vi−1vi, v jv j+1, v j+1v j+2,..., vs−1vs do not intersected with any edge of Di j. Therefore,
the paths v1...vi−1,vi and C = v jv j+1...vs are completely contained in R′ and hence vi and v j are on the
boundary of R′. Thus, {v1,v2, ...,vs} is an s-shelling of D witnessed by R.

Corollary 5.6. If a drawing D of Kn has a crossing free cycle C of size s then D is s-shellable.

Theorem 5.7. Every cylindrical, 2-page book, x-bounded or monotone drawing of Kn has at least Z(n)
crossings.
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Proof. Let D be a cylindrical good drawing of Kn. Out of the two concentric cycles that contain all
the vertices, let ρ be one that contains at least n/2 vertices. Let v1,v2, ...,vs be the vertices on ρ , in
counterclockwise order. Since no two edges cross each other more than once in a good drawing and
there are not edges crossing ρ , it follows that v1v2...vs is a crossing free cycle of D. Since s≥ n/2, the
result follows by theorem 5.4 and corollary 5.6 for cylindrical drawings.

A 2-page drawing is a particular (degenerate) kind of cylindrical drawing with all vertices on one
of the concentric circles. Thus the previous paragraph immediately implies the result for 2-page book
drawings.

It is a straightforward to check that and x-bounded drawing D of Kn satisfies the conditions of
lemma 5.5. Thus the Harary-Hill conjecture holds for x-bounded drawings.

Since every monotone drawing is obviously x-bounded, this implies that Harary-Hill conjecture also
holds for monotone drawings.
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