V.I. ANEXO 1: DATOS DE CARACTERIZACIÓN DE TODOS LOS COMPUESTOS PREPARADOS.

N₃P₃(OC₆H₄{OCH₂Ph}-4)₆; G0-(OBn)₆^[1]

C₇₈H₆₆O₁₂N₃P₃ (1330.29 g/mol). IR (ATR): 1215 (m) 1177, 1164 (s, br) v(PN); 1102 (m) v(P-OC); 949 cm⁻¹ (s) δ (POC). ³¹P{¹H} RMN (400 MHz, CDCl₃) δ 10.07 ppm (s, 3P; anillo N₃P₃). ³¹P{¹H} RMN (400 MHz, (CD₃)₂CO) δ 10.10 ppm (s, 3P; anillo N₃P₃). ¹H RMN (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H; C₆H₅), 6.84 ("d") y 6.76 ("d") (Sistema de espin AA'BB', ³J(H,H)= 9 Hz, 4H; OC₆H₄O), 4.96 ppm (s, 2H; OCH₂). ¹H RMN (400 MHz, (CD₃)₂CO) δ 7.45 – 7.42 (m, 2H; C₆H₅), 7.36 – 7.30 (m, 3H; C₆H₅), 6.88 y 6.86 (Sistema de espin AA'BB', ³J(H,H)= 9.8 Hz, 4H; OC₆H₄O), 5.07 ppm (s, 2H; OCH₂).

N₃P₃(OC₆H₄{OH}-4)₆; G0-(OH)₆ ^[1]

C₃₆H₃₀O₁₂N₃P₃ (789.56 g/mol). IR (ATR): 3252 (m, br) v(OH); 1221 (m), 1164 (s, br) v(PN); 1096 (s) v(P-OC); 947 cm⁻¹ (s) δ (POC). ³¹P{¹H} RMN (400 MHz, (CD₃)₂CO) δ 10.34 (s, 3P; anillo N₃P₃). ¹H RMN (400 MHz, (CD₃)₂CO) δ 8.31 (s, 1H; OC₆H₄OH), 6.74 y 6.71 (m, sistema de espin AA'BB', ³J(H,H) = 9.8 Hz, 4H; OC₆H₄OH)

Ácido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (1): [2]

C₁₂H₁₄O₄ (222.24 g/mol). IR (ATR): 1693 (vs) cm⁻¹ (C=O). ¹H RMN (400 MHz, (CD₃)₂CO) δ 7.44 – 7.42 (m, 2H; C₆H₅), 7.35 – 7.31 (m, 3H; C₆H₅), 5.52 (s, 1H; *CH*Ph), 4.57 (d, ²*J*(*H*,*H*) = 11.4 Hz, 2H; OCH₂), 3.74 (d, ²*J*(*H*,*H*) = 11.4 Hz, 2H; OCH₂), 1.05 ppm (s, 3H; CH₃). ¹H RMN (400 MHz, (CDCl₃) δ 7.48 – 7.46 (m, 2H; C₆H₅), δ 7.38 – 7.31 (m, 3H; C₆H₅), 5.49 (s, 1H; *CH*Ph), 4.63 (d, ²*J*(*H*,*H*) = 11.6 Hz, 2H; OCH₂), 3.70 (d, *J* = 11.6 Hz, 2H; OCH₂), 1.11 ppm (s, 3H; CH₃).

^[1] J. Barberá, M. Bardají, J. Jiménez, A. Laguna, M.P. Martínez, L. Oriol, J.L. Serrano, I. Zaragozano, Columnar Mesomorphic Organizations in Cyclotriphosphazenes. J. Am. Chem. Soc., **2005**, 127, 8994 - 9002.

^[2] H. Ihre, O.L. Padilla De Jesús, J.M.J. Fréchet, Fast and Convenient Divergent Synthesis of Aliphatic Ester Dendrimers by Anhydride Coupling. J. Am. Chem. Soc,. 2001, 123, 5908-5917.

Anhídrido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (2): [2]

 $C_{24}H_{26}O_7$ (426.46 g/mol). IR (ATR): 1814 (s), 1745 (m) cm⁻¹ (C=O). ¹H RMN (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 2H; C₆H₅), 7.35 – 7.31 (m, 3H; C₆H₅), 5.47 (s, 1H; *CH*Ph), 4.66 (d, ²*J*(*H*,*H*) = 11.6 Hz, 2H; OCH₂), 3.69 (d, ²*J*(*H*,*H*) = 11.6 Hz, 2H; OCH₂), 1.12 ppm (s, 3H; CH₃).

Dendrímero G1–(O₂Bn)₆^[3]

 $C_{108}H_{102}O_{30}N_3P_3$ (2014.89 g/mol). IR (ATR): 1752 (s) v(CO); 1211 (m), 1158 (vs, br) v(PN); 1087 (vs, br) v(P-OC); 949 cm⁻¹ (vs, br) δ (POC). ³¹P{¹H} RMN (400 MHz, (CD₃)₂CO) δ 10.24 ppm (s, 3P; anillo N₃P₃)·¹H RMN (400 MHz, (CD₃)₂CO) δ 7.47 – 7.44 (m, 2H; C₆H₅), 7.36 – 7.32 (m, 3H; C₆H₅), 7.11 ("d") y 7.02 ("d") (Sistema de espin AA'BB', ³J(H,H) = 9.0 Hz, 4H; OC₆H₄-O), 5.57 (s, 1H; CHPh), 4.65 ("d") y 3.81 ("d") (Sistema de espin AA'BB', ²J(H,H) = 11.4 Hz, 4H; OCH₂), 1.16 ppm (s, 3H; CH₃).

 $C_{66}H_{78}O_{30}N_3P_3$ (1486.25 g/mol). IR (ATR): 3368 (m, br) v(OH); 1749 (s), 1740 (s) v(CO); 1205 (m), 1163 (s), 1147 (vs) v(PN); 1096 (vs) v(P-OC); 956 cm⁻¹ (vs) δ (POC). ³¹P{¹H} RMN (400 MHz, (CD₃)₂CO) δ 10.44 ppm (s, 3P; anillo N₃P₃). ¹H RMN (400 MHz, (CD₃)₂CO) δ 7.08 ("d") y 6.91 ("d") (Sistema de espin AA'BB', ³J(H,H) = 8.8 Hz, 4H; OC₆H₄-O), 4.16 ("t", ³J(H,H) = 4.6 Hz, 2H; OH), 3.91 y 3.79 (sistema de espin ABX, ²J(H,H) = 10.4 Hz, ³J(H,H) = 4.6 Hz, 4H; OCH₂), 1.33 ppm (s, 3H; CH₃).

^[3] J. Jiménez, A. Laguna, E. Gascón, J.A. Sanz, J.L. Serrano, J. Barberá, L. Oriol, New Liquid Crystalline Materials Base don Two Generations of Dendronised Cyclophosphazenes. *Chem. Eur. J*, **2012**, *18*, 16801-16814.

$[N_{3}P_{3}(OC_{6}H_{4}\{OC(O)CH_{2}CH_{2}CCH\}-4)_{6}] [G0-(alquino)_{6}]$

Análisis elemental calculado (%) para $C_{66}H_{54}O_{18}N_3P_3$ (1270.07 g/mol): H 4.3%, C 62.4%, N 3.3%; encontrado: H 4.6%, C 62.0%, N 3.1%. IR (ATR): 2120 (w) v(C=C); 1750 (s) v(CO); 1205 (m), 1154 (vs), 1134 (vs) v(PN); 1092 (s) v(P-OC); 961 cm⁻¹ (s) δ (POC). ³¹P{¹H} RMN (400 MHz, (CD₃)₂CO): δ 10.19 ppm (s, 3P; anillo N₃P₃). ³¹P{¹H} RMN (400 MHz, CDCl₃): δ 9.18 ppm (s, 3P; anillo N₃P₃). ¹H NMR(400 MHz, (CD₃)₂CO) δ 7.08 ("d"), 7.00 ("d") (Sistema de espin AA'BB', ³J(H,H) = 8 Hz, 4H; OC₆H₄O), 2.85 (t, ³J(H,H) = 7.2 Hz, 2H; C(O)CH₂CH₂), 2.62 (td, ³J(H,H) = 7.2 Hz, ⁴J(H,H) = 2.8 Hz, 2H; CH₂CH₂C=CH), 2.46 (t, ⁴J(H,H) = 2.8 Hz, 1H; CH₂C=CH). ¹H RMN (400 MHz, (CDCl₃) δ 6.95 y 6.91 (m, Sistema de espin AA'BB', ³J(H,H) = 9.2 Hz, 4H; OC₆H₄O), 2.81 (t, ³J(H,H) = 7.6 Hz, 2H; C(O)CH₂CH₂), 2.63 (td, ³J(H,H) = 7.6 Hz, ⁴J(H,H) = 2.8 Hz, 2H; CH₂CH₂C=CH), 2.06 (t, ⁴J(H,H) = 2.8 Hz, 1H; CH₂C=CH), 2.06 (t, ⁴J(H,H) = 2.8 Hz, 1H; CH₂C=CH). MALDI-TOF (dithranol): m/z (%) = 1270.2 (100) [M+H]⁺.

Dendrímero G1-(alquino)₁₂

Análisis elemental calculado (%) para $C_{126}H_{126}O_{42}N_3P_3$ (2447.27 g/mol): H 5.2%, C 61.8%, N 1.7%; encontrado: H 5.4%, C 61.3%, N 1.8% . IR (ATR): 2119 (vw) v(C=C); 1736 (s) v(CO); 1205 (m), 1152 (vs) v(PN); 1109 (vs) v(P-OC); 951 cm⁻¹ (s) δ (POC). ³¹P{¹H} RMN (CDCl₃) δ = 8.75 ppm (s, 3P; anillo N₃P₃). ³¹P{¹H} RMN (CD₃)₂CO) δ = 9.96 ppm (s, 3P; anillo N₃P₃). ¹H RMN (CDCl₃) δ = 6.97 (m, sistema AA'BB', 4H; OC₆H₄O), 4.43 y 4.38 (m, sistema de espin AA'BB', ²J(H,H) = 11.2 Hz, 4H; C-CH₂OC(O)), 2.57 ("t", ³J(H,H) = 6.8 Hz, 4H; C(O)CH₂CH₂), 2.48 ("td", ³J(H,H) = 6.8 Hz, ⁴J(H,H) = 2.4 Hz, 4H; CH₂C=CH), 1.97 ppm (t, ⁴J(H,H) = 2.4 Hz , 2H; CH₂C=CH), 1.42 ppm (s, 3H; C(CH₃). ¹H RMN (CD₃)₂CO) δ = 7.14 ("d") y 7.03 ("d") (Sistema AA'BB', ³J(H,H) = 9.0 Hz, 4H; OC₆H₄O), 4.45 (m, sistema AA'BB', 4H; C-CH₂OC(O)), 2.62 ("t", ³J(H,H)=7.0Hz, 4H); C(O)CH₂CH₂), 2.48 ("td", ³J(H,H)=7.0Hz, ⁴J(H,H)=2.8Hz, 4H; CH₂C=CH), 2.36 ppm (t, ⁴J(H,H)=2.8Hz, 2H; CH₂C=CH), 1.48 ppm (s, 3H; C(CH₃)). MALDI-TOF (dithranol): m/z (%) = 2447.4 (100) [M]⁺.

Fosfazeno G0-(hidrofobo)6

Análisis elemental calculado (%) para $C_{204}H_{222}O_{24}N_{39}P_3$ (3697.12 g/mol): H 6.0%, C 66.3%, N 14.8%. IR (ATR): 2225 (w) v(C=N), 1752 (m) v(C=O), 1599 (m) 1582 (m) v(C=C + N=N) 1167 (vs) 1136 (vs) v(PN); 1052 (vs) v(P-OC); 954 cm⁻¹ (m) δ (POC). ³¹P{¹H} RMN (CDCl₃) δ = 9.15 ppm (s, 3P; anillo N₃P₃). ¹H RMN (CDCl₃) δ = 7.92 ("d", ³J(*H*,*H*) = 8.4 Hz, 4H; OC₆*H*₄N=NC₆*H*₄CN), 7.77 ("d", ³J(*H*,*H*) = 8.4 Hz, 2H; OC₆*H*₄N=NC₆*H*₄CN), 7.41 (s, 1H; C=C(*H*)N), 6.99 ("d", ³J(*H*,*H*) = 8.4 Hz, 2H; OC₆*H*₄N=NC₆*H*₄CN), 6.90 (m, 4H; OC₆*H*₄O), 4.29 (t, ³J(*H*,*H*) = 6 Hz, 2H; N₃C*H*₂CH₂) 4.03 (t, ³J(*H*,*H*) = 6 Hz, 2H; CH₂C*H*₂O), 3.13 (m, 2H; CH₂C*H*₂C=C), 2.99 (m, 2H; C(O)C*H*₂), 1.86 (m, 2H; C*H*₂), 1.80 (m, 2H; C*H*₂), 1.45 (m, 2H; C*H*₂), 1.30 (m, 10H; C*H*₂). MALDI-TOF (dithranol): m/z (%) = 3758.1 (100) [M+Cu]⁺, 3733.3 (50) [M+K]⁺, 3716.8 (50) [M+Na]⁺, 3695.2 (17) [M]⁺ y picos derivados de la pérdida sucesiva de grupos C(O)CH₂CH₂CC(H)N₃(CH₂)₁₀OC₆H₄NNC₆H₄CN.

Azida hidrófoba

 $C_{23}H_{28}ON_6 (404.51 g/mol).IR (ATR): 2219 (w) v(C=N), 2087 (vs) v(N_3), 1600 (s) 1582 (s) v(C=C+N=N). ¹H RMN (CDCl_3) <math>\delta = 7.94$ ("d", ³J(*H*,*H*) = 9.2 Hz, 4H; OC₆*H*₄N=NC₆*H*₄CN), 7.79 ("d", ³J(*H*,*H*) = 9.2 Hz, 2H; OC₆*H*₄N=NC₆*H*₄CN), 7.79 ("d", ³J(*H*,*H*) = 9.2 Hz, 2H; OC₆*H*₄N=NC₆*H*₄CN), 4.06 (t, ³J(*H*,*H*) = 6.4 Hz, 2H; CH₂CH₂O), 3.26 (t, ³J(*H*,*H*) = 7.0 Hz ,2H; N₃CH₂CH₂), 1.83 (m, 2H; CH₂), 1.60 (m, 2H; CH₂), 1.49 (m, 2H; CH₂), 1.33 (m, 10H; CH₂). ¹H RMN (CD₃)₂CO $\delta = 8.04 - 7.97$ (m, 6H; OC₆*H*₄N=NC₆*H*₄CN), 7.15 ("d", ³J(*H*,*H*) = 7.0 Hz ,2H; N₃CH₂CH₂), 1.84 (m, 2H; CH₂CH₄CN), 4.15 (t, ³J(*H*,*H*) = 6.6 Hz, 2H; CH₂CH₂O), 3.33 (t, ³J(*H*,*H*) = 7.0 Hz ,2H; N₃CH₂CH₂), 1.84 (m, 2H; CH₂), 1.60 (m, 2H; CH₂), 1.52 (m, 2H; CH₂), 1.36 (m, 10H; CH₂).

Fosfazeno G0-(hidrófilo)6

Análisis elemental calculado (%) para una azida-PEG monodispersa con n=26: $C_{396}H_{720}O_{180}N_{21}P_3$ (8748.91 g/mol): H 8.3%, C 54.4%, N 3.4%. IR (ATR): 1756 (m) v(C=O), 1174 (m) 1140 (s) v(PN); 1060 (vs) v(P-OC); 953 cm⁻¹ (m) δ (POC). ³¹P RMN (CD₃)₂CO δ = 10.52-10.17 (m). ¹H RMN (CD₃)₂CO δ = 7.86(s, 1H; C=C(H)N), 7.13-6.92 (m, 4H; OC₆H₄O), 4.55 (t, ³J(H,H) = 6.0 Hz ,2H; N₃CH₂CH₂), 3.89 (t, ³J(H,H) = 6.0 Hz ,2H; OCH₂CH₂), 3.58 (m, 104H, OCH₂), 3.29 (s, 3H, OCH₃), 3.12(t, ³J(H,H) = 7.0 Hz, 2H; CH₂C=C), 3.02(t, ³J(H,H) = 7.0 Hz, 2H; C(O)CH₂). MALDI-TOF (dithranol): m/z (%) = 8102 [**G0-(hidrófilo)₆** + Na, n= 147]; m/z= 6915 [**G0-(hidrófilo)₆** + Na, n= 120]; m/z= 5721 [**G0-(hidrófilo)₅(alquino)** + Na, n= 94].

Azida hidrófila N3-PEG1000

Para una azida-PEG₁₀₀₀(1) monodispersa con n=26: $C_{55}H_{111}N_3O_{23}$ (1246.47 g/mol). MALDI-TOF (ditranol): Mn=1269.1, Mw=1280.6, Mw/Mn=1.01. Para una azida-PEG₁₀₀₀(2) monodispersa con n=24: $C_{51}H_{103}N_3O_{25}$ (1157.68 g/mol). MALDI-TOF (ditranol): Mn=1148.9, Mw=1157.3, Mw/Mn=1.01.

Datos de azida-PEG₁₀₀₀(1): IR (ATR): 2098 (m) $v(N_3)$, 1103 (vs) 1059 (s), 946 (s,br), 841 cm⁻¹ (m). ¹H RMN (CD₃)₂CO δ = 3.69 (m, 2H; OCH₂), 3.58 (m, 100H; OCH₂), 3.39 (m, 2H; N₃CH₂), 3.29 (s, 3H; OCH₃). ¹H RMN (CDCl₃) δ = 3.64 (m, 98H; OCH₂), 3.54 (m, 2H; OCH₂), 3.38 (m, 2H; N₃CH₂), 3.37 (s, 3H; OCH₃).

Fosfazeno G0-(hidrófobo)3(hidrófilo)3

Análisis elemental calculado (%) para una azida-PEG monodisperse con n=26: $C_{300}H_{471}O_{102}N_{30}P_3$ (6223.01 g/mol): H 4.1%, C 75.2%, N 3.5%. IR (ATR): 2228 (w) v(C=N), 1754 (m) v(C=O), 1600 (w) 1583 (w) v(C=C + N=N) 1167 (s) 1133 (vs) v(PN); 1042 (m) v(P-OC); 952 cm⁻¹ (m) δ (POC). ³¹P{¹H} RMN (400 MHz, CDCl₃): δ 9.45-9.10 (m, 3P; anillo N₃P₃).). ¹H RMN (CDCl₃) δ = 7.80 (br, 4H; OC₆H₄N=NC₆H₄CN), 7.66 ("d", ³J(H,H) = 8 Hz, 2H; OC₆H₄N=NC₆H₄CN), 7.52 (s, 1H; C=C(H)N), 7.37 (s, 1H; C=C(H)N), 6.88 ("d", ³J(H,H) = 8 Hz, 2H; OC₆H₄N=NC₆H₄CN), 6.80 (m, 8H; OC₆H₄O), 4.39 (br, 2H; N₃CH₂CH₂), 4.18 (t, ³J(H,H) = 7.2 Hz 2H; N₃CH₂CH₂), 3.92 (br, 2H; CH₂CH₂O), 3.73 (br, 2H; CH₂CH₂O), 3.52 (m, 62H, OCH₂), 3.25 (s, 3H, OCH₃), 3.03 (br, 4H; CH₂CH₂C=C), 2.87 (br, 4H; C(O)CH₂), 1.75 (m, 2H; CH₂), 1.68 (m, 2H; CH₂), 1.35 (m, 2H; CH₂), 1.18 (m, 10H; CH₂).

MALDI-TOF (dithranol) para **G0-(hidrófobo)₃(hidrófilo)₃-1**: m/z (%)= 5096 [**G0-(hidrófobo)₄(hidrófilo)₂** + Na, n= 51]; m/z (%) = 4380 [**G0-(hidrófobo)₅(hidrófilo)₁** + Na, n= 28].

MALDI-TOF (dithranol) para **G0-(hidrófobo)**₃(hidrófilo)₃-2: m/z= 5893 [**G0-(hidrófobo)**₃(hidrófilo)₃ + Na, n = 76; m/z (%) = 5225 [**G0-(hidrófobo)**₄(hidrófilo)₂ + Na, n = 54].

250.0

500

V.II. ANEXO 2: ESPECTROS DE LOS COMPUESTOS PREPARADOS

45.

40.0

4000.0

3000

7-61.sp

1500 cm-1

2000

1000

Espectro RMN de ${}^{31}P{}^{1}H$ de N₃P₃(OC₆H₄{OCH₂Ph}-4)₆; **G0-(OBn)**₆ en (CD₃)₂CO

Espectro RMN de ¹H de N₃P₃(OC₆H₄{OCH₂Ph}-4)₆ ; GO-(OBn)₆ en (CD₃)₂CO

DATOS DEL DENDRÍMERO N₃P₃(OC₆H₄{OH}-4)₆; G0-(OH)₆

Espectro RMN de ${}^{31}P{}^{1}H$ de N₃P₃(OC₆H₄{OH}-4)₆; **G0-(OH)**₆ en (CD₃)₂CO

Espectro RMN de ¹H de N₃P₃(OC₆H₄{OH}-4)₆; **G0-(OH)**₆ en (CD₃)₂CO

Espectro IR de ácido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (1)

Espectro RMN de ¹H de ácido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (1) en CDCl₃

Espectro IR de anhídrido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (2)

Espectro RMN de ¹H de anhídrido 2-fenil-5-metil-1,3-dioxan-5-carboxílico (2) en CDCl₃

DATOS DEL DENDRÍMERO G1-(O2Bn)6

Espectro IR de G1-(O₂Bn)₆

Espectro RMN de $^{31}\text{P}\{^1\text{H}\}$ de $\textbf{G1-(O_2Bn)_6}$ en (CD_3)_2CO

Espectro RMN de ${}^{31}P{}^{1}H$ de **G1-(OH)**₁₂ en (CD₃)₂CO

Espectro RMN de ¹H de **G1-(OH)**₁₂ en (CD₃)₂CO

Espectro IR de GO-(alquino)₆

Espectro RMN de $^{31}P\{^{1}H\}$ de $\textbf{G0-(alquino)}_{6}$ en (CD_3)_2CO

Espectro RMN de ¹H de **G0-(alquino)**₆ en (CD₃)₂CO

Espectro RMN de ¹H de **G0-(alquino)**₆ en (CDCl₃)

Espectro de masas MALDI+ de G0-(alquino)₆

Espectro de masas MALDI+ de **G0-(alquino)**₆ Distribución isotópica experimental y teórica del ion [M+H]⁺

Espectro RMN de ${}^{31}P{}^{1}H$ de **G1-(alquino)**₁₂ en CDCl₃

Espectro RMN de ¹H de **G1-(alquino)₁₂** en CDCl₃

Espectro RMN de ${}^{31}P{}^{1}H$ de **G1-(alquino)**₁₂ en (CD₃)₂CO

Espectro RMN de ¹H de G1-(alquino)₁₂ en (CD₃)₂CO

Espectro de masas MALDI+ de G1-(alquino)12

Espectro de masas MALDI+ de **G1-(alquino)**₁₂. Distribución isotópica experimental y teórica del ion [M+H]⁺

Espectro IR de GO-(hidrófobo)₆

Espectro RMN de ${}^{31}P{}^{1}H$ de **G0-(hidrófobo)**₆ en (CDCl₃)

Espectro RMN de ¹H de **G0-(hidrófobo)**₆ en (CDCl₃)

Espectro de masas MALDI+ de G0-(hidrófobo)₆

Espectro de masas MALDI+ de **G0-(hidrófobo)**₆. Distribución isotópica experimental y teórica del ion [M]⁺.

Espectro RMN de ¹H de azida hidrofoba en (CD₃)₂CO

Espectro IR de GO-(hidrófilo)

Espectro de masas MALDI+ de GO-(hidrófilo)₆

Espectro RMN de ¹H de **azida hidrófila** en $(CD_3)_2CO$

Espectro RMN de ¹H de **azida hidrófila** en CDCl₃

Espectro RMN de ${}^{31}P{}^{1}H$ de **G0-(hidrófobo)₃(hidrófilo)₃-1** en CDCl₃

Espectro de masas MALDI+ de G0-(hidrófobo)₃(hidrófilo)₃-1

Espectro RMN de ³¹P{¹H} de GO-(hidrófobo)₆ + N₃-PEG₁₀₀₀ (método 2) en MeOD

Espectro RMN de ¹H de GO-(hidrófobo)₆ + N₃-PEG₁₀₀₀ (método 2) en MeOD

Espectro IR de GO-(hidrófobo)₃(hidrófilo)₃-2

Espectro RMN de ³¹P{¹H} de **G0-(hidrófobo)₃(hidrófilo) ₃-2** en CDCl₃

Espectro RMN de ¹H de GO-(hidrófobo)₃(hidrófilo)₃-2 en CDCl₃

Espectro de masas MALDI+ de G0-(hidrófobo)₃(hidrófilo) ₃-2