

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 60

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

ANEXOS

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 61

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

ANEXO I. CÓDIGO

En este anexo se presenta el código fuente del Firmware de Instrumentación en
C++/Processing (Arduino), el código fuente en scripts de Matlab para la identificación de
gestos estáticos y dinámicos, y el código de la aplicación con interfaz NUI en Python.

 FIRMWARE DE INSTRUMENTACIÓN:

/* FIRMWARE DE INSTRUMENTACIÓN*/

/* SOURCE CODE BY VICTOR MALUMBRES TALLES*/

/* SDA ==> A4*/

/* SCL ==> A5*/

/* INCLUDES AND DEFINES*/

#include <Wire.h> /* Librería para manejo de comunicación I2C.*/

#include <SoftwareSerial.h> /* Librería para manejo de puerto Serial Virtual */

#define MPU9250_ADDRESS 0x68 /*SI AD0 ==> +3.3V, MPU9250_ADDRESS 0x69*/

#define MAG_ADDRESS 0x0C

 #define GYRO_FULL_SCALE_250_DPS 0x00

#define GYRO_FULL_SCALE_500_DPS 0x08

#define GYRO_FULL_SCALE_1000_DPS 0x10

#define GYRO_FULL_SCALE_2000_DPS 0x18

 #define ACC_FULL_SCALE_2_G 0x00

#define ACC_FULL_SCALE_4_G 0x08

#define ACC_FULL_SCALE_8_G 0x10

#define ACC_FULL_SCALE_16_G 0x18

/* ACEL CONFIGURATION REGISTER*/

#define ACC_CONFIGURATION_1 28

#define ACC_CONFIGURATION_2 29

#define ACC_LOWPASSFILTER_5Hz 0x06

/* GYRO CONFIGURATION REGISTER */

#define GYRO_CONFIGURATION_1 27

#define GYRO_CONFIGURATION_2 26

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 62

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

#define GYRO_LOWPASSFILTER_5Hz 0x06

/* OTHER REGISTERS */

#define MPU9250_ACCEL_XOUT_H 0x3B

#define MPU9250_ACCEL_XOUT_L 0x3C

#define MPU9250_ACCEL_YOUT_H 0x3D

#define MPU9250_ACCEL_YOUT_L 0x3E

#define MPU9250_ACCEL_ZOUT_H 0x3F

#define MPU9250_ACCEL_ZOUT_L 0x40

#define MPU9250_TEMP_OUT_H 0x41

#define MPU9250_TEMP_OUT_L 0x42

#define MPU9250_GYRO_XOUT_H 0x43

#define MPU9250_GYRO_XOUT_L 0x44

#define MPU9250_GYRO_YOUT_H 0x45

#define MPU9250_GYRO_YOUT_L 0x46

#define MPU9250_GYRO_ZOUT_H 0x47

#define MPU9250_GYRO_ZOUT_L 0x48

#define MPU9250_MAG_XOUT_H 0x03

#define MPU9250_MAG_XOUT_L 0x04

#define MPU9250_MAG_YOUT_H 0x05

#define MPU9250_MAG_YOUT_L 0x06

#define MPU9250_MAG_ZOUT_H 0x07

#define MPU9250_MAG_ZOUT_L 0x08

/* OTHER DEFINES */

#define pi 3.1415

#define Tms 10 /* en ms */

#define Ts 0.01 /* en s */

/* GLOBAL VARIABLES */

double ax,ay,az;

double axf,ayf,azf;

double ax_1,ay_1,az_1;

double offax,offay,offaz;

double gx,gy,gz;

double gxf,gyf,gzf;

double gx_1,gy_1,gz_1;

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 63

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

double offgx,offgy,offgz;

double mx,my,mz;

int offset0=0;

float flex0=0;

int offset1=0;

float flex1=0;

int offset2=0;

float flex2=0;

int offset3=0;

float flex3=0;

int offset4=0;

float flex4=0;

int k=0;

/* functions */

double media(double vector[],int s){

 double suma=0;

 for(int a=0;a<s;a++){

 suma=vector[a]+suma;

 }

 suma=suma/s;

 return suma;

 }

bool writeRegister(const uint8_t register_addr, const uint8_t value) {

 //send write call to sensor address

 //send register address to sensor

 //send value to register

 bool write_status = 0;

 Wire.beginTransmission(MAG_ADDRESS); //open communication with

 Wire.write(register_addr);

 Wire.write(value);

 Wire.endTransmission();

 return write_status; //returns whether the write succeeded or failed

}

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 64

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

uint8_t readRegister(const uint8_t register_addr) {

 uint8_t data = 0;

 Wire.beginTransmission(MPU9250_ADDRESS);

 Wire.write(register_addr);

 Wire.endTransmission();

 Wire.requestFrom(MPU9250_ADDRESS, 1);

 while(Wire.available()) {

 data = Wire.read(); // receive a byte as character

 }

 return data; //return the data returned from the register

}

int16_t readRegisters(const uint8_t msb_register, const uint8_t lsb_register) {

 uint8_t msb = readRegister(msb_register);

 uint8_t lsb = readRegister(lsb_register);

 uint16_t value=((((uint16_t)msb) << 8) | lsb); /*ENTERO SIN SIGNO, RANGO [0,65535]*/

 int16_t v=-(int16_t)value;

 return v;

}

int16_t readMagRegisters(const uint8_t msb_register, const uint8_t lsb_register) {

 uint8_t msb = readMagRegister(msb_register);

 uint8_t lsb = readMagRegister(lsb_register);

 uint16_t value=((((uint16_t)msb) << 8) | lsb); /*ENTERO SIN SIGNO, RANGO [0,65535]*/

 int16_t v=-(int16_t)value;

 return v;

}

int16_t get_AX_INT(void) {

 return readRegisters(MPU9250_ACCEL_XOUT_H, MPU9250_ACCEL_XOUT_L);

}

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 65

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

int16_t get_AY_INT(void) {

 return readRegisters(MPU9250_ACCEL_YOUT_H, MPU9250_ACCEL_YOUT_L);

}

int16_t get_AZ_INT(void) {

 return readRegisters(MPU9250_ACCEL_ZOUT_H, MPU9250_ACCEL_ZOUT_L);

}

int16_t get_GX_INT(void) {

 return readRegisters(MPU9250_GYRO_XOUT_H, MPU9250_GYRO_XOUT_L);

}

int16_t get_GY_INT(void) {

 return readRegisters(MPU9250_GYRO_YOUT_H, MPU9250_GYRO_YOUT_L);

}

int16_t get_GZ_INT(void) {

 return readRegisters(MPU9250_GYRO_ZOUT_H, MPU9250_GYRO_ZOUT_L);

}

int16_t get_MX_INT(void) {

 return readMagRegisters(MPU9250_MAG_XOUT_H, MPU9250_MAG_XOUT_L);

}

int16_t get_MY_INT(void) {

 return readMagRegisters(MPU9250_MAG_YOUT_H, MPU9250_MAG_YOUT_L);

}

int16_t get_MZ_INT(void) {

 return readMagRegisters(MPU9250_MAG_ZOUT_H, MPU9250_MAG_ZOUT_L);

}

void acel_calibracion(double offx,double offy,double offz,int num_muestras){

 /* calibracion cuando dispositivo esta orientado en z -1g*/

 double sum_x=0;

 double sum_y=0;

 double sum_z=0;

 for(int i=0;i<num_muestras;i++){

 int16_t int_ax=get_AX_INT();

 int16_t int_ay=get_AY_INT();

 int16_t int_az=get_AZ_INT();

 double d_ax=((double)int_ax)*(1/16384.0);

 double d_ay=((double)int_ay)*(1/16384.0);

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 66

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 double d_az=((double)int_az)*(1/16384.0)+1;

 sum_x+=d_ax;

 sum_y+=d_ay;

 sum_z+=d_az;

 }

 offx=sum_x/num_muestras;

 offy=sum_y/num_muestras;

 offz=sum_z/num_muestras;

 }

void gyro_calibracion(double offx,double offy,double offz,int num_muestras){

 /* calibracion cuando dispositivo esta orientado en z -1g*/

 double sum_x=0;

 double sum_y=0;

 double sum_z=0;

 for(int i=0;i<num_muestras;i++){

 int16_t int_gx=get_GX_INT();

 int16_t int_gy=get_GY_INT();

 int16_t int_gz=get_GZ_INT();

 double d_gx=-((double)int_gx/32.8);

 double d_gy=-((double)int_gy/32.8);

 double d_gz=-((double)int_gz/32.8);

 sum_x+=d_gx;

 sum_y+=d_gy;

 sum_z+=d_gz;

 }

 offx=sum_x/num_muestras;

 offy=sum_y/num_muestras;

 offz=sum_z/num_muestras;

 }

void setup() {

 pinMode(OUTPUT,13);

 pinMode(OUTPUT,8);

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 67

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 Wire.begin();

 Serial.begin(9600);

 /* Offset de los flexores */

 offset0=analogRead(0);

 offset1=analogRead(1);

 offset2=analogRead(2);

 offset3=analogRead(3);

 offset4=analogRead(4);

 // Configurar acelerometro

 writeRegister(ACC_CONFIGURATION_1 , ACC_FULL_SCALE_2_G);

 writeRegister(ACC_CONFIGURATION_2, ACC_LOWPASSFILTER_5Hz);

 // Configurar giroscopio

 writeRegister(GYRO_CONFIGURATION_1,GYRO_FULL_SCALE_1000_DPS);

 writeRegister(GYRO_CONFIGURATION_2,GYRO_LOWPASSFILTER_5Hz);

 /* Calibración acelererómetro */

 acel_calibracion(offax,offay,offaz,1024);

 gyro_calibracion(offgx,offgy,offgz,1024);

}

void loop() {

 /* Flex. Data*/

 int f0=analogRead(0);

 int f1=analogRead(1);

 int f2=analogRead(2);

 int f3=analogRead(3);

 //int f4=analogRead(4);

 flex0=((float)f0) - 300.0;

 flex0*=(-100.0/(offset0-300));

 flex0+=100; /* % */

 if(flex0<0) flex0=0;

 if(flex0>100) flex0=100;

 flex1=((float)f1) - 300.0;

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 68

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 flex1*=(-100.0/(offset1-300));

 flex1+=100; /* % */

 if(flex1<0) flex1=0;

 if(flex1>100) flex1=100;

 flex2=((float)f2) - 300.0;

 flex2*=(-100.0/(offset2-300));

 flex2+=100; /* % */

 if(flex2<0) flex2=0;

 if(flex2>100) flex2=100;

 flex3=((float)f3) - 300.0;

 flex3*=(-100.0/(offset3-300));

 flex3+=100; /* % */

 if(flex3<0) flex3=0;

 if(flex3>100) flex3=100;

 //flex4=((float)f4) - 300.0;

 //flex4*=(-100.0/(offset4-300));

 //flex4+=100; /* % */

 //if(flex4<0) flex4=0;

 //if(flex4>100) flex4=100;

 flex4=0;

 /* Accel. Data */

 int16_t axd=get_AX_INT();

 int16_t ayd=get_AY_INT();

 int16_t azd=get_AZ_INT();

 ax=axd*(1/16384.0)-offax;

 ay=ayd*(1/16384.0)-offay;

 az=azd*(1/16384.0)-offaz;

 if((ax>-0.03)&&(ax<0.03)) ax=0;

 if((ay>-0.03)&&(ay<0.03)) ay=0;

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 69

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 if((az>-0.03)&&(az<0.03)) az=0;

 /* Gyro. Data */

 int16_t gxd=get_GX_INT();

 int16_t gyd=get_GY_INT();

 int16_t gzd=get_GZ_INT();

 gx=-((float)gxd/32.8) - offgx;

 gy=-((float)gyd/32.8) - offgy;

 gz=-((float)gzd/32.8) - offgz;

 Serial.print("ax");

 Serial.print(ax);

 Serial.print("ay");

 Serial.print(ay);

 Serial.print("az");

 Serial.print(az);

 Serial.print("gx");

 Serial.print(gx);

 Serial.print("gy");

 Serial.print(gy);

 Serial.print("gz");

 Serial.print(gz);

 Serial.print("f0");

 Serial.print(flex0);

 Serial.print("f1");

 Serial.print(flex1);

 Serial.print("f2");

 Serial.print(flex2);

 Serial.print("f3");

 Serial.print(flex3);

 Serial.print("f4");

 Serial.print(flex4);

 Serial.println();

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 70

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 //delay(10);

}

 SCRIPTS DE MATLAB

1. Reconocimiento de gestos estáticos

% Static Gesture Recognition

clear all;
close all;
delete(instrfind);

% Serial COM Configuration
BaudRate=9600;
arduino=serial('COM3','BaudRate',BaudRate);
fopen(arduino);

% Load Hand Gesture Package
HandGestureLibrary

% Variables
 Ts=0.01; % Tsample[s]
 a=[0;0;0]; % {ax;ay,;az} with gravity effect [m/s2]
 ai=[0;0;0]; %{aix;aiy,;aiz} without gravity effect [m/s2]
 aik_1=[0;0;0];
 v=[0;0;0]; % {vx;vy;vz} [m/s]
 vk_1=[0;0;0];
 p=[0;0;0]; %[m]
 pk_1=[0;0;0];
 g=[0;0;0]; %{gx;gy;gz} [º/s]
 A=0.85; % Simple Kalman Filter Constant
 rpy=[0;0;0];%{roll(tx),pitch(ty),yaw(tz)} Hand Orientation
 rpy_a=[0;0;0]; % Acelerometer´s Orientation
 rpy_g=[0;0;0]; % Gyroscope´s Orientation
 R=eye(3); % Rotation Matrix

% Main

while(1)
tic

%% Get Serial Data
str=fgetl(arduino);
data=read_data(str);

%% Acel,Gyro & Flexors data
a=[9.8*data(1);9.8*data(2);9.8*data(3)]; % a[m/s2]
g=[data(4);data(5);data(6)]; % g[º/s]
f=[data(7);data(8);data(9);data(10);data(11)]; % flexion[%]
gest_data=[a;f];

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 71

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

%% Calculate Orientation
rpy_g=rpy_g+g*Ts; % º
rpy_a=[atan2(a(2),(sqrt(a(1)*a(1)+a(3)*a(3))));atan2(a(1),(sqrt(a(2)*a
(2)+a(3)*a(3))));atan2((sqrt(a(2)*a(2)+a(1)*a(1))),a(3))]; % rad
rpy_a=rpy_a*(180/pi); % º

% Simple Kalman Filter
rpy=A*rpy_a+(1-A)*rpy_g;
rpy_g=rpy; % Update Gyro`s Orientation to reduce acumulate/integral
error.

%% Create Rotation Matrix & Eliminate Gravity Effect
R=rpy2rotmatrix(rpy(1)*(pi/180),rpy(2)*(pi/180),rpy(3)*(pi/180));
ai=R'*a+[0;0;9.8];

%% Ajustes
if similar(a(3),-9.8,0.5)
 rpy(1)=0;
 rpy(2)=0;
end
if similar(a(1),0,0.5)
 a(1)=0;
end
if similar(a(2),0,0.5)
 a(2)=0;
end
if similar(a(3),0,0.5)
 a(3)=0;
end

%% Recognition
gest_str='none';

if compare(gest_data,static_up,0.5,20)
 gest_str='up';
end
if compare(gest_data,static_down,0.5,20)
 gest_str='down';
end
if compare(gest_data,static_tick,0.5,20)
 gest_str='tick';
end
if compare(gest_data,static_left,0.5,20)
 gest_str='left';
end
if compare(gest_data,static_right,0.5,20)
 gest_str='right';
end
if compare(gest_data,static_fist,0.5,20)
 gest_str='fist';
end
if compare(gest_data,static_stop,0.5,20)
 gest_str='stop';
end

disp(gest_str);

% Wait to end of Ts

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 72

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

T=toc;
 while(T<Ts)
 T=toc;
 end

end

% End of Serial COM ·& Clean Workspace
fclose(arduino);
clear all

2. Reconocimiento de gestos dinámicos

% Dynamic Gesture Recognition

clear all;
close all;
delete(instrfind);

% Serial COM Configuration
BaudRate=9600;
arduino=serial('COM3','BaudRate',BaudRate);
fopen(arduino);

% Load Hand Gesture Package
HandGestureLibrary

% Variables
 Ts=0.01; % Tsample[s]
 a=[0;0;0]; % {ax;ay,;az} with gravity effect [m/s2]
 ai=[0;0;0]; %{aix;aiy,;aiz} without gravity effect [m/s2]
 aik_1=[0;0;0];
 v=[0;0;0]; % {vx;vy;vz} [m/s]
 vk_1=[0;0;0];
 p=[500;500;0]; %[m]
 pk_1=[0;0;0];
 g=[0;0;0]; %{gx;gy;gz} [º/s]
 A=0.85; % Simple Kalman Filter Constant
 rpy=[0;0;0];%{roll(tx),pitch(ty),yaw(tz)} Hand Orientation
 rpy_a=[0;0;0]; % Acelerometer´s Orientation
 rpy_g=[0;0;0]; % Gyroscope´s Orientation
 R=eye(3); % Rotation Matrix
 px=[500;500]; % {px_x;px_y}
 pdraw=[500;500]; % {px_x;px_y}
 a_buffer=[]; % acceleration buffer for hand gesture recognition
 d_vector=[]; % distance vector
 aux=0;

 % Other Variables (Maq.Estados)
 state='none';
 gesture='none';
 start_recognition=0;
 end_recognition=0;

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 73

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

% Main

while(1)
tic

%% Get Serial Data
str=fgetl(arduino);
data=read_data(str);

%% Acel,Gyro & Flexors data
a=[9.8*data(1);9.8*data(2);9.8*data(3)]; % a[m/s2]
g=[data(4);data(5);data(6)]; % g[º/s]
f=[data(7);data(8);data(9);data(10);data(11)]; % flexion[%]

%% Calculate Orientation
rpy_g=rpy_g+g*Ts; % º
rpy_a=[atan2(a(2),(sqrt(a(1)*a(1)+a(3)*a(3))));atan2(a(1),(sqrt(a(2)*a
(2)+a(3)*a(3))));atan2((sqrt(a(2)*a(2)+a(1)*a(1))),a(3))]; % rad
rpy_a=rpy_a*(180/pi); % º

% Simple Kalman Filter
rpy=A*rpy_a+(1-A)*rpy_g;
rpy_g=rpy; % Update Gyro`s Orientation to reduce acumulate/integral
error.

%% Create Rotation Matrix & Eliminate Gravity Effect
R=rpy2rotmatrix(rpy(1)*(pi/180),rpy(2)*(pi/180),rpy(3)*(pi/180));
ai=R'*a+[0;0;9.8];

%% Ajustes
if similar(a(3),-9.8,0.5)
 rpy(1)=0;
 rpy(2)=0;
end
if similar(a(1),0,0.5)
 a(1)=0;
end
if similar(a(2),0,0.5)
 a(2)=0;
end
if similar(a(3),0,0.5)
 a(3)=0;
end

%% States Machine

% Machine Inputs
if similar(a(2),-9.8,0.3)
 start_recognition=1;
 end_recognition=0;
elseif similar(a(3),-9.8,0.3)
 start_recognition=0;
 end_recognition=1;
end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 74

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

% States
switch state
 case 'none'
 if start_recognition==1
 state='hand_gesture';
 end
 disp('none')

 case 'hand_gesture'

 if aux==0
 pause(0.5);
 aux=1;
 end
 disp('hand_gesture')
 a_buffer=[a_buffer,a];

 if end_recognition==1
 % Acel.Buffer Processing
 mx=mean(a_buffer(1,:));
 my=mean(a_buffer(2,:));
 mz=mean(a_buffer(3,:));
 ax=a_buffer(1,:)-mx;
 ay=a_buffer(2,:)-my;
 az=a_buffer(3,:)-mz;
 a_buffer=[ax;ay;az];
 % Calculate distance to every gesture of library.
 d_up=distance(dinamic_up,a_buffer)
 d_down=distance(dinamic_down,a_buffer)
 d_right=distance(dinamic_right,a_buffer)
 d_left=distance(dinamic_left,a_buffer)
 d_circle=distance(dinamic_circle,a_buffer)
 % Extract de min. distance
 d_vector=[d_up,d_down,d_right,d_left,d_circle];
 sol=minimum(d_vector);
 dmin=sol(1);
 pos=sol(2);
 % What hand gesture is?
 gesture=pos2gesture(pos);
 disp(dmin);
 disp(gesture);
 aux=0;
 a_buffer=[0;0;0];
 d_vector=[0,0,0,0,0];
 state='none';
 pause;

 end
end

% Wait to end of Ts
T=toc;
 while(T<Ts)
 T=toc;
 end

end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 75

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

% End of Serial COM ·& Clean Workspace
fclose(arduino);
clear all

3. Otros scripts

- HandGestureLibrary.m

% Hand Gesture Library Package

%% Dynamic Gesture
% up
up=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRERI
A_DE_GESTOS\a_upz');
dinamic_up=up.sg;
% down
down=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRE
RIA_DE_GESTOS\a_downz');
dinamic_down=down.sg;
% left
left=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBRE
RIA_DE_GESTOS\a_left');
dinamic_left=left.sg;
% right
right=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIBR
ERIA_DE_GESTOS\a_right');
dinamic_right=right.sg;
% circle
circle=load('C:\Users\Victor\Desktop\CURSO4\TFG\TFG\Scripts_MATLAB\LIB
RERIA_DE_GESTOS\a_circle');
dinamic_circle=circle.sg;
% cross

%% Static
static_tick=[0;-9.8;0;0;100;100;100;0];
static_stop=[0;-9.8;0;0;0;0;0;0];
static_up=[9.8;0;0;100;100;100;100;0];
static_down=[-9.8;0;0;100;100;100;100;0];
static_left=[0;0;-9.8;100;100;100;100;0];
static_right=[0;0;9.8;100;100;100;100;0];
static_fist=[0;-9.8;0;100;100;100;100;0];

- read_data.m

function data=read_data(st)
 ax_pos=0;
 ay_pos=0;
 az_pos=0;
 gx_pos=0;
 gy_pos=0;
 gz_pos=0;

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 76

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 f0_pos=0;
 f1_pos=0;
 f2_pos=0;
 f3_pos=0;
 f4_pos=0;

 % tomar tamaño del array (b)
 [a b]=size(st);

 % tomar las posiciones donde char es letra ('ax','ay' ...)
 for i=1:1:b

 if i~=b
 n=i+1;
 st2=st(i:n);
 end

 if strcmp(st2,'ax')
 ax_pos=i;
 end
 if strcmp(st2,'ay')
 ay_pos=i;
 end
 if strcmp(st2,'az')
 az_pos=i;
 end
 if strcmp(st2,'gx')
 gx_pos=i;
 end
 if strcmp(st2,'gy')
 gy_pos=i;
 end
 if strcmp(st2,'gz')
 gz_pos=i;
 end
 if strcmp(st2,'f0')
 f0_pos=i;
 end
 if strcmp(st2,'f1')
 f1_pos=i;
 end
 if strcmp(st2,'f2')
 f2_pos=i;
 end
 if strcmp(st2,'f3')
 f3_pos=i;
 end
 if strcmp(st2,'f4')
 f4_pos=i;
 end
 end

 % tomar los datos numéricos
 c=ax_pos+2;
 d=ay_pos-1;
 st1=st(c:d);
 ax=str2double(st1);

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 77

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 c=ay_pos+2;
 d=az_pos-1;
 st1=st(c:d);
 ay=str2double(st1);

 c=az_pos+2;
 d=gx_pos-1;
 st1=st(c:d);
 az=str2double(st1);

 c=gx_pos+2;
 d=gy_pos-1;
 st1=st(c:d);
 gx=str2double(st1);

 c=gy_pos+2;
 d=gz_pos-1;
 st1=st(c:d);
 gy=str2double(st1);

 c=gz_pos+2;
 d=f0_pos-1;
 st1=st(c:d);
 gz=str2double(st1);

 c=f0_pos+2;
 d=f1_pos-1;
 st1=st(c:d);
 f0=str2double(st1);

 c=f1_pos+2;
 d=f2_pos-1;
 st1=st(c:d);
 f1=str2double(st1);

 c=f2_pos+2;
 d=f3_pos-1;
 st1=st(c:d);
 f2=str2double(st1);

 c=f3_pos+2;
 d=f4_pos-1;
 st1=st(c:d);
 f3=str2double(st1);

 c=f4_pos+2;
 d=b-2;
 st1=st(c:d);
 f4=str2double(st1);

 % recoger datos en matriz data
 data=[ax;ay;az;gx;gy;gz;f0;f1;f2;f3;f4];

end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 78

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

- similar.m

function ok=similar(value,c_value,err)
 error=value-c_value;
 abs_error=abs(error);

 if abs_error <= err
 ok=1;
 else
 ok=0;
 end
end

- rpy2rotmatrix.m

function R=rpy2rotmatrix(r,p,y)
R(1,1)=cos(y)*cos(p);
R(1,2)=cos(y)*sin(p)*sin(r)-sin(y)*cos(r);
R(1,3)=cos(y)*sin(p)*cos(r)+sin(y)*sin(r);
R(2,1)=sin(y)*cos(p);
R(2,2)=sin(y)*sin(p)*sin(r)+cos(y)*cos(r);
R(2,3)=sin(y)*sin(p)*cos(r)-cos(y)*sin(r);
R(3,1)=-sin(p);
R(3,2)=cos(p)*sin(r);
R(3,3)=cos(p)*cos(r);
end

- compare.m

function bool=compare(g1, g2, g_err, f_err)
 %% Función para comparar gestos estáticos
 % data ==> [ax;ay;az;f0;f1;f2;f3;f4]
 % g1 ==> gesto 1 data
 % g2 ==> gesto 2 data
 % g_err ==> error acción de la gravedad
 % f_err ==> error flexión articular
 %% code
 bool=0;
 if similar(g1(1),g2(1),g_err)
 b1=1;
 else
 b1=0;
 end
 if similar(g1(2),g2(2),g_err)
 b2=1;
 else
 b2=0;
 end
 if similar(g1(3),g2(3),g_err)
 b3=1;
 else
 b3=0;
 end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 79

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 if similar(g1(4),g2(4),f_err)
 b4=1;
 else
 b4=0;
 end
 if similar(g1(5),g2(5),f_err)
 b5=1;
 else
 b5=0;
 end
 if similar(g1(6),g2(6),f_err)
 b6=1;
 else
 b6=0;
 end
 if similar(g1(7),g2(7),f_err)
 b7=1;
 else
 b7=0;
 end
 if similar(g1(8),g2(8),f_err)
 b8=1;
 else
 b8=0;
 end

 if b1 && b2 && b3 && b4 && b5 && b6 && b7 && b8
 bool=1;
 else
 bool=0;
 end

end

- dtw.m

function [Dist,D,k,w]=dtw(t,r)
%Dynamic Time Warping Algorithm
%Dist is unnormalized distance between t and r
%D is the accumulated distance matrix
%k is the normalizing factor
%w is the optimal path
%t is the vector you are testing against
%r is the vector you are testing
[rows,N]=size(t);
[rows,M]=size(r);
%for n=1:N
% for m=1:M
% d(n,m)=(t(n)-r(m))^2;
% end
%end
d=(repmat(t(:),1,M)-repmat(r(:)',N,1)).^2; %this replaces the nested
for loops from above Thanks Georg Schmitz

D=zeros(size(d));
D(1,1)=d(1,1);

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 80

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

for n=2:N
 D(n,1)=d(n,1)+D(n-1,1);
end
for m=2:M
 D(1,m)=d(1,m)+D(1,m-1);
end
for n=2:N
 for m=2:M
 D(n,m)=d(n,m)+min([D(n-1,m),D(n-1,m-1),D(n,m-1)]);
 end
end

Dist=D(N,M);
n=N;
m=M;
k=1;
w=[];
w(1,:)=[N,M];
while ((n+m)~=2)
 if (n-1)==0
 m=m-1;
 elseif (m-1)==0
 n=n-1;
 else
 [values,number]=min([D(n-1,m),D(n,m-1),D(n-1,m-1)]);
 switch number
 case 1
 n=n-1;
 case 2
 m=m-1;
 case 3
 n=n-1;
 m=m-1;
 end
 end
 k=k+1;
 w=cat(1,w,[n,m]);
end

- distance.m

function d=distance(Base,Data)
% Calculate distance between series
% Using DTW algorithm

[dx,Dx,kx,wx]=dtw(Base(1,:),Data(1,:));
[dy,Dy,ky,wy]=dtw(Base(2,:),Data(2,:));
[dz,Dz,kz,wz]=dtw(Base(3,:),Data(3,:));
d_vector=[dx;dy;dz];
d=sqrt(dx*dx + dy*dy + dz*dz);
end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 81

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

- minimum.m

function solution=minimum(vector)
 solution=[0,0];
 dmin=1e6;
 pos=0;

 for i=1:1:length(vector)
 if vector(i)<dmin
 dmin=vector(i);
 pos=i;
 end
 end

 solution=[dmin,pos];

end

- pos2gesture.m

function gesture=pos2gesture(pos)
 gesture='ERR';

 switch pos
 case 1
 gesture='up';
 case 2
 gesture='down';
 case 3
 gesture='right';
 case 4
 gesture='left';
 case 5
 gesture='circle';
 otherwise
 gesture='none';
 end
end

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 82

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

- Draw_Magnitudes.m

% DRAWING

% acceleration
figure(1)
title('Aceleraciones Medidas (F+Fg)')
subplot(3,1,1)
plot(t_plot,a_plot(1,:))
xlabel('time')
ylabel('ax [m/s2]')
subplot(3,1,2)
plot(t_plot,a_plot(2,:))
xlabel('time')
ylabel('ay [m/s2]')
subplot(3,1,3)
plot(t_plot,a_plot(3,:))
xlabel('time')
ylabel('az [m/s2]')

%acceleration i
figure(2)
title('Aceleraciones por movimiento (F)')
subplot(3,1,1)
plot(t_plot,ai_plot(1,:))%,t_plot,sg(1,:))
xlabel('time')
ylabel('aix [m/s2]')
subplot(3,1,2)
plot(t_plot,ai_plot(2,:))%,t_plot,sg(2,:))
xlabel('time')
ylabel('aiy [m/s2]')
subplot(3,1,3)
plot(t_plot,ai_plot(3,:))%,t_plot,sg(3,:))
xlabel('time')
ylabel('aiz [m/s2]')

%velocity
figure(5)
subplot(3,1,1)
plot(t_plot,g_plot(1,:))
xlabel('time')
ylabel('gx [º/s]')
subplot(3,1,2)
plot(t_plot,g_plot(2,:))
xlabel('time')
ylabel('gy [º/s]')
subplot(3,1,3)
plot(t_plot,g_plot(3,:))
xlabel('time')
ylabel('gz [º/s]')

%rpy
figure(6)
title('Orientación')
subplot(3,1,1)
plot(t_plot,rpy_plot(1,:))
xlabel('time')
ylabel('roll [º]')

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 83

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

subplot(3,1,2)
plot(t_plot,rpy_plot(2,:))
xlabel('time')
ylabel('pitch [º]')
subplot(3,1,3)
plot(t_plot,rpy_plot(3,:))
xlabel('time')
ylabel('yaw [º]')

% velocity
figure(7)
title('velocity')
subplot(2,1,1)
plot(t_plot,v_plot(1,:))
xlabel('time')
ylabel('vx [m/s]')
subplot(2,1,2)
plot(t_plot,v_plot(2,:))
xlabel('time')
ylabel('vy [m/s]')

% position
figure(8)
title('position')
subplot(3,1,1)
plot(t_plot,p_plot(1,:))
xlabel('time')
ylabel('px [m]')
subplot(3,1,2)
plot(t_plot,p_plot(2,:))
xlabel('time')
ylabel('py [m]')
subplot(3,1,3)
plot(p_plot(1,:),p_plot(2,:))
xlabel('time')
ylabel('draw')

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 84

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 SCRIPTS DE PYTHON

1. Main.py

import vlc
import sys
import math
import gesture
import time
import serial
import grafo
from numpy import array, zeros, argmin, inf, ndim

Functions

similar values
def similar(a, b, error):
 bit = False
 resta = a - b
 abs_resta = math.fabs(resta)
 if abs_resta <= error:
 bit = True
 else:
 bit = False
 return bit

compare two strings
def str_comp(str1, str2):
 i = 0
 str1_len = len(str1)
 str2_len = len(str2)
 if str1_len == str2_len:
 while i < str1_len:
 if str1[i] == str2[i]:
 equal = True
 else:
 equal = False
 i = i + 1
 else:
 equal = False
 return equal

gesture comp
def gesture_comp (g1, g2, error):
 Simil_bool = False

 a1_list = g1.get_a_list()
 f1_list = g1.get_f_list()
 a2_list = g2.get_a_list()
 f2_list = g2.get_f_list()
 c1 = similar(a1_list[0], a2_list[0], error)
 c2 = similar(a1_list[1], a2_list[1], error)
 c3 = similar(a1_list[2], a2_list[2], error)
 c4 = similar(f1_list[0], f2_list[0], 20)
 c5 = similar(f1_list[1], f2_list[1], 20)
 c6 = similar(f1_list[2], f2_list[2], 20)

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 85

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 c7 = similar(f1_list[3], f2_list[3], 20)
 c8 = similar(f1_list[4], f2_list[4], 20)

 if c1 and c2 and c3 and c4 and c5 and c6 and c7 and c8:
 Simil_bool = True
 else:
 Simil_bool = False

 return Simil_bool

arduino = serial.Serial('COM6', 9600, parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0)

VLC Media Config.

playlist
track01 = 'C:/Users/Victor/Desktop/PlaylistTFG/hitthelights.mp3'
track02 = 'C:/Users/Victor/Desktop/PlaylistTFG/whiplash.mp3'
track03 = 'C:/Users/Victor/Desktop/PlaylistTFG/anestesia.mp3'
track04 = 'C:/Users/Victor/Desktop/PlaylistTFG/jumpinthefire.mp3'
track05 = 'C:/Users/Victor/Desktop/PlaylistTFG/noremorse.mp3'
track06 = 'C:/Users/Victor/Desktop/PlaylistTFG/thefourhorseman.mp3'
track07 = 'C:/Users/Victor/Desktop/PlaylistTFG/seekanddestroy.mp3'
more tracks¿?
playlist = [track01, track02, track03, track04, track05, track06,
track07]
index_playlist = 0
len_playlist = 7
volume_level = 0
max_level = 100
min_level = 0

VLC Media Configuration
vlcInstance = vlc.Instance()
player = vlcInstance.media_player_new()
player.set_mrl(playlist[index_playlist])

gesture_library
"""
 data:
 aceleracion = [ax, ay, az]
 flexores = [indice, corazon, anular, meñique, pulgar]
"""
1. Pause ==> Gesto Stop de la Biblioteca de gestos estáticos
acel = [0, -1.0, 0]
flex = [0, 0, 0, 0, 0]
pause_gest = gesture.Gesture(acel, flex, 'pause')

2. Play ==> Gesto Tick de la Biblioteca de gestos estáticos
acel = [0, -1.0, 0]
flex = [0, 100, 100, 100, 0]
play_gest = gesture.Gesture(acel, flex, 'play')

3. Stop

4. Volume up ==> Gesto Up de la Biblioteca de gestos estáticos

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 86

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

acel = [1.0, 0, 0]
flex = [100, 100, 100, 100, 0]
up_gest = gesture.Gesture(acel, flex, 'up')

5. Volume down ==> Gesto Down de la Biblioteca de gestos estáticos
acel = [-1.0, 0, 0]
flex = [100, 100, 100, 100, 0]
down_gest = gesture.Gesture(acel, flex, 'down')

6. Mute==> Gesto Fist de la Biblioteca de gestos estáticos
acel = [0, -1.0, 0]
flex = [100, 100, 100, 100, 0]
mute_gest = gesture.Gesture(acel, flex, 'mute')

7. Next track ==> Gesto Right de la Biblioteca de gestos estáticos
acel = [0, 0, 1.0]
flex = [100, 100, 100, 100, 0]
next_gest = gesture.Gesture(acel, flex, 'next')

8. Prev track ==> Gesto Left de la Biblioteca de gestos estáticos
acel = [0, 0, -1.0]
flex = [100, 100, 100, 100, 0]
prev_gest = gesture.Gesture(acel, flex, 'prev')

9. Exit
acel = [0, 0, -1.0]
flex = [0, 100, 100, 0, 0]
exit_gest = gesture.Gesture(acel, flex, 'exit')

Machine of states
rep = grafo.Grafo('play') # rep ==> {play, pause, stop}
track = grafo.Grafo('none') # track ==> {none, next, prev}
volume = grafo.Grafo('none') # volume ==> {none, up, down, mute}

calibration wait
global variables
time.sleep(1)
str = ''
line = []
a_data = []
f_data = []
run = True

player.play()
volume_level = player.audio_get_volume()
print(volume_level)

while run:

 for c in arduino.read():
 # take character until '/n'
 a = chr(c)
 line.append(a)
 if c == 10: # '/n' == 10
 str1 = ''.join(line)
 print(str1)
 # processing ==> take acceleration and flexors data

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 87

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 ax_pos = str1.find('ax')
 ay_pos = str1.find('ay')
 az_pos = str1.find('az')
 gx_pos = str1.find('gx')
 f1_pos = str1.find('f0')
 f2_pos = str1.find('f1')
 f3_pos = str1.find('f2')
 f4_pos = str1.find('f3')
 f5_pos = str1.find('f4')
 # take data
 l = len(str1)
 if l>=65 and l<=85: # Filter for Erroneous Serial Lines
 if ax_pos != -1:
 ax_str = str1[ax_pos+2:ay_pos]
 ax_f = float(ax_str)
 a_data.insert(0, ax_f)
 else:
 a_data.insert(0, 0)
 if ay_pos != -1:
 ay_str = str1[ay_pos+2:az_pos]
 ay_f = float(ay_str)
 a_data.insert(1, ay_f)
 else:
 a_data.insert(1, 0)
 if az_pos != -1:
 az_str = str1[az_pos+2:gx_pos]
 az_f = float(az_str)
 a_data.insert(2, az_f)
 else:
 a_data.insert(2, 0)
 print(a_data)

 if f1_pos != -1:
 f1_str = str1[f1_pos + 2:f2_pos]
 f1_f = float(f1_str)
 f_data.insert(0, f1_f)
 else:
 f_data.insert(0, 0)
 if f2_pos != -1:
 f2_str = str1[f2_pos + 2:f3_pos]
 f2_f = float(f2_str)
 f_data.insert(1, f2_f)
 else:
 f_data.insert(1, 0)
 if f3_pos != -1:
 f3_str = str1[f3_pos + 2:f4_pos]
 f3_f = float(f3_str)
 f_data.insert(2, f3_f)
 else:
 f_data.insert(2, 0)
 if f4_pos != -1:
 f4_str = str1[f4_pos + 2:f5_pos]
 f4_f = float(f4_str)
 f_data.insert(3, f4_f)
 else:
 f_data.insert(3, 0)
 if f5_pos != -1:
 f5_str = str1[f5_pos + 2:len(str1)-1]
 f5_f = float(f5_str)

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 88

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 f_data.insert(4, f5_f)
 else:
 f_data.insert(4, 0)
 print(f_data)

 # take gesture
 gt = gesture.Gesture(a_data, f_data, 'taken')

 simil = gesture_comp(gt, pause_gest, 0.5)
 if simil == True:
 pause_str = pause_gest.get_gest()
 gt.set_gest(pause_str)

 simil = gesture_comp(gt, play_gest, 0.5)
 if simil == True:
 play_str = play_gest.get_gest()
 gt.set_gest(play_str)

 simil = gesture_comp(gt, up_gest, 0.5)
 if simil == True:
 up_str = up_gest.get_gest()
 gt.set_gest(up_str)

 simil = gesture_comp(gt, down_gest, 0.5)
 if simil == True:
 down_str = down_gest.get_gest()
 gt.set_gest(down_str)

 simil = gesture_comp(gt, mute_gest, 0.5)
 if simil == True:
 mute_str = mute_gest.get_gest()
 gt.set_gest(mute_str)

 simil = gesture_comp(gt, next_gest, 0.5)
 if simil == True:
 next_str = next_gest.get_gest()
 gt.set_gest(next_str)

 simil = gesture_comp(gt, prev_gest, 0.5)
 if simil == True:
 prev_str = prev_gest.get_gest()
 gt.set_gest(prev_str)

 simil = gesture_comp(gt, exit_gest, 0.5)
 if simil == True:
 exit_str = prev_gest.get_gest()
 gt.set_gest(exit_str)

 # execute machine of states of media reproduction

 # rep
 if rep.get_state() == 'play':
 if gt.get_gest() == 'pause':
 rep.set_state('pause')
 player.pause()
 elif gt.get_gest() == 'stop':
 rep.set_state('stop')
 player.stop()

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 89

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 else:
 rep.set_state('play')
 elif rep.get_state() == 'pause':
 if gt.get_gest() == 'play':
 rep.set_state('play')
 player.play()
 elif gt.get_gest() == 'stop':
 rep.set_state('stop')
 player.stop()
 else:
 rep.set_state('pause')
 elif rep.get_state() == 'stop':
 if gt.get_gest() == 'play':
 rep.set_state('play')
 player.play()
 else:
 rep.set_state('stop')

 # track
 if track.get_state() == 'none':
 if gt.get_gest() == 'next':
 track.set_state('next')
 index_playlist += 1
 if index_playlist > (len_playlist-1):
 index_playlist = (len_playlist-1)
 player.stop()
 player.set_mrl(playlist[index_playlist])
 player.play()
 #next track
 elif gt.get_gest() == 'prev':
 track.set_state('prev')
 track.set_state('prev')
 index_playlist -= 1
 if index_playlist < 0:
 index_playlist = 0
 player.stop()
 player.set_mrl(playlist[index_playlist])
 player.play()
 #rev track
 elif track.get_state() == 'next':
 if gt.get_gest() == 'prev':
 track.set_state('prev')
 index_playlist -= 1
 if index_playlist < 0:
 index_playlist = 0
 player.stop()
 player.set_mrl(playlist[index_playlist])
 player.play()

 elif gt.get_gest() != 'next':
 track.set_state('none')
 elif track.get_state() == 'prev':
 if gt.get_gest() == 'next':
 track.set_state('next')
 index_playlist += 1
 if index_playlist > (len_playlist - 1):
 index_playlist = (len_playlist - 1)
 player.stop()
 player.set_mrl(playlist[index_playlist])

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 90

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 player.play()

 elif gt.get_gest() != 'prev':
 track.set_state('none')

 # volume
 if volume.get_state() == 'none':
 if gt.get_gest() == 'up':
 volume.set_state('up')
 volume_level = volume_level + 1
 if volume_level > max_level:
 volume_level = max_level
 player.audio_set_volume(volume_level)

 elif gt.get_gest() == 'down':
 volume.set_state('down')
 volume_level = volume_level - 1
 if volume_level < min_level:
 volume_level = min_level
 player.audio_set_volume(volume_level)

 elif gt.get_gest() == 'mute':
 volume.set_state('mute')
 player.audio_set_volume(0)
 elif volume.get_state() == 'up':
 volume_level = volume_level + 1
 if volume_level > max_level:
 volume_level = max_level
 player.audio_set_volume(volume_level)
 if gt.get_gest() == 'down':
 volume.set_state('down')
 volume_level = volume_level - 1
 if volume_level < min_level:
 volume_level = min_level
 player.audio_set_volume(volume_level)

 elif gt.get_gest() == 'mute':
 volume.set_state('mute')
 player.audio_set_volume(0)
 elif gt.get_gest() != 'up':
 volume.set_state('none')
 elif volume.get_state() == 'down':
 volume_level = volume_level - 1
 if volume_level < min_level:
 volume_level = min_level
 player.audio_set_volume(volume_level)
 if gt.get_gest() == 'up':
 volume.set_state('up')
 volume_level = volume_level + 1
 if volume_level > max_level:
 volume_level = max_level
 player.audio_set_volume(volume_level)

 elif gt.get_gest() == 'mute':
 volume.set_state('mute')
 player.audio_set_volume(0)
 elif gt.get_gest() != 'down':
 volume.set_state('none')
 elif volume.get_state() == 'mute':

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 91

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 if gt.get_gest() == 'up':
 volume.set_state('up')
 volume_level = volume_level + 1
 if volume_level > max_level:
 volume_level = max_level
 player.audio_set_volume(volume_level)
 elif gt.get_gest() == 'down':
 volume.set_state('down')
 volume_level = volume_level - 1
 if volume_level < min_level:
 volume_level = min_level
 player.audio_set_volume(volume_level)
 elif gt.get_gest() != 'mute':
 volume.set_state('none')
 player.audio_set_volume(volume_level)

 print(rep.get_state())
 print(track.get_state())
 print(volume.get_state())
 print(volume_level)
 if gt.get_gest() == 'exit':
 run = False

 # clean variables
 str1 = ''
 line = []
 a_data = []
 f_data = []

2. Class Grafo.py

""" Machine of States Class"""

class Grafo:

 def __init__(self, str_state):
 self.state = str_state

 # get state
 def get_state(self):
 return self.state

 # change state
 def set_state(self, str_state):
 self.state = str_state

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 92

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

3. Class Gesture.py

""" Hand Gesture Class"""

class Gesture:

 # Gesture Class Constructor
 def __init__(self, a_data, f_data, str_gesture):
 self.strgest = str_gesture
 self.ax = a_data[0]
 self.ay = a_data[1]
 self.az = a_data[2]
 self.f1 = f_data[0]
 self.f2 = f_data[1]
 self.f3 = f_data[2]
 self.f4 = f_data[3]
 self.f5 = f_data[4]
 # Get string
 def get_gest(self):
 return self.strgest

 # Set string
 def set_gest(self, str_gest):
 self.strgest = str_gest

 # Get acceleration data
 def get_a_list(self):
 adata = []
 adata.insert(0, self.ax)
 adata.insert(1, self.ay)
 adata.insert(2, self.az)
 return adata

 # Get flexions data
 def get_f_list(self):
 fdata = []
 fdata.insert(0, self.f1)
 fdata.insert(1, self.f2)
 fdata.insert(2, self.f3)
 fdata.insert(3, self.f4)
 fdata.insert(4, self.f5)
 return fdata

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 93

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

4. Vlc.py

Debido a la gran extensión que supone el script vlc.py se presentan un conjunto de enlaces
que muestran en un repositorio el código fuente del núcleo de VLC Media y la documentación
relacionada para su uso.

Código:

https://pypi.org/project/python-vlc/

https://wiki.videolan.org/python_bindings

(Los dos enlaces son válidos. Únicamente se diferencian en que el primero direcciona a la web
de Python y el otro a un wiki de VLC)

Documentación:

https://www.olivieraubert.net/vlc/python-ctypes/doc/

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 94

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

ANEXO II. DATASHEETS

En este anexo se presentan extractos de datasheets que han tenido gran importancia durante
las fases de diseño electrónico del proyecto.

 MPU-9250.

o Introducción

 Extracto 1. Features

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 95

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

o Características técnicas del acelerómetro.

Extracto 2. Specifications Accel.

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 96

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

o Características técnicas del giróscopo.

Extracto 3. Specifications Gyro.

o Registros para configuración del acelerómetro.

Extracto 4. Accel. Config.

o Registros para configuración del giróscopo.

Extracto 5. Gyro. Config.

o Registros de mediciones del acelerómetro.

Extracto 6. Accel. Outs

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 97

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

o Registros de mediciones del giróscopo.

Extracto 7. Gyro. Outs

 Flex Sensors.

o Características eléctricas y mecánicas.

Extracto 8. Flex Specifications

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 98

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

o Ejemplo de etapa de instrumentación propuesto por el fabricante.

 Extracto 9. Instru. Flex

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 99

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 Plataforma Arduino UNO r3

o Características básicas

Extracto 10. Arduino Features

Al ser la plataforma Arduino UNO r3 de Hardware libre, expresamos que en la página web del
fabricante se encuentra el Esquemático y Layout de la plataforma.

 A continuación, presentamos el enlace que redirecciona a estos planos:

https://store.arduino.cc/arduino-uno-rev3

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 100

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

 Atmega 328p

o Características básicas.

Extracto 11. uC Specifications

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 101

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

o Pin-out

Extracto 12. Pinout

o Diagrama de Bloques

Extracto 13. Block Diagram

GRADO EN INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA 102

DISEÑO DE SISTEMA ELECTRÓNICO PARA HMI BASADO EN RECONOCIMIENTO DE GESTOS
MANUALES

