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ANEXO I. CÓDIGO 
 

En este anexo se presenta el código fuente del Firmware de Instrumentación en 
C++/Processing (Arduino), el código fuente en scripts de Matlab para la identificación de 
gestos estáticos y dinámicos, y el código de la aplicación con interfaz NUI en Python. 

 

 FIRMWARE DE INSTRUMENTACIÓN: 

 

/* FIRMWARE DE INSTRUMENTACIÓN*/ 

/* SOURCE CODE BY VICTOR MALUMBRES TALLES*/ 

/* SDA ==> A4*/ 

/* SCL ==> A5*/ 

/* INCLUDES AND DEFINES*/ 

 

#include <Wire.h> /* Librería para manejo de comunicación I2C.*/ 

#include <SoftwareSerial.h> /* Librería para manejo de puerto Serial Virtual */ 

  

#define    MPU9250_ADDRESS            0x68   /*SI AD0 ==> +3.3V, MPU9250_ADDRESS 0x69*/ 

#define    MAG_ADDRESS                0x0C 

 #define    GYRO_FULL_SCALE_250_DPS    0x00   

#define    GYRO_FULL_SCALE_500_DPS    0x08 

#define    GYRO_FULL_SCALE_1000_DPS   0x10 

#define    GYRO_FULL_SCALE_2000_DPS   0x18 

 #define    ACC_FULL_SCALE_2_G        0x00   

#define    ACC_FULL_SCALE_4_G        0x08 

#define    ACC_FULL_SCALE_8_G        0x10 

#define    ACC_FULL_SCALE_16_G       0x18 

/* ACEL CONFIGURATION REGISTER*/ 

#define    ACC_CONFIGURATION_1          28 

#define    ACC_CONFIGURATION_2          29 

#define    ACC_LOWPASSFILTER_5Hz       0x06 

/* GYRO CONFIGURATION REGISTER */ 

#define    GYRO_CONFIGURATION_1         27 

#define    GYRO_CONFIGURATION_2         26 
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#define    GYRO_LOWPASSFILTER_5Hz        0x06 

 

/* OTHER REGISTERS */ 

#define MPU9250_ACCEL_XOUT_H            0x3B 

#define MPU9250_ACCEL_XOUT_L            0x3C 

#define MPU9250_ACCEL_YOUT_H            0x3D 

#define MPU9250_ACCEL_YOUT_L            0x3E 

#define MPU9250_ACCEL_ZOUT_H            0x3F 

#define MPU9250_ACCEL_ZOUT_L            0x40 

#define MPU9250_TEMP_OUT_H              0x41 

#define MPU9250_TEMP_OUT_L              0x42 

#define MPU9250_GYRO_XOUT_H             0x43 

#define MPU9250_GYRO_XOUT_L             0x44 

#define MPU9250_GYRO_YOUT_H             0x45 

#define MPU9250_GYRO_YOUT_L             0x46 

#define MPU9250_GYRO_ZOUT_H             0x47 

#define MPU9250_GYRO_ZOUT_L             0x48 

#define MPU9250_MAG_XOUT_H             0x03 

#define MPU9250_MAG_XOUT_L             0x04 

#define MPU9250_MAG_YOUT_H             0x05 

#define MPU9250_MAG_YOUT_L             0x06 

#define MPU9250_MAG_ZOUT_H             0x07 

#define MPU9250_MAG_ZOUT_L             0x08 

/* OTHER DEFINES */ 

#define pi 3.1415 

#define Tms 10 /* en ms */ 

#define Ts 0.01 /* en s */ 

 

/* GLOBAL VARIABLES */ 

double ax,ay,az; 

double axf,ayf,azf; 

double ax_1,ay_1,az_1; 

double offax,offay,offaz; 

double gx,gy,gz; 

double gxf,gyf,gzf; 

double gx_1,gy_1,gz_1; 
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double offgx,offgy,offgz; 

double mx,my,mz; 

int offset0=0; 

float flex0=0; 

int offset1=0; 

float flex1=0; 

int offset2=0; 

float flex2=0; 

int offset3=0; 

float flex3=0; 

int offset4=0; 

float flex4=0; 

int k=0; 

 

/* functions */ 

double media(double vector[],int s){ 

   double suma=0; 

   for(int a=0;a<s;a++){ 

    suma=vector[a]+suma; 

    } 

   suma=suma/s; 

   return suma; 

  } 

bool writeRegister(const uint8_t register_addr, const uint8_t value) { 

    //send write call to sensor address 

    //send register address to sensor 

    //send value to register 

    bool write_status = 0; 

    Wire.beginTransmission(MAG_ADDRESS); //open communication with  

    Wire.write(register_addr);   

    Wire.write(value);  

    Wire.endTransmission();  

 

    return write_status; //returns whether the write succeeded or failed 

} 
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uint8_t readRegister(const uint8_t register_addr) { 

    uint8_t data = 0; 

    Wire.beginTransmission(MPU9250_ADDRESS);  

    Wire.write(register_addr);  

    Wire.endTransmission();  

    Wire.requestFrom(MPU9250_ADDRESS, 1); 

    while(Wire.available()) { 

        data = Wire.read();    // receive a byte as character 

    } 

    return data; //return the data returned from the register 

} 

 

int16_t readRegisters(const uint8_t msb_register, const uint8_t lsb_register) { 

    uint8_t msb = readRegister(msb_register); 

    uint8_t lsb = readRegister(lsb_register); 

    uint16_t value=((((uint16_t)msb) << 8) | lsb); /*ENTERO SIN SIGNO, RANGO [0,65535]*/ 

    int16_t v=-(int16_t)value; 

    return v; 

    

} 

int16_t readMagRegisters(const uint8_t msb_register, const uint8_t lsb_register) { 

    uint8_t msb = readMagRegister(msb_register); 

    uint8_t lsb = readMagRegister(lsb_register); 

    uint16_t value=((((uint16_t)msb) << 8) | lsb); /*ENTERO SIN SIGNO, RANGO [0,65535]*/ 

    int16_t v=-(int16_t)value; 

    return v; 

} 

int16_t get_AX_INT(void) { 

     return  readRegisters(MPU9250_ACCEL_XOUT_H, MPU9250_ACCEL_XOUT_L);   

} 
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int16_t get_AY_INT(void) { 

     return  readRegisters(MPU9250_ACCEL_YOUT_H, MPU9250_ACCEL_YOUT_L); 

} 

int16_t get_AZ_INT(void) { 

     return  readRegisters(MPU9250_ACCEL_ZOUT_H, MPU9250_ACCEL_ZOUT_L); 

} 

int16_t get_GX_INT(void) { 

     return  readRegisters(MPU9250_GYRO_XOUT_H, MPU9250_GYRO_XOUT_L);   

} 

int16_t get_GY_INT(void) { 

     return  readRegisters(MPU9250_GYRO_YOUT_H, MPU9250_GYRO_YOUT_L); 

} 

int16_t get_GZ_INT(void) { 

     return  readRegisters(MPU9250_GYRO_ZOUT_H, MPU9250_GYRO_ZOUT_L); 

} 

int16_t get_MX_INT(void) { 

     return  readMagRegisters(MPU9250_MAG_XOUT_H, MPU9250_MAG_XOUT_L);   

} 

int16_t get_MY_INT(void) { 

     return  readMagRegisters(MPU9250_MAG_YOUT_H, MPU9250_MAG_YOUT_L); 

} 

int16_t get_MZ_INT(void) { 

     return  readMagRegisters(MPU9250_MAG_ZOUT_H, MPU9250_MAG_ZOUT_L); 

} 

 

void acel_calibracion(double offx,double offy,double offz,int num_muestras){ 

    /* calibracion cuando dispositivo esta orientado en z -1g*/ 

    double sum_x=0; 

    double sum_y=0; 

    double sum_z=0; 

    for(int i=0;i<num_muestras;i++){ 

     int16_t int_ax=get_AX_INT();  

     int16_t int_ay=get_AY_INT(); 

     int16_t int_az=get_AZ_INT(); 

     double d_ax=((double)int_ax)*(1/16384.0); 

     double d_ay=((double)int_ay)*(1/16384.0); 
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     double d_az=((double)int_az)*(1/16384.0)+1; 

     sum_x+=d_ax; 

     sum_y+=d_ay; 

     sum_z+=d_az; 

    } 

    offx=sum_x/num_muestras; 

    offy=sum_y/num_muestras; 

    offz=sum_z/num_muestras; 

     

  } 

   

void gyro_calibracion(double offx,double offy,double offz,int num_muestras){ 

    /* calibracion cuando dispositivo esta orientado en z -1g*/ 

    double sum_x=0; 

    double sum_y=0; 

    double sum_z=0; 

    for(int i=0;i<num_muestras;i++){ 

     int16_t int_gx=get_GX_INT();  

     int16_t int_gy=get_GY_INT(); 

     int16_t int_gz=get_GZ_INT(); 

     double d_gx=-((double)int_gx/32.8); 

     double d_gy=-((double)int_gy/32.8); 

     double d_gz=-((double)int_gz/32.8); 

     sum_x+=d_gx; 

     sum_y+=d_gy; 

     sum_z+=d_gz; 

    } 

    offx=sum_x/num_muestras; 

    offy=sum_y/num_muestras; 

    offz=sum_z/num_muestras; 

     

  } 

 

void setup() { 

   pinMode(OUTPUT,13); 

   pinMode(OUTPUT,8); 
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   Wire.begin(); 

   Serial.begin(9600); 

    

   /* Offset de los flexores */ 

   offset0=analogRead(0); 

   offset1=analogRead(1); 

   offset2=analogRead(2); 

   offset3=analogRead(3); 

   offset4=analogRead(4); 

  

   // Configurar acelerometro 

   writeRegister(ACC_CONFIGURATION_1 , ACC_FULL_SCALE_2_G); 

   writeRegister(ACC_CONFIGURATION_2, ACC_LOWPASSFILTER_5Hz); 

   // Configurar giroscopio 

   writeRegister(GYRO_CONFIGURATION_1,GYRO_FULL_SCALE_1000_DPS); 

   writeRegister(GYRO_CONFIGURATION_2,GYRO_LOWPASSFILTER_5Hz); 

   

   /* Calibración acelererómetro */ 

   acel_calibracion(offax,offay,offaz,1024); 

   gyro_calibracion(offgx,offgy,offgz,1024); 

} 

void loop() { 

 /* Flex. Data*/ 

 int f0=analogRead(0); 

 int f1=analogRead(1); 

 int f2=analogRead(2); 

 int f3=analogRead(3); 

 //int f4=analogRead(4); 

 

 flex0=((float)f0) - 300.0; 

 flex0*=(-100.0/(offset0-300)); 

 flex0+=100; /* % */ 

 if(flex0<0) flex0=0; 

 if(flex0>100) flex0=100; 

  

 flex1=((float)f1) - 300.0; 
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 flex1*=(-100.0/(offset1-300)); 

 flex1+=100; /* % */ 

 if(flex1<0) flex1=0; 

 if(flex1>100) flex1=100; 

  

 flex2=((float)f2) - 300.0; 

 flex2*=(-100.0/(offset2-300)); 

 flex2+=100; /* % */ 

 if(flex2<0) flex2=0; 

 if(flex2>100) flex2=100; 

  

 flex3=((float)f3) - 300.0; 

 flex3*=(-100.0/(offset3-300)); 

 flex3+=100; /* % */ 

 if(flex3<0) flex3=0; 

 if(flex3>100) flex3=100; 

  

 //flex4=((float)f4) - 300.0; 

 //flex4*=(-100.0/(offset4-300)); 

 //flex4+=100; /* % */ 

 //if(flex4<0) flex4=0; 

 //if(flex4>100) flex4=100; 

 flex4=0; 

  

  

 /* Accel. Data */ 

  

 int16_t axd=get_AX_INT();  

 int16_t ayd=get_AY_INT(); 

 int16_t azd=get_AZ_INT(); 

 ax=axd*(1/16384.0)-offax; 

 ay=ayd*(1/16384.0)-offay; 

 az=azd*(1/16384.0)-offaz; 

 

 if((ax>-0.03)&&(ax<0.03)) ax=0; 

 if((ay>-0.03)&&(ay<0.03)) ay=0; 
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 if((az>-0.03)&&(az<0.03)) az=0; 

   

 /* Gyro. Data */ 

  

 int16_t gxd=get_GX_INT(); 

 int16_t gyd=get_GY_INT(); 

 int16_t gzd=get_GZ_INT(); 

 gx=-((float)gxd/32.8) - offgx; 

 gy=-((float)gyd/32.8) - offgy; 

 gz=-((float)gzd/32.8) - offgz; 

  

 

 

  Serial.print("ax"); 

  Serial.print(ax); 

  Serial.print("ay"); 

  Serial.print(ay); 

  Serial.print("az"); 

  Serial.print(az); 

  Serial.print("gx"); 

  Serial.print(gx); 

  Serial.print("gy"); 

  Serial.print(gy); 

  Serial.print("gz"); 

  Serial.print(gz); 

  Serial.print("f0"); 

  Serial.print(flex0); 

  Serial.print("f1"); 

  Serial.print(flex1); 

  Serial.print("f2"); 

  Serial.print(flex2); 

  Serial.print("f3"); 

  Serial.print(flex3); 

  Serial.print("f4"); 

  Serial.print(flex4); 

  Serial.println(); 
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  //delay(10); 

} 

 

 

 SCRIPTS DE MATLAB 

 

1. Reconocimiento de gestos estáticos 

% Static Gesture Recognition 
  
clear all; 
close all; 
delete(instrfind); 
  
% Serial COM Configuration 
BaudRate=9600; 
arduino=serial('COM3','BaudRate',BaudRate); 
fopen(arduino); 
  
% Load Hand Gesture Package 
HandGestureLibrary 
  
% Variables 
    Ts=0.01; % Tsample[s] 
    a=[0;0;0]; % {ax;ay,;az} with gravity effect [m/s2] 
    ai=[0;0;0]; %{aix;aiy,;aiz} without gravity effect [m/s2] 
    aik_1=[0;0;0]; 
    v=[0;0;0]; % {vx;vy;vz} [m/s] 
    vk_1=[0;0;0]; 
    p=[0;0;0]; %[m] 
    pk_1=[0;0;0]; 
    g=[0;0;0]; %{gx;gy;gz} [º/s] 
    A=0.85; % Simple Kalman Filter Constant 
    rpy=[0;0;0];%{roll(tx),pitch(ty),yaw(tz)} Hand Orientation 
    rpy_a=[0;0;0]; % Acelerometer´s Orientation 
    rpy_g=[0;0;0]; % Gyroscope´s Orientation 
    R=eye(3); % Rotation Matrix 
    
% Main 
  
while(1) 
tic  
  
%% Get Serial Data 
str=fgetl(arduino); 
data=read_data(str); 
  
%% Acel,Gyro & Flexors data 
a=[9.8*data(1);9.8*data(2);9.8*data(3)]; %  a[m/s2] 
g=[data(4);data(5);data(6)]; % g[º/s] 
f=[data(7);data(8);data(9);data(10);data(11)]; % flexion[%] 
gest_data=[a;f]; 
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%% Calculate Orientation 
rpy_g=rpy_g+g*Ts; % º 
rpy_a=[atan2(a(2),(sqrt(a(1)*a(1)+a(3)*a(3))));atan2(a(1),(sqrt(a(2)*a
(2)+a(3)*a(3))));atan2((sqrt(a(2)*a(2)+a(1)*a(1))),a(3))]; % rad 
rpy_a=rpy_a*(180/pi); % º 
  
% Simple Kalman Filter 
rpy=A*rpy_a+(1-A)*rpy_g; 
rpy_g=rpy; % Update Gyro`s Orientation to reduce acumulate/integral 
error. 
  
%% Create Rotation Matrix & Eliminate Gravity Effect  
R=rpy2rotmatrix(rpy(1)*(pi/180),rpy(2)*(pi/180),rpy(3)*(pi/180)); 
ai=R'*a+[0;0;9.8]; 
  
%% Ajustes 
if similar(a(3),-9.8,0.5) 
    rpy(1)=0; 
    rpy(2)=0; 
end 
if similar(a(1),0,0.5) 
    a(1)=0; 
end 
if similar(a(2),0,0.5) 
    a(2)=0; 
end 
if similar(a(3),0,0.5) 
    a(3)=0; 
end 
  
%% Recognition 
gest_str='none'; 
  
if compare(gest_data,static_up,0.5,20) 
    gest_str='up'; 
end 
if compare(gest_data,static_down,0.5,20) 
    gest_str='down'; 
end 
if compare(gest_data,static_tick,0.5,20) 
    gest_str='tick'; 
end 
if compare(gest_data,static_left,0.5,20) 
    gest_str='left'; 
end 
if compare(gest_data,static_right,0.5,20) 
    gest_str='right'; 
end 
if compare(gest_data,static_fist,0.5,20) 
    gest_str='fist'; 
end 
if compare(gest_data,static_stop,0.5,20) 
    gest_str='stop'; 
end 
  
disp(gest_str); 
  
% Wait to end of Ts 
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T=toc; 
 while(T<Ts) 
    T=toc; 
 end 
  
end 
  
% End of Serial COM ·& Clean Workspace 
fclose(arduino); 
clear all 
 
 

2. Reconocimiento de gestos dinámicos 
 
 

% Dynamic Gesture Recognition 
  
clear all; 
close all; 
delete(instrfind); 
  
% Serial COM Configuration 
BaudRate=9600; 
arduino=serial('COM3','BaudRate',BaudRate); 
fopen(arduino); 
  
% Load Hand Gesture Package 
HandGestureLibrary 
  
% Variables 
    Ts=0.01; % Tsample[s] 
    a=[0;0;0]; % {ax;ay,;az} with gravity effect [m/s2] 
    ai=[0;0;0]; %{aix;aiy,;aiz} without gravity effect [m/s2] 
    aik_1=[0;0;0]; 
    v=[0;0;0]; % {vx;vy;vz} [m/s] 
    vk_1=[0;0;0]; 
    p=[500;500;0]; %[m] 
    pk_1=[0;0;0]; 
    g=[0;0;0]; %{gx;gy;gz} [º/s] 
    A=0.85; % Simple Kalman Filter Constant 
    rpy=[0;0;0];%{roll(tx),pitch(ty),yaw(tz)} Hand Orientation 
    rpy_a=[0;0;0]; % Acelerometer´s Orientation 
    rpy_g=[0;0;0]; % Gyroscope´s Orientation 
    R=eye(3); % Rotation Matrix 
    px=[500;500]; % {px_x;px_y}  
    pdraw=[500;500]; % {px_x;px_y}  
    a_buffer=[]; % acceleration buffer for hand gesture recognition 
    d_vector=[]; % distance vector 
    aux=0; 
     
 % Other Variables (Maq.Estados) 
    state='none'; 
    gesture='none'; 
    start_recognition=0; 
    end_recognition=0; 
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% Main 
  
while(1) 
tic  
  
%% Get Serial Data 
str=fgetl(arduino); 
data=read_data(str); 
  
%% Acel,Gyro & Flexors data 
a=[9.8*data(1);9.8*data(2);9.8*data(3)]; %  a[m/s2] 
g=[data(4);data(5);data(6)]; % g[º/s] 
f=[data(7);data(8);data(9);data(10);data(11)]; % flexion[%] 
  
%% Calculate Orientation 
rpy_g=rpy_g+g*Ts; % º 
rpy_a=[atan2(a(2),(sqrt(a(1)*a(1)+a(3)*a(3))));atan2(a(1),(sqrt(a(2)*a
(2)+a(3)*a(3))));atan2((sqrt(a(2)*a(2)+a(1)*a(1))),a(3))]; % rad 
rpy_a=rpy_a*(180/pi); % º 
  
% Simple Kalman Filter 
rpy=A*rpy_a+(1-A)*rpy_g; 
rpy_g=rpy; % Update Gyro`s Orientation to reduce acumulate/integral 
error. 
  
%% Create Rotation Matrix & Eliminate Gravity Effect  
R=rpy2rotmatrix(rpy(1)*(pi/180),rpy(2)*(pi/180),rpy(3)*(pi/180)); 
ai=R'*a+[0;0;9.8]; 
  
%% Ajustes 
if similar(a(3),-9.8,0.5) 
    rpy(1)=0; 
    rpy(2)=0; 
end 
if similar(a(1),0,0.5) 
    a(1)=0; 
end 
if similar(a(2),0,0.5) 
    a(2)=0; 
end 
if similar(a(3),0,0.5) 
    a(3)=0; 
end 
  
  
%% States Machine 
  
% Machine Inputs 
if similar(a(2),-9.8,0.3) 
 start_recognition=1; 
 end_recognition=0; 
elseif similar(a(3),-9.8,0.3) 
 start_recognition=0; 
 end_recognition=1; 
end 
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% States 
switch state 
    case 'none' 
        if start_recognition==1 
            state='hand_gesture'; 
        end 
        disp('none') 
  
    case 'hand_gesture' 
         
        if aux==0 
            pause(0.5); 
            aux=1; 
        end 
        disp('hand_gesture') 
        a_buffer=[a_buffer,a]; 
         
        if end_recognition==1 
            % Acel.Buffer Processing 
            mx=mean(a_buffer(1,:)); 
            my=mean(a_buffer(2,:)); 
            mz=mean(a_buffer(3,:)); 
            ax=a_buffer(1,:)-mx; 
            ay=a_buffer(2,:)-my; 
            az=a_buffer(3,:)-mz; 
            a_buffer=[ax;ay;az]; 
            % Calculate distance to every gesture of library. 
            d_up=distance(dinamic_up,a_buffer) 
            d_down=distance(dinamic_down,a_buffer) 
            d_right=distance(dinamic_right,a_buffer) 
            d_left=distance(dinamic_left,a_buffer) 
            d_circle=distance(dinamic_circle,a_buffer) 
            % Extract de min. distance  
            d_vector=[d_up,d_down,d_right,d_left,d_circle]; 
            sol=minimum(d_vector);  
            dmin=sol(1); 
            pos=sol(2); 
            % What hand gesture is? 
            gesture=pos2gesture(pos); 
            disp(dmin); 
            disp(gesture); 
            aux=0; 
            a_buffer=[0;0;0]; 
            d_vector=[0,0,0,0,0]; 
            state='none'; 
            pause; 
             
        end 
end 
  
  
% Wait to end of Ts 
T=toc; 
 while(T<Ts) 
    T=toc; 
 end 
  
end 
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% End of Serial COM ·& Clean Workspace 
fclose(arduino); 
clear all 
  
  
 
 

3. Otros scripts 
 

- HandGestureLibrary.m 
 
%  Hand Gesture Library Package 
  
%% Dynamic Gesture 
% up 
up=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRERI
A_DE_GESTOS\a_upz'); 
dinamic_up=up.sg; 
% down 
down=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRE
RIA_DE_GESTOS\a_downz'); 
dinamic_down=down.sg; 
% left 
left=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRE
RIA_DE_GESTOS\a_left'); 
dinamic_left=left.sg; 
% right 
right=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBR
ERIA_DE_GESTOS\a_right'); 
dinamic_right=right.sg; 
% circle 
circle=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIB
RERIA_DE_GESTOS\a_circle'); 
dinamic_circle=circle.sg; 
% cross 
  
%% Static 
static_tick=[0;-9.8;0;0;100;100;100;0]; 
static_stop=[0;-9.8;0;0;0;0;0;0]; 
static_up=[9.8;0;0;100;100;100;100;0]; 
static_down=[-9.8;0;0;100;100;100;100;0]; 
static_left=[0;0;-9.8;100;100;100;100;0]; 
static_right=[0;0;9.8;100;100;100;100;0]; 
static_fist=[0;-9.8;0;100;100;100;100;0]; 
 
 

- read_data.m 
 

function data=read_data(st) 
    ax_pos=0; 
    ay_pos=0; 
    az_pos=0; 
    gx_pos=0; 
    gy_pos=0; 
    gz_pos=0; 
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    f0_pos=0; 
    f1_pos=0; 
    f2_pos=0; 
    f3_pos=0; 
    f4_pos=0; 
     
    %  tomar tamaño del array (b) 
    [a b]=size(st); 
     
    % tomar las posiciones donde char es letra ('ax','ay' ...) 
   for i=1:1:b 
         
        if i~=b 
         n=i+1; 
         st2=st(i:n); 
        end 
         
        if strcmp(st2,'ax') 
            ax_pos=i; 
        end 
        if strcmp(st2,'ay') 
            ay_pos=i; 
        end 
        if strcmp(st2,'az') 
            az_pos=i; 
        end 
        if strcmp(st2,'gx') 
            gx_pos=i; 
        end 
        if strcmp(st2,'gy') 
            gy_pos=i; 
        end 
        if strcmp(st2,'gz') 
            gz_pos=i; 
        end 
        if strcmp(st2,'f0') 
            f0_pos=i; 
        end 
        if strcmp(st2,'f1') 
            f1_pos=i; 
        end 
        if strcmp(st2,'f2') 
            f2_pos=i; 
        end 
        if strcmp(st2,'f3') 
            f3_pos=i; 
        end 
        if strcmp(st2,'f4') 
            f4_pos=i; 
        end 
    end 
     
    % tomar los datos numéricos 
    c=ax_pos+2; 
    d=ay_pos-1; 
    st1=st(c:d); 
    ax=str2double(st1); 
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    c=ay_pos+2; 
    d=az_pos-1; 
    st1=st(c:d); 
    ay=str2double(st1); 
     
    c=az_pos+2; 
    d=gx_pos-1; 
    st1=st(c:d); 
    az=str2double(st1); 
     
    c=gx_pos+2; 
    d=gy_pos-1; 
    st1=st(c:d); 
    gx=str2double(st1); 
     
    c=gy_pos+2; 
    d=gz_pos-1; 
    st1=st(c:d); 
    gy=str2double(st1); 
     
    c=gz_pos+2; 
    d=f0_pos-1; 
    st1=st(c:d); 
    gz=str2double(st1); 
     
    c=f0_pos+2; 
    d=f1_pos-1; 
    st1=st(c:d); 
    f0=str2double(st1); 
     
    c=f1_pos+2; 
    d=f2_pos-1; 
    st1=st(c:d); 
    f1=str2double(st1); 
     
    c=f2_pos+2; 
    d=f3_pos-1; 
    st1=st(c:d); 
    f2=str2double(st1); 
     
    c=f3_pos+2; 
    d=f4_pos-1; 
    st1=st(c:d); 
    f3=str2double(st1); 
     
    c=f4_pos+2; 
    d=b-2; 
    st1=st(c:d); 
    f4=str2double(st1); 
     
    % recoger datos en matriz data 
    data=[ax;ay;az;gx;gy;gz;f0;f1;f2;f3;f4]; 
  
end 
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- similar.m 
 

function ok=similar(value,c_value,err) 
    error=value-c_value; 
    abs_error=abs(error); 
     
    if abs_error <= err 
        ok=1; 
    else 
        ok=0; 
    end 
end 
 
 
 

- rpy2rotmatrix.m 
 

function R=rpy2rotmatrix(r,p,y) 
R(1,1)=cos(y)*cos(p); 
R(1,2)=cos(y)*sin(p)*sin(r)-sin(y)*cos(r); 
R(1,3)=cos(y)*sin(p)*cos(r)+sin(y)*sin(r); 
R(2,1)=sin(y)*cos(p); 
R(2,2)=sin(y)*sin(p)*sin(r)+cos(y)*cos(r); 
R(2,3)=sin(y)*sin(p)*cos(r)-cos(y)*sin(r); 
R(3,1)=-sin(p); 
R(3,2)=cos(p)*sin(r); 
R(3,3)=cos(p)*cos(r); 
end 
 

- compare.m 
 

function bool=compare(g1, g2, g_err, f_err) 
 %% Función para comparar gestos estáticos 
 % data ==> [ax;ay;az;f0;f1;f2;f3;f4] 
 % g1 ==> gesto 1 data 
 % g2 ==> gesto 2 data 
 % g_err ==> error acción de la gravedad 
 % f_err ==> error flexión articular 
 %% code 
 bool=0; 
 if similar(g1(1),g2(1),g_err) 
     b1=1; 
 else  
     b1=0; 
 end 
 if similar(g1(2),g2(2),g_err) 
     b2=1; 
 else  
     b2=0; 
 end 
 if similar(g1(3),g2(3),g_err) 
     b3=1; 
 else  
     b3=0; 
 end 
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 if similar(g1(4),g2(4),f_err) 
     b4=1; 
 else 
     b4=0; 
 end 
 if similar(g1(5),g2(5),f_err) 
     b5=1; 
 else 
     b5=0; 
 end 
 if similar(g1(6),g2(6),f_err) 
     b6=1; 
 else  
     b6=0; 
 end 
 if similar(g1(7),g2(7),f_err) 
     b7=1; 
 else  
     b7=0; 
 end 
 if similar(g1(8),g2(8),f_err) 
     b8=1; 
 else 
     b8=0; 
 end 
  
 if b1 && b2 && b3 && b4 && b5 && b6 && b7 && b8 
     bool=1; 
 else 
     bool=0; 
 end 
  
end 
 

- dtw.m 
 

function [Dist,D,k,w]=dtw(t,r) 
%Dynamic Time Warping Algorithm 
%Dist is unnormalized distance between t and r 
%D is the accumulated distance matrix 
%k is the normalizing factor 
%w is the optimal path 
%t is the vector you are testing against 
%r is the vector you are testing 
[rows,N]=size(t); 
[rows,M]=size(r); 
%for n=1:N 
%    for m=1:M 
%        d(n,m)=(t(n)-r(m))^2; 
%    end 
%end 
d=(repmat(t(:),1,M)-repmat(r(:)',N,1)).^2; %this replaces the nested 
for loops from above Thanks Georg Schmitz  
  
D=zeros(size(d)); 
D(1,1)=d(1,1); 
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for n=2:N 
    D(n,1)=d(n,1)+D(n-1,1); 
end 
for m=2:M 
    D(1,m)=d(1,m)+D(1,m-1); 
end 
for n=2:N 
    for m=2:M 
        D(n,m)=d(n,m)+min([D(n-1,m),D(n-1,m-1),D(n,m-1)]); 
    end 
end 
  
Dist=D(N,M); 
n=N; 
m=M; 
k=1; 
w=[]; 
w(1,:)=[N,M]; 
while ((n+m)~=2) 
    if (n-1)==0 
        m=m-1; 
    elseif (m-1)==0 
        n=n-1; 
    else  
      [values,number]=min([D(n-1,m),D(n,m-1),D(n-1,m-1)]); 
      switch number 
      case 1 
        n=n-1; 
      case 2 
        m=m-1; 
      case 3 
        n=n-1; 
        m=m-1; 
      end 
  end 
    k=k+1; 
    w=cat(1,w,[n,m]); 
end 
   
 

- distance.m 
 

function d=distance(Base,Data) 
% Calculate distance between series 
% Using DTW algorithm 
  
[dx,Dx,kx,wx]=dtw(Base(1,:),Data(1,:)); 
[dy,Dy,ky,wy]=dtw(Base(2,:),Data(2,:)); 
[dz,Dz,kz,wz]=dtw(Base(3,:),Data(3,:)); 
d_vector=[dx;dy;dz]; 
d=sqrt(dx*dx + dy*dy + dz*dz); 
end 
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- minimum.m 
 

function solution=minimum(vector) 
    solution=[0,0]; 
    dmin=1e6; 
    pos=0; 
     
    for i=1:1:length(vector) 
        if vector(i)<dmin 
            dmin=vector(i); 
            pos=i; 
        end 
    end 
     
    solution=[dmin,pos]; 
     
end 
 
 
 

- pos2gesture.m 
 

function gesture=pos2gesture(pos) 
    gesture='ERR'; 
     
    switch pos 
        case 1 
            gesture='up'; 
        case 2 
            gesture='down'; 
        case 3 
            gesture='right'; 
        case 4 
            gesture='left'; 
        case 5 
            gesture='circle'; 
        otherwise 
            gesture='none';  
    end 
end 
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- Draw_Magnitudes.m 

% DRAWING 
  
% acceleration 
figure(1) 
title('Aceleraciones Medidas (F+Fg)') 
subplot(3,1,1) 
plot(t_plot,a_plot(1,:)) 
xlabel('time') 
ylabel('ax [m/s2]') 
subplot(3,1,2) 
plot(t_plot,a_plot(2,:)) 
xlabel('time') 
ylabel('ay [m/s2]') 
subplot(3,1,3) 
plot(t_plot,a_plot(3,:)) 
xlabel('time') 
ylabel('az [m/s2]') 
  
%acceleration i 
figure(2) 
title('Aceleraciones por movimiento (F)') 
subplot(3,1,1) 
plot(t_plot,ai_plot(1,:))%,t_plot,sg(1,:)) 
xlabel('time') 
ylabel('aix [m/s2]') 
subplot(3,1,2) 
plot(t_plot,ai_plot(2,:))%,t_plot,sg(2,:)) 
xlabel('time') 
ylabel('aiy [m/s2]') 
subplot(3,1,3) 
plot(t_plot,ai_plot(3,:))%,t_plot,sg(3,:)) 
xlabel('time') 
ylabel('aiz [m/s2]') 
  
%velocity 
figure(5) 
subplot(3,1,1) 
plot(t_plot,g_plot(1,:)) 
xlabel('time') 
ylabel('gx [º/s]') 
subplot(3,1,2) 
plot(t_plot,g_plot(2,:)) 
xlabel('time') 
ylabel('gy [º/s]') 
subplot(3,1,3) 
plot(t_plot,g_plot(3,:)) 
xlabel('time') 
ylabel('gz [º/s]') 
  
%rpy 
figure(6) 
title('Orientación') 
subplot(3,1,1) 
plot(t_plot,rpy_plot(1,:)) 
xlabel('time') 
ylabel('roll [º]') 
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subplot(3,1,2) 
plot(t_plot,rpy_plot(2,:)) 
xlabel('time') 
ylabel('pitch [º]') 
subplot(3,1,3) 
plot(t_plot,rpy_plot(3,:)) 
xlabel('time') 
ylabel('yaw [º]') 
  
% velocity 
figure(7) 
title('velocity') 
subplot(2,1,1) 
plot(t_plot,v_plot(1,:)) 
xlabel('time') 
ylabel('vx [m/s]') 
subplot(2,1,2) 
plot(t_plot,v_plot(2,:)) 
xlabel('time') 
ylabel('vy [m/s]') 
  
% position 
figure(8) 
title('position') 
subplot(3,1,1) 
plot(t_plot,p_plot(1,:)) 
xlabel('time') 
ylabel('px [m]') 
subplot(3,1,2) 
plot(t_plot,p_plot(2,:)) 
xlabel('time') 
ylabel('py [m]') 
subplot(3,1,3) 
plot(p_plot(1,:),p_plot(2,:)) 
xlabel('time') 
ylabel('draw') 
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 SCRIPTS DE PYTHON 

 

1. Main.py 
 

import vlc 
import sys 
import math 
import gesture 
import time 
import serial 
import grafo 
from numpy import array, zeros, argmin, inf, ndim 
 
 
# Functions 
 
# similar values 
def similar(a, b, error): 
    bit = False 
    resta = a - b 
    abs_resta = math.fabs(resta) 
    if abs_resta <= error: 
        bit = True 
    else: 
        bit = False 
    return bit 
 
# compare two strings 
def str_comp(str1, str2): 
 i = 0 
 str1_len = len(str1) 
 str2_len = len(str2) 
 if str1_len == str2_len: 
  while i < str1_len: 
   if str1[i] == str2[i]: 
    equal = True 
   else: 
    equal = False 
   i = i + 1 
 else: 
  equal = False 
 return equal 
 
# gesture comp 
def gesture_comp (g1, g2, error): 
  Simil_bool = False 
 
  a1_list = g1.get_a_list() 
  f1_list = g1.get_f_list() 
  a2_list = g2.get_a_list() 
  f2_list = g2.get_f_list() 
  c1 = similar(a1_list[0], a2_list[0], error) 
  c2 = similar(a1_list[1], a2_list[1], error) 
  c3 = similar(a1_list[2], a2_list[2], error) 
  c4 = similar(f1_list[0], f2_list[0], 20) 
  c5 = similar(f1_list[1], f2_list[1], 20) 
  c6 = similar(f1_list[2], f2_list[2], 20) 
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  c7 = similar(f1_list[3], f2_list[3], 20) 
  c8 = similar(f1_list[4], f2_list[4], 20) 
 
  if c1 and c2 and c3 and c4 and c5 and c6 and c7 and c8: 
   Simil_bool = True 
  else: 
   Simil_bool = False 
 
  return Simil_bool 
 
 
 
arduino = serial.Serial('COM6', 9600, parity=serial.PARITY_NONE, 
stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0) 
 
# VLC Media Config. 
 
# playlist 
track01 = 'C:/Users/Victor/Desktop/PlaylistTFG/hitthelights.mp3' 
track02 = 'C:/Users/Victor/Desktop/PlaylistTFG/whiplash.mp3' 
track03 = 'C:/Users/Victor/Desktop/PlaylistTFG/anestesia.mp3' 
track04 = 'C:/Users/Victor/Desktop/PlaylistTFG/jumpinthefire.mp3' 
track05 = 'C:/Users/Victor/Desktop/PlaylistTFG/noremorse.mp3' 
track06 = 'C:/Users/Victor/Desktop/PlaylistTFG/thefourhorseman.mp3' 
track07 = 'C:/Users/Victor/Desktop/PlaylistTFG/seekanddestroy.mp3' 
# more tracks¿? 
playlist = [track01, track02, track03, track04, track05, track06, 
track07] 
index_playlist = 0 
len_playlist = 7 
volume_level = 0 
max_level = 100 
min_level = 0 
 
# VLC Media Configuration 
vlcInstance = vlc.Instance() 
player = vlcInstance.media_player_new() 
player.set_mrl(playlist[index_playlist]) 
 
 
# gesture_library 
""" 
    data: 
    aceleracion = [ax, ay, az] 
    flexores = [indice, corazon, anular, meñique, pulgar] 
""" 
# 1. Pause ==>  Gesto Stop de la Biblioteca de gestos estáticos 
acel = [0, -1.0, 0] 
flex = [0, 0, 0, 0, 0] 
pause_gest = gesture.Gesture(acel, flex, 'pause') 
 
# 2. Play ==>  Gesto Tick de la Biblioteca de gestos estáticos 
acel = [0, -1.0, 0] 
flex = [0, 100, 100, 100, 0] 
play_gest = gesture.Gesture(acel, flex, 'play') 
 
# 3. Stop 
 
# 4. Volume up ==> Gesto Up de la Biblioteca de gestos estáticos 
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acel = [1.0, 0, 0] 
flex = [100, 100, 100, 100, 0] 
up_gest = gesture.Gesture(acel, flex, 'up') 
 
# 5. Volume down ==> Gesto Down de la Biblioteca de gestos estáticos 
acel = [-1.0, 0, 0] 
flex = [100, 100, 100, 100, 0] 
down_gest = gesture.Gesture(acel, flex, 'down') 
 
# 6. Mute==> Gesto Fist de la Biblioteca de gestos estáticos 
acel = [0, -1.0, 0] 
flex = [100, 100, 100, 100, 0] 
mute_gest = gesture.Gesture(acel, flex, 'mute') 
 
# 7. Next track ==> Gesto Right de la Biblioteca de gestos estáticos 
acel = [0, 0, 1.0] 
flex = [100, 100, 100, 100, 0] 
next_gest = gesture.Gesture(acel, flex, 'next') 
 
# 8. Prev track ==> Gesto Left de la Biblioteca de gestos estáticos 
acel = [0, 0, -1.0] 
flex = [100, 100, 100, 100, 0] 
prev_gest = gesture.Gesture(acel, flex, 'prev') 
 
# 9. Exit 
acel = [0, 0, -1.0] 
flex = [0, 100, 100, 0, 0] 
exit_gest = gesture.Gesture(acel, flex, 'exit') 
 
 
# Machine of states 
rep = grafo.Grafo('play') # rep ==> {play, pause, stop} 
track = grafo.Grafo('none') # track ==> {none, next, prev} 
volume = grafo.Grafo('none') # volume ==> {none, up, down, mute} 
 
# calibration wait 
# global variables 
time.sleep(1) 
str = '' 
line = [] 
a_data = [] 
f_data = [] 
run = True 
 
player.play() 
volume_level = player.audio_get_volume() 
print(volume_level) 
 
 
while run: 
 
 for c in arduino.read(): 
  # take character until '/n' 
  a = chr(c) 
  line.append(a) 
  if c == 10:  # '/n' == 10 
   str1 = ''.join(line) 
   print(str1) 
   # processing ==> take acceleration and flexors data 
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   ax_pos = str1.find('ax') 
   ay_pos = str1.find('ay') 
   az_pos = str1.find('az') 
   gx_pos = str1.find('gx') 
   f1_pos = str1.find('f0') 
   f2_pos = str1.find('f1') 
   f3_pos = str1.find('f2') 
   f4_pos = str1.find('f3') 
   f5_pos = str1.find('f4') 
   # take data 
   l = len(str1) 
   if l>=65 and l<=85: # Filter for Erroneous Serial Lines 
    if ax_pos != -1: 
     ax_str = str1[ax_pos+2:ay_pos] 
     ax_f = float(ax_str) 
     a_data.insert(0, ax_f) 
    else: 
     a_data.insert(0, 0) 
    if ay_pos != -1: 
     ay_str = str1[ay_pos+2:az_pos] 
     ay_f = float(ay_str) 
     a_data.insert(1, ay_f) 
    else: 
     a_data.insert(1, 0) 
    if az_pos != -1: 
     az_str = str1[az_pos+2:gx_pos] 
     az_f = float(az_str) 
     a_data.insert(2, az_f) 
    else: 
     a_data.insert(2, 0) 
    print(a_data) 
 
    if f1_pos != -1: 
     f1_str = str1[f1_pos + 2:f2_pos] 
     f1_f = float(f1_str) 
     f_data.insert(0, f1_f) 
    else: 
     f_data.insert(0, 0) 
    if f2_pos != -1: 
     f2_str = str1[f2_pos + 2:f3_pos] 
     f2_f = float(f2_str) 
     f_data.insert(1, f2_f) 
    else: 
     f_data.insert(1, 0) 
    if f3_pos != -1: 
      f3_str = str1[f3_pos + 2:f4_pos] 
      f3_f = float(f3_str) 
      f_data.insert(2, f3_f) 
    else: 
     f_data.insert(2, 0) 
    if f4_pos != -1: 
      f4_str = str1[f4_pos + 2:f5_pos] 
      f4_f = float(f4_str) 
      f_data.insert(3, f4_f) 
    else: 
     f_data.insert(3, 0) 
    if f5_pos != -1: 
      f5_str = str1[f5_pos + 2:len(str1)-1] 
      f5_f = float(f5_str) 
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      f_data.insert(4, f5_f) 
    else: 
     f_data.insert(4, 0) 
    print(f_data) 
 
    # take gesture 
    gt = gesture.Gesture(a_data, f_data, 'taken') 
 
    simil = gesture_comp(gt, pause_gest, 0.5) 
    if simil == True: 
     pause_str = pause_gest.get_gest() 
     gt.set_gest(pause_str) 
 
    simil = gesture_comp(gt, play_gest, 0.5) 
    if simil == True: 
     play_str = play_gest.get_gest() 
     gt.set_gest(play_str) 
 
    simil = gesture_comp(gt, up_gest, 0.5) 
    if simil == True: 
        up_str = up_gest.get_gest() 
        gt.set_gest(up_str) 
 
    simil = gesture_comp(gt, down_gest, 0.5) 
    if simil == True: 
        down_str = down_gest.get_gest() 
        gt.set_gest(down_str) 
 
    simil = gesture_comp(gt, mute_gest, 0.5) 
    if simil == True: 
        mute_str = mute_gest.get_gest() 
        gt.set_gest(mute_str) 
 
    simil = gesture_comp(gt, next_gest, 0.5) 
    if simil == True: 
        next_str = next_gest.get_gest() 
        gt.set_gest(next_str) 
 
    simil = gesture_comp(gt, prev_gest, 0.5) 
    if simil == True: 
        prev_str = prev_gest.get_gest() 
        gt.set_gest(prev_str) 
 
    simil = gesture_comp(gt, exit_gest, 0.5) 
    if simil == True: 
            exit_str = prev_gest.get_gest() 
            gt.set_gest(exit_str) 
 
 
    # execute machine of states of media reproduction 
 
    # rep 
    if rep.get_state() == 'play': 
     if gt.get_gest() == 'pause': 
      rep.set_state('pause') 
      player.pause() 
     elif gt.get_gest() == 'stop': 
      rep.set_state('stop') 
      player.stop() 
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     else: 
      rep.set_state('play') 
    elif rep.get_state() == 'pause': 
     if gt.get_gest() == 'play': 
      rep.set_state('play') 
      player.play() 
     elif gt.get_gest() == 'stop': 
      rep.set_state('stop') 
      player.stop() 
     else: 
      rep.set_state('pause') 
    elif rep.get_state() == 'stop': 
     if gt.get_gest() == 'play': 
      rep.set_state('play') 
      player.play() 
     else: 
      rep.set_state('stop') 
 
    # track 
    if track.get_state() == 'none': 
        if gt.get_gest() == 'next': 
            track.set_state('next') 
            index_playlist += 1 
            if index_playlist > (len_playlist-1): 
                index_playlist = (len_playlist-1) 
            player.stop() 
            player.set_mrl(playlist[index_playlist]) 
            player.play() 
            #next track 
        elif gt.get_gest() == 'prev': 
            track.set_state('prev') 
            track.set_state('prev') 
            index_playlist -= 1 
            if index_playlist < 0: 
                index_playlist = 0 
            player.stop() 
            player.set_mrl(playlist[index_playlist]) 
            player.play() 
            #rev track 
    elif track.get_state() == 'next': 
        if gt.get_gest() == 'prev': 
            track.set_state('prev') 
            index_playlist -= 1 
            if index_playlist < 0: 
                index_playlist = 0 
            player.stop() 
            player.set_mrl(playlist[index_playlist]) 
            player.play() 
 
        elif gt.get_gest() != 'next': 
            track.set_state('none') 
    elif track.get_state() == 'prev': 
        if gt.get_gest() == 'next': 
            track.set_state('next') 
            index_playlist += 1 
            if index_playlist > (len_playlist - 1): 
                index_playlist = (len_playlist - 1) 
            player.stop() 
            player.set_mrl(playlist[index_playlist]) 
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            player.play() 
 
        elif gt.get_gest() != 'prev': 
            track.set_state('none') 
 
    # volume 
    if volume.get_state() == 'none': 
        if gt.get_gest() == 'up': 
            volume.set_state('up') 
            volume_level = volume_level + 1 
            if volume_level > max_level: 
                volume_level = max_level 
            player.audio_set_volume(volume_level) 
 
        elif gt.get_gest() == 'down': 
            volume.set_state('down') 
            volume_level = volume_level - 1 
            if volume_level < min_level: 
                volume_level = min_level 
            player.audio_set_volume(volume_level) 
 
        elif gt.get_gest() == 'mute': 
            volume.set_state('mute') 
            player.audio_set_volume(0) 
    elif volume.get_state() == 'up': 
        volume_level = volume_level + 1 
        if volume_level > max_level: 
            volume_level = max_level 
        player.audio_set_volume(volume_level) 
        if gt.get_gest() == 'down': 
            volume.set_state('down') 
            volume_level = volume_level - 1 
            if volume_level < min_level: 
                volume_level = min_level 
            player.audio_set_volume(volume_level) 
 
        elif gt.get_gest() == 'mute': 
            volume.set_state('mute') 
            player.audio_set_volume(0) 
        elif gt.get_gest() != 'up': 
            volume.set_state('none') 
    elif volume.get_state() == 'down': 
        volume_level = volume_level - 1 
        if volume_level < min_level: 
            volume_level = min_level 
        player.audio_set_volume(volume_level) 
        if gt.get_gest() == 'up': 
            volume.set_state('up') 
            volume_level = volume_level + 1 
            if volume_level > max_level: 
                volume_level = max_level 
            player.audio_set_volume(volume_level) 
 
        elif gt.get_gest() == 'mute': 
            volume.set_state('mute') 
            player.audio_set_volume(0) 
        elif gt.get_gest() != 'down': 
            volume.set_state('none') 
    elif volume.get_state() == 'mute': 
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        if gt.get_gest() == 'up': 
            volume.set_state('up') 
            volume_level = volume_level + 1 
            if volume_level > max_level: 
                volume_level = max_level 
            player.audio_set_volume(volume_level) 
        elif gt.get_gest() == 'down': 
            volume.set_state('down') 
            volume_level = volume_level - 1 
            if volume_level < min_level: 
                volume_level = min_level 
            player.audio_set_volume(volume_level) 
        elif gt.get_gest() != 'mute': 
            volume.set_state('none') 
            player.audio_set_volume(volume_level) 
 
    print(rep.get_state()) 
    print(track.get_state()) 
    print(volume.get_state()) 
    print(volume_level) 
    if gt.get_gest() == 'exit': 
        run = False 
 
 
 
   # clean variables 
   str1 = '' 
   line = [] 
   a_data = [] 
   f_data = [] 
 
 

2. Class Grafo.py 

""" Machine of States Class""" 
 
class Grafo: 
 
    def __init__(self, str_state): 
        self.state = str_state 
 
    # get state 
    def get_state(self): 
        return self.state 
 
    # change state 
    def set_state(self, str_state): 
        self.state = str_state 
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3. Class Gesture.py 

""" Hand Gesture Class""" 
 
class Gesture: 
 
    # Gesture Class Constructor 
    def __init__(self, a_data, f_data, str_gesture): 
        self.strgest = str_gesture 
        self.ax = a_data[0] 
        self.ay = a_data[1] 
        self.az = a_data[2] 
        self.f1 = f_data[0] 
        self.f2 = f_data[1] 
        self.f3 = f_data[2] 
        self.f4 = f_data[3] 
        self.f5 = f_data[4] 
    # Get string 
    def get_gest(self): 
        return self.strgest 
 
    # Set string 
    def set_gest(self, str_gest): 
        self.strgest = str_gest 
 
    # Get acceleration data 
    def get_a_list(self): 
        adata = [] 
        adata.insert(0, self.ax) 
        adata.insert(1, self.ay) 
        adata.insert(2, self.az) 
        return adata 
 
    # Get flexions data 
    def get_f_list(self): 
        fdata = [] 
        fdata.insert(0, self.f1) 
        fdata.insert(1, self.f2) 
        fdata.insert(2, self.f3) 
        fdata.insert(3, self.f4) 
        fdata.insert(4, self.f5) 
        return fdata 
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4. Vlc.py 

Debido a la gran extensión que supone el script vlc.py se presentan un conjunto de enlaces 
que muestran en un repositorio el código fuente del núcleo de VLC Media y la documentación 
relacionada para su uso. 

Código: 

https://pypi.org/project/python-vlc/  

https://wiki.videolan.org/python_bindings  

(Los dos enlaces son válidos. Únicamente se diferencian en que el primero direcciona a la web 
de Python y el otro a un wiki de VLC) 

Documentación: 

https://www.olivieraubert.net/vlc/python-ctypes/doc/   
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ANEXO II. DATASHEETS 
 

En este anexo se presentan extractos de datasheets que han tenido gran importancia durante 
las fases de diseño electrónico del proyecto. 

 

 MPU-9250. 
 
 

o Introducción 
 

 

           Extracto 1. Features 
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o Características técnicas del acelerómetro. 
 

 

Extracto 2. Specifications Accel. 
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o Características técnicas del giróscopo. 
 

 

Extracto 3. Specifications Gyro. 

 

o Registros para configuración del acelerómetro. 

 

Extracto 4. Accel. Config. 

o Registros para configuración del giróscopo. 

 

Extracto 5. Gyro. Config. 

o Registros de mediciones del acelerómetro. 

 

Extracto 6. Accel. Outs 
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o Registros de mediciones del giróscopo. 
 

 

Extracto 7. Gyro. Outs 

 

 

 Flex Sensors. 
 

o Características eléctricas y mecánicas. 
 

 

Extracto 8. Flex Specifications 
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o Ejemplo de etapa de instrumentación propuesto por el fabricante. 
 

 

      Extracto 9. Instru. Flex 

       

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 99 

 

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS 
MANUALES 

 

 Plataforma Arduino UNO r3 
 

o Características básicas 

 

Extracto 10. Arduino Features 

 

Al ser la plataforma Arduino UNO r3 de Hardware libre, expresamos que en la página web del 
fabricante se encuentra el Esquemático y Layout de la plataforma. 

 A continuación, presentamos el enlace que redirecciona a estos planos: 

https://store.arduino.cc/arduino-uno-rev3 
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 Atmega 328p 
 

o Características básicas. 

 

Extracto 11. uC Specifications 
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o Pin-out 

 

Extracto 12. Pinout 

 
 

o Diagrama de Bloques 

 

Extracto 13. Block Diagram 
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