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Prologo

La teoria de la Relatividad General puede verse como un reflejo mas de la unién siempre presente
entre fisica y matematicas, quizd en el momento de ser formulada, a un nivel mucho més profundo e
inesperado del que se estaba acostumbrado.

Hoy entendemos que las matemadticas, paralelamente a sus propios objetivos, pueden formar un
sustento riguroso sobre el que desarrollar marcos tedricos, y mediante técnicas formales, nos conducen
a resultados con claras interpretaciones fisicas. En cuanto a la relacion entre ambas disciplinas, si bien
podria ser un misterio ahondar en su por qué, lo que es indudable es que a lo largo de Ila historia
ha ido siendo comprobada a través de los hechos. Hoy en dia se encuentran mds unidas que nunca.
Hay numerosos campos de investigacion en los que se requiere de ambas perspectivas, tanto en fisica,
como en matemdticas, en cuyas dreas de investigacion encuentra muchas veces problemas planteados
por la fisica, que han impulsado enormemente la atencién y el desarrollo de éstas, como pueden ser la
geometria de variedades, el andlisis funcional, las ecuaciones diferenciales, entre otras.

La presente memoria pretende ser un reflejo de esa unién, y de como con estudio y dedicacion,
podemos comunicarnos y hacer que ambas disciplinas se aporten ain mads la una a la otra.
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Abstract

The following work consists in a description of the basic mathematical structures used in General
Relativity. The study of semi-Riemannians manifolds and tensorial calculus, and some formal concepts
like geodesic curve and curvature. This mathematical structure lead us to describe the Einstein equa-
tions.

Smooth manifolds are introduce by the need to find out non eucliean geometry, and tensor algebra
to describe objects which do not depend on a coordinate system. It is also necessary, as we will see, to
introduce an extra structure over the manifold (metric tensor) which allows us to have a unique diffe-
rential operator (covariant derivative) that extends the usual derivative.

This work begins with an introductory chapter (Chapter 1) to describe the physical motivation to in-
troduce such concrete mathematical objects. Afterwards, it starts with a more general approach, closer
to the way in which mathematical objects are introduced in the degree, to a more a concrete one which
will allow us to describe the Einstein equations.

Specifically, Chapter 2 deals with smooth manifolds and how we can describe tensor fields and dif-
ferential operators over them. Chapter 3 takes a more specific type of smooth manifolds that are used
in General Relativity, and how we have a privileged differential operador there (Levi-Civita covariant
derivative). In particular, it allows us to define geodesic curves and curvature. Finally, Chapter 4 tries to
be more specific and use all the mathematical structures given before. We will describe Einstein equa-
tions, their meaning, and a specific solution (Schwarzschild solution) which have a clear interpretation
that we will briefly comment.
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Capitulo 1

Introduccion

Iniciamos con este capitulo introductorio para conocer qué razonamientos llevan a buscar objetos
matematicos tan concretos como los que iremos tratando a lo largo de la memoria, ademds de introducir
algunas definiciones que usaremos mas adelante.

1.1. Relatividad Especial y el espacio de Minkowski

Definicion 1.1. Todo sistema de referencia en el cual una particula sobre la que no actia fuerza alguna
se mueve a velocidad constante se dice que es un sistema de referencia inercial.

Postulados de Relatividad Especial (1905)

» Postulado primero: No es posible disefiar un experimento que establezca si uno se halla en reposo
o en movimiento uniforme. Las leyes que rigen los fenomenos fisicos son idénticas en todos los
sistemas de referencia inerciales.

» Postulado segundo: La velocidad de la luz es independiente de la velocidad de la fuente luminosa.

Consideremos los puntos (eventos) en R" como tuplas de n — 1 coordenadas espaciales, y una tem-
poral, de momento solo como espacio vectorial. Vamos a asignarle una primera estructura geométrica
coherente con los postulados de Relatividad Especial.

Pensemos en el caso n = 2. Fijado un sistema de referencia inercial &, cada evento p queda descrito
de manera inequivoca por dos coordenadas p = (z,x). Sea &’ otro sistemas de referencia inercial, mo-
viéndose a velocidad constante v con respecto a &, y en el que p viene descrito por unas coordenadas

p = (¢',x). Para simplificar, supondremos que en ambos origenes especiales coinciden en 7 =0, = 0.
De los postulados de de Relatividad Especial se deduce que (¢',x") y (z,x) estdn relacionados mediante

(ct)? —x* = (ct')? —x72, (1.1)
cantidad escalar constante que solo depende de p y no de sus coordenadas, y que denotamos s> (p).

Espacio tiempo de Minkowski La relacién dada por la ecuacion 1.1 nos permite pensar en el escalar
s%(p) como!

s*(p) = (ct)* = x* = (ct,x)Mij(ct,x)" = (p,p) = |p|*, (1.2)

siendo 1n;; = diag(—1, 1) matriz de una forma bilineal simétrica (no definida positiva) en una base en la
que (ct,x) sean las coordenadas de p. Esto nos da una estructura geométrica.

IEs abuso de notacién denotarlo s?(p), podria ser negativo.



2 Capitulo 1. Introduccion

Definicién 1.2. El par (.#,7;;), donde .# = R* espacio vectorial y 7; ; es una forma bilineal simé-
trica de signatura (—1,1,1,1), se conoce como espacio-tiempo de Minkoswki. Y a la expresion que lo
caracteriza ds*> = ¥'n; J-dxidxj se le dice elemento de linea del espacio de Minkowski.

De la misma manera que para (R", (,)g») son los cambios dados por matrices ortogonales las que
preservan la norma, para el espacio de Minkowski (M, ;) los cambios que preservan s son las trans-
formaciones de Lorentz, que para n = 2, vienen dadas por

VX
, xX—t , 2

X = —, t =, (1.3)
V2 V2
V& a2

conv <c.

Clasificacién de los vectores del espacio de Minkowski Sea (., n;;) el espacio de Minkowski de
dimensién n = 4. Segtin el signo de s%(p), tenemos la siguiente clasificacion

» Si(p,p) > 00 p=0, p se dice vector espacial.
» Si (p,p) <0, p se dice vector temporal.

» Si(p,p) =0y p#0,vsedice vector luz.

Nota. Asi como para el espacio euclideo usual de dimensién 2 las transformaciones ortogonales trans-
forman las coordenadas de los puntos a lo largo de circunferencias de centro el origen, para el espacio de
Minkowski 2 dimensional, las transformaciones de Lorentz 1.3 transforman las coordenadas de los pun-
tos a lo largo de hipérbolas de ejes x =¢,x = —t (vectores de luz). Asi, estas también dejan fijo el origen
y transforman coordenadas de vectores espaciales en coordenadas de vectores espaciales, andlogamente
para vectores temporales y vectores de luz.

1.2. Inconsistencia de la teoria gravitacional clasica con la Relatividad
Especial

En la teoria clasica de Newton, la fuerza gravitacional f sobre una particula viene dada por

-

f=mgg=—-mcV®, (1.4)

donde mg es la masa gravitacional de la particula y g es el campo gravitatorio producido por el potencial
gravitatorio ®. Y a su vez,

V2® =4nGp, (1.5)

donde p es la densidad de materia y G la constante gravitacional. Esta ecuacién no tiene una dependencia
explicita con el tiempo. Veamos que esta ecuacién no puede ser consistente con la Relatividad Especial.

En efecto, si ¢ = (0,0) es un evento en el origen, y p es un evento con coordenadas (¢,x) fuera
del cono de luz?, podremos encontrar un sistema de referencia en el que seguirfa siendo ¢ = (0,0), y
p=(¢',x), cont’ <0,y para el observador del nuevo sistema de referencia, el suceso p ocurriria en un
instante de tiempo anterior a 0. Esto imposibilita una relacién ’causa-efecto’ entre ambos sucesos, pues
todos sistemas de referencia inerciales son igualmente validos. La incompatibilidad de ambas teoria
viene de que en la teoria gravitacional cldsica nada imposibilita una relacién de ’causa-efecto’ entre el
evento g y de otro evento p fuera del cono de luz.

2El subconjunto de .# formado por todos los vectores de luz se denomina conos de luz.
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1.3. Una nueva teoria gravitacional consistente con la Relatividad Espe-
cial

La propuesta de la Relatividad General viene de que la gravedad no debe ser considerada como una
fuerza en el sentido cldsico (es decir, como un vector actuando de manera instantdnea en el espacio),
sino como una manifestacion de la curvatura del espacio-tiempo, siendo esta curvatura provocada por
la presencia de materia.

Principio de equivalencia: En un laboratorio que cae libremente y sin rotacion ocupando una re-
gion pequeiia del espacio, las leyes de la fisica son las de la relatividad especial.

Principio de covarianza general: Las leyes de la fisica deben tomar la misma forma en todos los
sistemas de coordenadas.

Asf, al dejar de interpretar la gravedad como una fuerza, la ecuacién del movimiento de una particula
moviéndose tan solo bajo efectos gravitatorios deberia ser

2c

donde ¢’ es el campo vectorial tangente a la trayectoria que describe la particula, y Z es algiin tipo de
derivacidén que, por el principio de covarianza, debe hacer que la ecuacion 1.6 se verifique en cualquier
sistema de referencia. Es decir, la trayectoria que sigue una particula en estas condiciones deberia la de
una geodésica en nuestro nuevo modelo de espacio-tiempo con curvatura.

Ademads, de acuerdo con el principio de equivalencia, en todo punto de nuestro objeto geométrico,
deberfamos poder definir un sistema de coordenadas x’, de forma que en un entorno de p tengamos un
elemento de linea

ds* =Y mijdx‘dx’, (1.7)

y en p, cumpliéndose la igualdad.

El modelo matemadtico que se va a ajustar a estas necesidades se sitiia en el marco de la geometria
semi-Riemanniana, que consiste esencialmente en el estudio de objetos geométricos ’suaves’ (varieda-
des diferenciables) a los que asociamos una métrica y en los que podremos definir un tipo de derivacién
que extiende a la derivacién usual y través la de cual podemos definir de manera univoca curvas geodé-
sicas y curvatura.






Capitulo 2

Geometria de variedades diferenciables.
Calculo tensorial

Empezamos describiendo formalmente la estructura geométrica base sobre la que definiremos todo
lo demads. Las definiciones y resultados que se presentan en este capitulo son de cardcter mas general, y
con frecuencia aparecen en textos con un contenido matematico muy riguroso.

2.1. Variedades diferenciables

Un primer requisito es buscar una estructura geométrica que permita describir a sus elementos a
través de coordenadas, y que los cambios entre ellas sean del tipo lo mis general posible. Esto encaja
perfectamente con la descripcion formal de las variedades diferenciables.

Definicién 2.1. Sea M un conjunto no vacfo,

» Un sistema de coordenadas (o carta) x para M es una aplicacién x : U C M — R" que es inyec-
tiva y su imagen es un abierto de R".

= Un atlas diferenciable n-dimensional o7 para M en p es una coleccion de sistemas de coordenadas
{Xa} verificando que Uxq(Uy) = M y que VXq,Xg € &/ tal que si Uy NUpg # 0, entonces la
aplicacioén entre abiertos de R” (cambio de cartas), x;l oXxg, es diferenciable.

= Se dice que M es una variedad diferenciable n-dimensional o simplemente una variedad cuando
se le puede asociar un atlas diferenciable n-dimensional .7, y se entiende que dos atlas .7/ y &7’
dotan de la misma estructura diferencial a M cuando todos los posibles cambios de cartas entre
ellos sean diferenciables, es decir, si x € .7, x' € .27/, entonces xox'~! es diferenciable.

Nota (Topologia de la variedad). Se comprueba que la coleccién de abiertos coordenados {Uy} forma
una base para una topologia sobre M, lo que le da una estructura topolégica (topologia de la variedad),
y los sistemas de coordenadas ahora pasan a ser homeomorfismos sobre su imagen. Normalmente se les
suele pedir condiciones adicionales a las variedades, en términos de su topologia. '

Definicion 2.2. Sean f: M — M’ una aplicacién entre variedades, p € M, x € &/ un sistema coordena-
do para M en p,y € </’ un sistema coordenado para M’ en f(p). Podemos inducir una nueva aplicacién
F :=yo fox ! entre abiertos de R"” y R", y decimos que f es diferenciable(difeomorfismo) en p cuando
F sea diferenciable (difeomorfismo) en x(p), y que f es diferenciable (difeomorfismo) cuando lo sea en
todo punto p € Dom(f)>.

Lo habitual es que la topologia de la variedad deba ser Hausdorff, y paracompacta. La definicién de estas propiedades
requiere de varios conceptos previos de topologia general que no son necesarios para el contenido de este trabajo. Pueden
consultarse en cualquier libro de texto relacionado, por ejemplo [5].

2Se puede comprobar que la definicién de diferenciabilidad es independiente del sistema de coordenadas.
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Definicion 2.3. Denotamos F (M) :={f: M — R | f diferenciable}, y si f € F(M), se le dice funcion
real.

Utilizaremos x/ : M — R 1la aplicacién que proyecta la coordenada j-ésima dada por x, que es
trivialmente diferenciable.

Proposicién 2.1. El conjunto T,M := {v: F(M) — R | v es R-lineal y verifica la regla de Leibnitz}
tiene estructura de espacio vectorial. Se le dice espacio tangente a M en p y a sus elementos se les dice
vectores tangentes.

Vectores tangentes coordenados Dado x = (x1 ,...,X") un sistema de coordenadas para M en p, si

denotamos u!,...,u" alas coordenadas usuales de R" y f € F(M), consideramos los vectores tangentes

coordenados relativos a x, % , F(M)—R> f+— %(p) = 3](;;;1 (x(p)),Vj=1,...,n. Denotamos

dj = %. Es claro que di|,,,..., du[, € T,M.

Teorema 2.1. Sea M una variedad n-dimensional y x un sistema coordenado para M en p. Los vec-
tores tangentes coordenados, 0 | P O p (relativos a x) forman una base para TyM, en particular
dim7,M = n. Ademds, v =Y, v(x') di| ,, para todo v € T,M.

2.2, Campos tensoriales

Resulta natural en este contexto, querer definir de manera suave una asignacién de un vector en
cada espacio tangente. Ademds, por ser este un espacio vectorial, también podremos definir aplicaciones
suaves sobre los espacios duales. Construiremos objetos mds a partir de estos, que serdn de gran utilidad.

Definicion 2.4. Sea M una variedad diferenciable

= Un campo vectorial (sobre M) es una aplicacion X : M — TM > p — X (p) := X,, verificando
que VpeM, X, € T,M, y siendo TM := UT,M.

» Una uno-forma 6 (sobre M) es una aplicacion 6 : M — T*M > p — 0(p) := 6,, verificando
queVpeM, 6, c Tp*M, siendo® T*M := UT;M.

Lema 2.1. Los campos vectoriales X € X(M) pueden verse como derivaciones sobre F (M) entendiendo
que X(f)(p) := X, (f). Para las uno-formas, podemos ver que actiian sobre campos vectoriales enten-
diendo que 0(X)(p) := 6,(X,).

Definicion 2.5. Sea M una variedad diferenciable

= Se dice que X es diferenciable cuando X (f) € F(M) para todo f € F(M).Denotamos X(M) :=
{X :M — TM campo vectorial | X diferenciable}.

» Se dice que 0 es diferenciable cuando 6(X) es diferenciable, para todo X € X(M). Denotamos
X*(M):={0:M — (TM)* uno-forma | 0 diferenciable}.

Nota (Tensores sobre K-médulos). Si K es un anillo y V.V, ...,V son K-mddulos, denotamos V| x
o X Vyi=A{(v1,...,v5) | vi € V;} al producto directo de V,,...,.Vs, y V*:={f:V — K| f K — lineal }
al modulo dual de V. Y se dice que una aplicaciéon A : V| X ... x Vi — K es K-multilineal cuando es
K-lineal en cada componente. Si r,s son enteros no negativos, un fensor de tipo (r,s) sobre V es una
aplicacion K-multilineal A : (V*)" x VS — K4

3Se les dice TM fibrado tangente, T*M fibrado cotangente.
4Es simple comprobacién ver que V; X ... x Vg, V¥ y T son K-mddulos con las operaciones usuales.
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Con las operaciones usuales, F(M) = K y X(M) =V tienen estructura algebraica de anillo y
K-médulo’, respectivamente. Esto es lo que permite introducir el dlgebra tensorial sobre una varie-
dad M. Primero globalmente.

Definicion 2.6. Sea M una variedad diferenciable

» Un campo tensorial sobre M es un tensor de tipo (r,s) sobre X (M),

A XH(M) x XM}  — F(M)
(6',...,0".X1,....X;) — A(0',..,0".X1,...,X;)

» Denotamos T;7M := { A: X*(M)" x X(M)* — F (M) | A campo tensorial de tipo(r,s) sobre M }.
A los tensores de tipo (0,s) se les dice covariantes, y a los tensores de tipo (r,0) se les dice
contravariantes.

Nota. Se puede ver sin mucha dificultad que podemos hacer las identificaciones
M = F(M), TiM = X(M), M = X* (M), 2.1)

luego la nocién de campo tensorial generaliza a la de funcién real, campo vectorial y uno-forma.

Tensores punto a punto en la variedad y componentes tensoriales

Tal y como lo hemos presentado, el concepto de campo tensorial es global, sobre toda la variedad.
Para nuestros propdsitos, nos interesa particularizar estos campos para estudiarlos punto por punto. Los
siguientes resultados son el punto de unién entre la mayoria de textos puramente matematicos sobre
geometria diferencial, y otros que tienen como objetivo principal describir la Relatividad General. Su
demostracién puede verse en [7].

Un campo tensorial sobre M, A € T/ M, puede entenderse como una asignacion suave que para cada
p € M, nos da un tensor de tipo (r,s) sobre® T,M. Esto nos permite particularizar un objeto global como
lo es A, al estudio punto por punto en la variedad.

Teorema 2.2. Sean A € T; (M), p € M. La aplicacion
Ap (M) (M) — R
(o' ..o X1,y Xs) — A(O'(p),....,0"(p), Xi(p),...,Xs(P))

es un tensor de tipo (r,s) sobre T,M. Siendo 6',...,0" € X*(M) y X1,...,Xs € X(M) cualesquiera tales
que 0'(p) = &'y X;(p) = 2,V 1 < i<n1< j<s.

Definicién 2.7. Sea x = (x!,...,x") un sistema de coordenadas para M en un entorno Dom(x), y A €
T!(M). Las componentes tensoriales de A relativas a X son el conjunto de aplicaciones diferenciales
reales definidas sobre Dom(x),

Al = A(dx", ..., dx",0j,,...,d;,) : Dom(x) C M — R, 1 <y, jx <n.

Definicion 2.8. SiA € T/M,B € TST/M . Se llama producto tensorial de A con B al tensor A®@ B € Tsfsfl
dado por ’

A®B(O',...07" Xy, .. Xory) i =A(0",...,07.X1,... X)B(O" .. 07 Xei1, . Xiy).

SEsto es, que X (M) tiene estructura lineal utilizando a los elementos de F (M) como ’escalares’.
5Con nuestras definiciones, ahora V = M, K=R
7No es conmutativo en general.
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Teorema 2.3. Seax = (x',....x") un sistema de coordenadas sobre Dom(x) C M. Si A € T, (M) yAlj'I’_'_'_'v’l;r
son sus componentes tensoriales relativas a x, entonces

A= Y Al ®..®0, @dy @dx. (2.2)
1<ig,jx<n
Es decir, dado un sistemas de coordenadas, podemos identificar un tensor con sus componentes:
A= A’].'l”‘.‘_'_’f;-x. Para campos vectoriales y uno-formas, X =Y X (x')d; = X', 0 =¥ 0(09;)dx' = 6;.

La descripcién tensorial en componentes es la habitualmente empleada en textos de Relatividad
General. Por el teorema 2.3, podemos identificarlas con el campo tensorial, fijada una carta, pero mas
aln, podemos comprobar si un conjunto de funciones son las componentes de un campo tensorial con
el siguiente resultado.

Teorema 2.4. Sean x, x’ dos sistemas de coordenadas, y Tj’]’;: € F(M), definidas sobre Dom(x) N

Dom(x") # 0. Si definimos T := ZT;:;:&,I ®...® d;, @dx/t @ dx*, se tiene que T € T/ (M) si y solo si

ox' 9x'2  9x' Ixlv Jxh oxls 4k

10y i
Tt — i _ ... _ . 23
Jiseensds Z dxki gxke  Qxkr dxliv Ixliz  Qxlds hiels @3)
1<, jk<n
De aqui que una igualdad entre tensores del mismo tipo, en términos de sus componentes,
Ail-,m»ir _Bi17-~-7ir (2 4)

Jleds T T dlesds?
se verifica en un sistema de coordenadas si y solo si se verifica en cualquier otro. Esto justifica en parte la
introduccién del dlgebra tensorial en Relatividad General. Los fenémenos fisicos descritos en términos
de sus ecuaciones deben ser ciertos en cualquier sistema de referencia.

Convenio de sumacion de Einstein Fijado un sistema de coordenadas, trabajar con componentes ten-
soriales nos permite agilizar la notacion y plantear la igualdad entre tensores en términos de ecuaciones
en vez de hacerlo en términos de aplicaciones. Con este propdsito, utilizaremos el convenio de suma-
cion de Einstein, que consiste en omitir el simbolo sumatorio cuando haya un subindice y un superindice
repetidos, por ejemplo ¥, a;b' = a;b', ¥, ¥ jaibjc'd’ = aibjc'd’, etc.

- ll’r, se define su contraccién en los indice (i, j) como el tensor de
componentes

Ai.l.‘.m...i,

Jree..cjs?

donde m sustituye a los indice (i, j). Se puede probar que verifica la regla de transformacién de tensores,
y por lo tanto es un tensor de tipo (r— 1,5 —1).

2.3. Calculo tensorial

En términos de querer plantear ecuaciones diferenciales tensoriales, nos interesa poder definir sobre
ellos algtn tipo de derivacién que sea consistente con una estructura geométrica mds general que la
euclidea usual. Es decir, queremos un nuevo tipo de derivacion que extienda a la derivada usual y que
nos devuelva un tensor después de aplicarla. Tomemos por ejemplo un campo vectorial X = Xd;. Dado
que sus componentes tensoriales X’ se transforman bajo cambios de coordenadas como X' = %Xj ,
tenemos que

oX'" X' dxP 9X/ %' oxP i 55

ox'k  dx/ dx'k dxP + dxPox/ dx'k™ @)
Es decir, lo que obtenemos al aplicar una derivada parcial usual a un tensor, no nos resulta un tensor en
general.




Estructuras matematicas en Relatividad General - Juan Carlos Castro Rivera 9

Geométricamente lo que estd pasando es que cuando derivamos en R”, implicitamente estamos
comparando vectores en el mismo espacio tangente, lo que no es cierto en una variedad, cuyo espacio
tangente cambia en cada punto. Lo que necesitamos es una nueva herramienta matemética que nos per-
mita comparar vectores de distintos espacios tangentes.

Definicion 2.10. Se define un operador V derivada covariante sobre M como una aplicacion

V: T/(M) — T (M)

s+1
Tal...a, é Ta|‘..a,
by...bg Ciby..bg

verificando:
» Linealidad: SiA,B€ T (M),y a,B € R,
Vel i + BBy ) = aVeAy ) + BV By (2.6)
= Regla de Leibnitz: Si A € T/ (M),B € T} (M),

VelAGy By ) = VelAy 1By, Ty AL VB 2.7)

» Conmutatividad con la contraccién: Si A € T} (M),

Ve(Ap ) = (VAN 2.8)

...m...b

= Consistencia con la derivacién de campos vectoriales sobre funciones diferenciables: Si X € X (M)
y feFM),
X(f) =XVe(f). 2.9)

= Torsién nula®: Si f € F(M),
V.Vuof =V, V,.f. (2.10)

Proposicion 2.2. Sea V un operador derivada covariante sobre M. Existen funciones diferenciables
(simbolos de Christoffel) f}k completamente determinadas por V, tales que

ayaz...ap

T Adiiz..qr __ b1by...bs T4 gmay..ar | 79 yaymas...ar | .
VCAb.bz...bS - 0x< + l—‘zicAhlbz...jS + ch bib;...bg + (2'1 1)

T4 4a1a2...ap—1m "N Aaiaz..ar T sa1a;...4, R ayay...a
ot chAblbz...bS - Fbchmbz...bs - szcAblm...bs - rzr:vCAble...bS,lm'
Para el caso particular de campos vectoriales, y uno-formas
=i 0X) = Y, i
Jj_ J vk L J T v

VX = e +I. X", V.Y = Y LY. (2.12)

Vemos entonces que la derivada covariante consiste en la derivada parcial usual mas un factor de
correccién dado por los simbolos de Christoffel. Observar que para el caso particular en que estos se
anulan, la derivada covariante se reduce a la derivada parcial usual.

8Se puede ver que la magnitud T, que resulta de fTa"bV(, f=V.V,f—V,Vaf en un tensor antisimétrico en a y b (tensor
de torsion). En algunas teorfas mds generales, en la definicién se de derivada covariante, se omite esta condicién.
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Transporte paralelo

Definicion 2.11. Sea / C R un intervalo abierto conexo. Una curva sobre M es una aplicacién ¢ : 1 — M
diferenciable. Un campo tensorial (contravariante) a lo largo de ¢ como una aplicaciéon A — X¥(c(1)),
donde X* un tensor de tipo (1,0). Denotamos X(c) = {X*(c(1))| X*campo tensorial a lo largo de c}.

Proposicion 2.3. Sea c¢(2) una curva sobre M con dominio / C R. Dada una conexién V, la aplicacién
derivada covariante a lo largo de ¢ asociada a V, D : X(c) — X(c), dada por
DVk  avk cdx'
— = —+V/ I
ax _ax TUan
verifica condiciones de linealidad y la regla de Leibnitz. Es decir, si V¥, W* € X(c) y f € F(I), entonces
df

(V) =7V +f

2.13)

D, . . _DVE DwWk D
A VAW ="t @

Definicion 2.12. Con la misma notacion

DVk

TR (2.14)

DYk . . .
= Al campo % se le dice derivada covariante de V* a lo largo de c.

; k : DVt _
= Un campo vectorial a lo largo de ¢, V* € X(c) se dice que es paralelo cuando =5 = 0,1 € I.

Proposicién 2.4. Sea c una curva sobre M, y V, un vector tangente a M en c(to), es decir V,, € T, \M.
Entonces existe un tnico campo vectorial V¥ € X(c) paralelo, tal que V*(z,)d = V,,. Se dice que V¥ es
el transporte paralelo de V, alo largo de c.

Demostracion. Se basa esencialmente en los teoremas de existencia y unicidad para problemas de valor
inicial en ecuaciones diferenciales. Ver [5]. O

Nota. A pesar de que la derivada covariante resuelva el problema de encontrar algtn tipo de opera-
dor diferenciable que nos devuelva un tensor y que extienda a la derivada parcial usual, no resuelve
el problema de la unicidad. Dadas dos derivadas covariantes 2 ,Vg definidas sobre M, tendriamos, en
principio, dos formas de derivar tensores, y en particular dos maneras de transportar paralelamente un
vector a lo largo de una curva ya que las ecuaciones diferenciales que se plantean siempre son relativas
a V1, V,. Esto motiva a buscar una conexién privilegiada en algiin sentido, quiz4 afiadiendo mas condi-
ciones a la definicién. De nuevo, la geometria de variedades va a resolver por completo este problema
afiadiendo una estructura mds sobre M, una métrica. Esto nos introduce en el siguiente capitulo.



Capitulo 3

Variedades semi-Riemannianas

La estructura de variedad diferenciable no es suficiente para definir una tinica extensién de la deriva-
da parcial. Afiadir una estructura més sobre M resuelve el problema. Por otra parte, esta estructura extra
resulta natural en un espacio geométrico y es una generalizaciéon de lo que intrinsecamente nos permi-
te, en el espacio euclideo usual, tener definidas nociones precisas de lo que significa medir longitudes,
calcular dreas, medir dngulos, etc.

3.1. Tensores métricos sobre variedades

Definicion 3.1. Sea M una variedad diferenciable. Un fensor métrico g es un campo tensorial de tipo
(0,2), simétrico y de indice' constante y no degenerado. Una variedad semi-Riemanniana n-dimensional
es un par (M,g), donde M es una variedad de dimensién n y g es un tensor métrico sobre M. Para el
casoenquev=1yn>2,(M,g) se dice variedad de Lorentz.

Por el Teorema (2.2), para cada p € M, el tensor métrico g induce una aplicacién
gp  TyM xTyM — R > g,(vi,v) :=g(Vi,Va), (3.1)

para cualesquiera vy, v, y V1, V2 € X(M) tales que Vi (p) = v, Va(p) = va, que es una forma bilineal si-
métrica sobre el espacio vectorial 7,M (Es decir, g, es un tensor de tipo (0,2) sobre 7,M). La condicién
de indice constante indica que su forma cuadritica es del mismo tipo para todo p € M.

Nota. Se suele escribir g(v,w) := (v,w), y g(v,v) = |[v|?, por abuso de notacién, en analogfa al producto
escalar usual, sin perder de vista que estas cantidades escalares pueden ser positivas, negativas o nulas.

Componentes tensoriales del tensor métrico Por definicién g;; = g(d;,d;), y por la descomposicién
en términos de las componentes tensoriales, para todo X,Y € X(M),

g(X,Y) = gijdx' @dx! (X,Y) = gijdx' (X)dx' (Y) = gijX (') Y (¥') = gi;X"Y . (3.2)

Ademads, g;; = g;; por la simetria de g, y para cada p € M; y por ser no degenerado, podemos definir la
matriz g/ (p) := (g:j(p))~'. Vamos a usar esta descripcién de g en términos de sus componentes para
definir lo que es un elemento de linea.

Elemento de linea y ecuacion de la métrica Dado un sistema de coordenadas x, y p € Dom(x) C M,
para todo v € T,M, denotamos ¢, a su forma cuadritica asociada. Dado que

& (v0) = 54y (v +) ~ 4y v) — (), (33)

1Bl indice de una forma bilineal simétrica es la dimensién del mayor subespacio para el cual es definido negativo.

11
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tenemos que g queda determinada por su forma cuadrética. Se le dice elemento de linea y se denota
g = ds® por el siguiente motivo. Observar que si tenemos dos puntos p, p’ € Dom(x) dos puntos cercanos
con coordenadas p = (x',--- ,x"),p’ = (x' + Ax',--- | Ax"), entonces, para el campo A = A'9; € X(M)
tenemos que

Ap1* = (A, 8p) = gij(P)A' (P)A (p)- (34)

De aqui se define la ecuacion de la métrica como

ds* = gijdxidxj. (3.5)

Subir y bajar indices con la métrica Se puede comprobar que las magnitudes
Xi=gaX",  Y'=g"V, (3.6)

verifican la regla de transformacién tensorial, por lo tanto, son tensores con indices covariantes, con-
travariantes obtenidos a partir indices contravariantes, covariantes, respectivamente; lo que hace que
usualmente se llame a esta operacion ’subir y bajar indices con la métrica’. Ademads, la subir y después
bajar un indice te devuelve el mismo tensor, y viceversa, es decir, son operaciones inversas. Este hecho
se respalda en una propiedad caracteristica de variedades semi-Riemannianas.

Proposicion 3.1. Sea M una variedad semi-Riemanniana. La aplicacién * : X(M) — X*(M) >V —
V¥(X) = (V,X),VX € X(M), es un F(M)-isomorfismo lineal. En particular, en una variedad semi-
Riemanniana podemos identificar campos vectoriales con uno-formas.

Para el caso particular de un tensor de tipo (1,3), se puede conseguir su forma, equivalente, total-
mente covariante a partir de la métrica,

Tiji = &im T jja- (3.7

3.2. Derivada covariante de Levi-Civita

En el capitulo anterior, hemos introducido la derivada covariante como un operador diferenciable
sobre campos vectoriales que extiende a las derivadas parciales usuales, sin embargo, dados dos cone-
xiones distintas, tenemos dos maneras de operar diferenciablemente. Esto no serd un problema, si (M, g)
es una variedad semi-Riemanniana, hay una derivada covariante privilegiada. Este es un importante re-
sultado de geometria diferencial. Puede verse una demostracién, por ejemplo, en [8].

Teorema 3.1. Sea (M,g) una variedad semi-Riemanniana. Existe un tinico operador derivada cova-
riante que verifica Vig;j—o (compatibilidad con la métrica).

Definicion 3.2. A la conexion V descrita por el Teorema 3.1 se le dice derivada covariante de Levi-
Civita de la variedad semi-Riemanniana (M, g).

Proposicion 3.2. Sea (M, g) una variedad semi-Riemanniana. Los simbolos de Christoffel asociados a
la derivada covariante de Levi-Civita son:
km agjm d8gim agij

1
28 ox oxi  oxm |’ (3-8)

k

Nota (Simetrfa de los simbolos de Christoffel). La simetria de la derivada covariante jugard un pa-

pel clave de aqui en adelante. De momento ya podemos decir que en una variedad semi-Riemanniana

(n+1)

tenemos >— simbolos de Christoffel independientes en lugar de n.
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3.3. Geodésicas en variedades semi-Riemannianas

En geometria euclidea, entendemos curvas geodésicas como aquellas cuyo vector tangente perma-
nece constante, o como aquellas que extremizan? la distancia entres dos puntos. Vamos a generalizar
estas caracteristicas. Empezamos con un resultado que desvela en parte la condicién de compatibilidad
con la métrica. Su demostracion puede verse en [5].

Lema 3.1. Sea (M,g) una variedad semi-Riemanniana y V su conexién asociada. Si ¢ es una curva
sobre M, y V¥, Wk € X(c), entonces

DV*

d
<d2,’

dA

k « DWF
W) +(V7, h ). (3.9)

— (VK Why =
Definicion 3.3. Sea x un sistema de coordenadas. Dado una curva ¢ sobre M, definimos vector velocidad
como el campo vectorial (verifica la regla de transformacién) ¢’ € X(c) dado por?

d) =229 (3.10)

Nota. De la Proposicion 2.3, tenemos una derivada covariante a lo largo de una curva univocamente
determinada por g, y dada por*
k k
Dv® av Ly dxi

k
dr  dA d?LF G-11)

Definicion 3.4. Con las mismas notaciones

k . . .
= Al campo % se le dice derivada covariante de V a lo largo de c.

= Se dice que V¥ € X(c) es paralelo cuando 2 d/l =

= Para el caso particular en que V¥ = ¢’ se dice que Dd‘; = " es la aceleracion de la c.

= Y una curva c es una geodésica afin cuando su vector velocidad o campo vectorial tangente es
paralelo, es decir, cuando ¢’ =0

La condicién (formal) de imponer que la derivada covariante del vector tangente sea nula es la que
buscabamos. Ademds, la derivada covariante a lo largo de una curva nos permite definir lo que significa
transportar 'paralelamente’ un vector a lo largo de una curva.

Nota. Solo con un operador derivada covariante V definido sobre M, se pueden definir curvas geodé-
sicas, pero como ya hemos comentado, siempre serfan relativas a V y perderiamos una interpretacion
fisica clara.

Transporte paralelo y nocién de curvatura (adelanto) En una variedad semi-Riemanniana (M, g),
el resultado de hacer transporte paralelo de un vector V,, € T,M a lo largo de una curva cerrada, no es
el mismo vector en general. (En el espacio euclideo usual si). Veremos que esta caracteristica de las
variedades semi-Riemannianas nos servird para dar una definicién acerca de cuando podemos decir que
un espacio (M, g) es curvo o plano.

2En variedad Riemannianas indice v = 0, extremizar se traduce en minimizar.

3Por abuso de notacién, usaremos indistintamente segiin convenga ¢ = ¢(4) = (x1 (A),...,x"(A)) =x'(A) = x'.

DV _ dVi _y, dx ok
dL T dA i

4Para campos tensoriales covariantes, se define de manera andloga, resultando



14 Capitulo 3. Variedades semi-Riemannianas

Calculo de geodésicas Para calcular de manera explicita qué condiciones debe cumplir una curva ¢
para que sea geodésica a partir de su definicién, por la ecuacién 3.11 tenemos que

D  dc. d**  dx'dx
= (= I} 3.12
ailan) = aaz T anant G-12)
Y de aqui, que si x = (x',...,x") un sistema de coordenadas sobre Dom(x). Una curva c es geodésica si
y solo si sus funciones coordenadas x* o y satisfacen las n ecuaciones diferenciales

d*(xoy) | d(xoy)d(xioy)
dA>2 UdA di

Para determinar la naturaleza del parametro A, multiplicando por 2g,p ” y mediante manipulaciones

P k
algebraicas, se tiene que’ 2gl~p% % + ai”f %% %% =0, de donde una integral primera es

= 0, 1<k<n. (3.13)

dx' dxP
S0 an di
Por lo tanto, si & es otro pardmetro (pardmetro afin), debe de ser

K(cte). (3.14)

oa=al+b, (a#0). (3.15)

Nota. En el siguiente capitulo daremos una clasificacion, de interpretaciones fisicas, para las geodésicas
segtin el valor de constante K.

Propiedad extremizante de las geodésicas La segunda caracteristica que poseen las geodésicas en
el espacio euclideo usual es la de ser curvas que extremizan la distancia entre dos puntos. Aunque
aparentemente es un propiedad distinta de la que hemos comentado, en variedad semi-Riemannianas
son equivalentes.

Sean p,q € M. Para simplificar la situacién, supongamos que ambos puntos estdn en un mismo
Dom(x), y sea c(s) una curva parametrizada por el arco, con s € (a—€,b+¢€) y tal que c(a) = p,c(b) =
g. Una variacion de ¢ es una aplicacion diferenciable

H: (—¢é&)x(a—eb+te) — M
(I,S) — H,(S),

tal que para todo t € (—¢,+¢€), Hy(a) = c(a),H;(b) = c(b), y también Hy(A) = c(A). Es decir, podemos
entender la imagen de H como el conjunto de curvas que, fijando p = c¢(a),q = c¢(b), varian c diferencia-
blemente en un entorno (es el andlogo diferencial de una homotopia topoldgica). Para cadat € (—¢€,€)
fijo, tenemos definida la longitud de la curva de p a g,

long(H;) /\/aHf ,aaalt(l»dl. (3.16)

d(lr}ng

Y se dice que la curva c extremiza la distancia si ‘s o = 0. Se puede probar, ver [4], que ¢
es geodésica si y solo si extremiza la longitud®. En partlcular, ambos generalizaciones del concepto de
geodésica en el espacio euclideo usual son equivalentes en variedades semi-Riemannianas.

3.4. Tensores de curvatura

Ya tenemos una estructura matematica que nos va a permitir tener un concepto preciso de curvatura.

SLos detalles pueden verse en [1].
Veremos en el Capitulo 4 que el signo de (‘m’ (A), %(l)) permanece fijo a lo largo de toda la geodésica, con lo que la
integral 3.16 estd bien definida simplemente camblando el signo si el argumento de la raiz es negativo, y la variacién H puede

definirse en un entorno de ¢t = 0 donde el signo no cambie.
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Tensor de curvatura de Riemann

Definicion 3.5. Se define el tensor de curvatura de Riemann, como el tensor de componentes

: 0 0 . . .
ljkl:ﬁ Zz—ﬁrﬁﬁrrﬁm ki~ Dl 1} (3.17)

Nota. A pesar de que los simbolos de Christoffel no verifican la regla de transformacién tensorial, si lo
verifica el tensor de curvatura de Riemann. Se puede comprobar de manera directa.

El tensor de curvatura de Riemann es de tipo (1,3), por lo que en principio habrd n* componentes
independientes (Para n = 4, tendriamos 256 componentes). Sin embargo, se presentan algunas propie-
dades de simetria, que como veremos enseguida, ademds de reducir el nimero de componentes, son
utiles para otros propdsitos. Para hacer mds visibles estas propiedades, podemos tratar con su versién
completamente covariante utilizando la férmula 3.7,

Riju = gimRijyq- (3.18)
Proposicion 3.3. El tensor de curvatura de Riemann verifica las siguientes propiedades,

= Simetria y antisimetria

Rijx = Ruijs Rfjk = —Ri-,-k, Rijit = —Rijik- (3.19)

= Identidades de Bianchi
Rijii + R kit + Riiji = 0, ViR jin +V jRiin + ViRijn = 0. (3.20)
Demostracion. Comprobacién directa utilizando la expresién 3.17. O

Corolario 3.1. Se puede comprobar, a través de estas identidades, que el nimero de componentes

20,2
independientes del tensor de curvatura de Riemann se reduce a % (para n = 4, seran 20), lo que

reduce enormemente los cdlculos. Un argumento detallado valiéndose de estas propiedades puede verse
en [3].

Interpretaciones geométricas del tensor de curvatura de Riemann

Vamos a darle sentido a por qué un objeto tan concreto como lo es R;kl recibe nos permite definir de
manera razonable un concepto de curvatura para (M, g).

Definicion 3.6. Una variedad semi-Riemanniana (M, g) se dice que es plana cuando las componentes
del tensor de Riemann R’/.kl =0.

Teorema 3.2. Son equivalentes:

1) El resultado de transportar paralelamente un vector a lo largo de toda curva cerrada es el mismo
vector.

2) Las componentes del tensor de Riemman son nulas: R;'( = 0.
3) Las derivadas covariantes conmutan.

4) Existe un sistema de coordenadas en el cual el tensor métrico es constante.
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Demostracion. En términos de componentes, desarrollando se llega mediante operaciones algebraicas
y propiedades de simetria a

V5, (Vo X?) = V3 (Ve X7) =R} X, (3.21)

de donde se puede observar que las derivadas covariantes conmutan si y solo si las componentes del
tensor de Riemann son nulas. En geometria euclidea, esto se traduce a que las derivadas parciales con-
mutan, pues para g constante, los simbolos de Christoffel son nulos y de aqui que la derivada covariante
se reduzca a la derivada parcial, y las componentes del tensor de Riemann también por la ecuacién 3.17.

Por otro lado, como ya hemos comentado, el resultado de hacer transporte paralelo de un vector
Vi, € T,M alo largo de una curva cerrada, no es el mismo vector en general. Veamos como el tensor de
curvatura de Riemann estd intimamente relacionado con esta cuestion.

Sea p € M, y x tal que p € Dom(x). Por tratarse de un abierto, siempre podemos tomar un camino
cerrado x'(1), A € (—¢€,¢), lo suficientemente pequefio como para que esté totalmente contenido en
Dom(x), y tal que x'(0) = p = x(A1), para algin A; en el dominio de la curva. Ademds, la regién
de M donde estd contenida la imagen de la curva estd identificada con R” mediante la carta, luego
podemos trasladar los calculos que hagamos a R” y suponer que x'(0) = 0 = x’(4; ). Tomemos un vector
V, € T,M, por la Proposicién 2.4, existird un (tinico) campo vectorial (que lo podemos tomar en su
version covariante por la Proposicion 3.1) Vi € X(c) tal que % = 0alo largo de c. Asi, por la férmula
2.13 obtenemos la siguiente ecuacién diferencial de primer orden

dVi(x(A)) dx’/(A)
T_rfj(x(z)) 7 Vi(x(1)). (3.22)

Asi, dada la curva x'(A) y un vector inicial V, = V;(0), tenemos determinada el valor de Vi (1), y en
particular Vi (A;). Veamos cudl es la variacion

AV = V(A1) — Vi(0). (3.23)
Observar que la podemos escribir, utilizando la ecuacién 3.22, como

A dV,()L) M " dx’
AV = /O S - /0 I S vida, (3.24)

y desarrollando en serie de Taylor, tenemos

, . d. _xj d _xj

X(A)=x0)4+ —| A=0)+---= —

Ademads, podemos considerar que la curva es lo suficientemente pequefia como para que podamos con-
siderar despreciables los términos de orden superior (sino, siempre se puede hacer mds pequeia, en este

sentido). Para la conexion afin (estd definida en todo el entorno, no solo en la curva)

At (3.25)
0

ark;(x)
L) =T5(0) +x" —2 (3.26)
0
Y de nuevo, utilizando la ecuacién 3.22,
dx/ .
Vi(A) = Vi(0) +F5,-(0>ﬁ7tvk(0> + oo = Vi(0) + T5(0)x/ (A)Vi(0) + - - (3.27)
De donde se llega a
M ark. dx/
k ij ! h ax’ .
/0 [rij(o) ' [Vk(O) 4T, (0)x V,(O)] dd (3.28)
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Abhora, despreciando términos de segundo orden y reordenando (los detalles pueden verse en [9]) obte-
nemos

1 .
AVi = SRL,Vi(0) f 'y (3.29)
Siendo N )
. 1 J
]4 Dy = /0 xh%dl, (3.30)

no nula en general, lo que demuestra 1) si y solo si 2). Para el caso en que la curva sea més grande,
solo hay que tener en cuenta que si hacemos transporte paralelo de un vector V,, € T,M a través de una
curva no cerrada desde p a p’ y luego volvemos a p, obtenemos siempre V,, como consecuencia de la
unicidad de la Proposicion 2.4, luego si la curva es mds grande, basta con dividirla en curvas cerradas
mds pequeiias, y por esta apreciacion, el resultado de efectuar el transporte paralelo a través de la curva
cerrada entera y los bucles mds pequefios, no se verd alterado.
Hemos argumentado 1),2) y 3), que junto con 4) pueden encontrarse en detalle en varios textos
relacionados, por ejemplo [9].
O

Tensor de Ricci, y escalar de curvatura

Dada la descripcién geométrica del tensor de curvatura de Riemann, podemos pensar que a través
de sus componentes tenemos una descripcion geométrica del espacio, asi como a través de los simbolos
de Christoffel tenemos una descripcién directa de cémo son las curvas geodésicas. Vamos a construir
otros dos tensores a partir del tensor de Riemann que apareceran en las ecuaciones de Einstein.

Se puede comprobar de manera directa que el tensor de curvatura de Riemann solo tiene dos con-
. .. . . J 1 ag .
tracciones no triviales, por ejemplo, (utilizando que I" =2 5:) sl contraemos

; Jd , 9 _, ; ; d 14 d ,1dg ; ;
i1 = P i1 — ﬁrij + T — T, = W(Eﬁ) - W(Eﬁ) + 1 — LD = 0. (3.31)
Sin embargo, si contraecmos
; Jd , d
it = 57T = 57T+ Ty = T (3.32)
que no serd nula en general. Para la otra contraccién no trivial posible se tiene
i1 =Rl (3.33)

Definicion 3.7. Fijando un signo, el tensor obtenido en la ecuacién 3.33 se denomina fensor de curva-
tura de Ricci (Ric = C31R € TOZM ,), que serd simétrico debido a las propiedades de simetria de lekl. El
escalar de curvatura se define como la (linica) contraccidn del tensor de Ricci sobre sus dos indices.

R:glJRl]

Nota. Aunque el tensor de Ricci sea la tinica contraccioén no trivial (salvo el signo) del tensor de cur-
vatura de Riemann, este no contiene toda su informacion. Es decir R;; = 0 no es equivalente a ninguna
de las condiciones del Teorema 3.2. A las métricas tales que verifiquen esta condicién se les dice Ricci
planas (Minkowski, por ejemplo). En el Capitulo 4 vamos a ver un ejemplo concreto de una métrica
Ricci plana no trivial.






Capitulo 4

Relatividad General

4.1. Variedad espacio-tiempo

Aunque en el contexto de geometria semi-Riemanniana se trata con variedades con métrica de indice
v constante, en Relatividad General, nos restringimos a variedades de tipo Lorentz para recuperar en un
entorno de cada punto el espacio de Minkowski. Y dado que nuestra variedad es un objeto geométrico
con un espacio vectorial en cada punto, lo primero serd imponer algunas condiciones de suavidad.

Lema 4.1. Sea (.#,1;;) el espacio de Minkowski de dimension n = 4.

= El subconjunto de .# formado por todos los vectores temporales tiene dos componentes conexas.
Se denominan conos temporales.

» El subconjunto de .# formado por todos los vectores luminosos tiene dos componentes conexas.
Se denominan conos de luz.

Definicion 4.1. Sea (M,g) una variedad de Lorentz, y p € M. Un orientacion temporal del espacio
tangente 7,M es una eleccién .7, de uno de los dos conos temporales de T,M. .7, se dice cono futuro'y
— ., cono pasado.

Definicion 4.2. Sea (M, g) una variedad de Lorentz (Definicién 3.1). Una orientacion temporal sobre
M es una aplicacion que a cada p € M asigna una orientacion temporal .7, verificando que Vp € M, y
VX € X(M), existe un entorno U de p tal que , para todo g € U, X, € 7. Se dice que M es orientable
temporalmente si admite una orientacién temporal.

Definicion 4.3. Un espacio-tiempo (M, g) es una variedad de Lorentz 4-dimensional, conexa y orientada
temporalmente. A cada punto p € M se le dice evento.

Clasificacion de geodésicas en un variedad espacio-tiempo En analogia al espacio de Minkows-
ki, en una variedad espacio-tiempo, tenemos bien definidas las siguientes nociones en funcién de la
constante k dada en la férmula 3.14.

= Geodésica de tipo espacio, si kK > 0.
= Geodésica de tipo tiempo, si kK < 0.

» Geodésica nula, si k = 0.

Proposicion 4.1. Una geodésica de tipo tiempo (nulo, espacio) en un punto, lo sigue siendo en todo
punto.
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Demostracién. Sea c(t) = x'(7) una geodésica. De la definicién de geodésica y utilizando el Lema (3.1)

tenemos que ' ) '
d dx' dx' , dxt
(= Sy =2(", =) =0 4.1
dt<dt’dt> <C’dt> .1

luego, a lo largo de la geodésica,

dxt dx? dxt dxt

g -77:7721:. 4.2
K=8inyr dt <dr’dr> cte (4.2)

4.2. Principio de equivalencia

Principio de equivalencia: En un laboratorio que cae libremente y sin rotacion ocupando una re-
gion pequeiia del espacio tiempo, las leyes de la fisica son las de la Relatividad Especial.

Debido a la eleccién arbitraria de coordenadas, estas no tienen un significado fisico directo, sin em-
bargo, fijado un punto en la variedad, existen coordenadas ’privilegiadas’ que van a dar un contenido
matemdtico formal al principio de equivalencia.

Sea p € M y x un sistema de coordenadas tal que p € Dom(x). Siempre podemos encontrar un

. . a b .
sistema de coordenadas donde el cambio g/ ;= 331- g;‘, - 8ap Verifique

gi;(p) = mnij, (4.3)

siendo 7);; la métrica del espacio de Minkowski. En efecto, por ser g, una matriz cuadrada, bilineal, y
simétrica de signatura (—1,1, 1, 1), existird (Teorema de Relacion de Congruencia) una matriz J regular
de la misma forma bilineal congruente con 7);;, es decir 1;; = Jg,J T Sabiendo esto, y conociendo las

. . . . i /i
componentes J;;, basta tomar el cambio x' = J;;x"/, y se verifica que g = ‘3); s =JT.

En estas nuevas coordenadas x”', mediante una expansion en serie de Taylor en un entorno de p =
xo € R”,

/ i oﬂg;, N INgth
00) = iyt S () By (@)

De esta manera, recuperamos el espacio de Minkowski en p, y de manera aproximada, en un entorno
suyo. Sin embargo, esta aproximacion resulta ser atiin mejor.

Teorema 4.1. Sea (M,g) una variedad semi-Riemanniana de indice v =1 (variedad de Lorentz), y
p € M. Existe un sistema de coordenadas x"" en un entorno de p en el que se verifica

d%g!.
815 () = Mij - o= (0 = xg) (" —xg) 4+ (4.5)

Demostracion. Puede verse en [9]. O

Corolario 4.1. Sea (M, g) una variedad de Lorentz, y p € M. Existe un sistema de coordenadas en el
que las derivadas primeras de la métrica son nulas y se tiene una aproximacion de orden cuadrético para
puntos en un entorno de p al espacio de Minkowski. En particular, los simbolos de Christoffel F’/.k son

nulos en p, y la derivada covariante se puede identificar con la derivada parcial usual.!

Nota. Este es el resultado que nos da el contenido matemético preciso del principio de equivalencia.

IVer ecuacién 2.11.
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4.3. Ecuaciones de Einstein

«El espacio le dice a la materia como moverse; la materia le dice al espacio como debe curvarse ».
John A. Wheeler.

La propuesta tedrica de la Relatividad General pretende entender los efectos gravitacionales como
una manifestacién de la curvatura de una variedad de Lorentz M. Ademads, en el modelo se plantea que
sea la materia la causante de esa curvatura, para esto ultimo tenemos también una descripcion precisa,
como comentaremos, mediante el tensor energia-momento. Las ecuaciones de Einstein (1915) nos da-
rén la relacién que buscamos.

Nota (Tensor de energia-impulso). En la teoria cldsica de Newton la fuente de los efectos gravitatorios
es la masa, y dado que en Relatividad Especial masa y energia son esencialmente 1o mismo, podriamos
pensar en la densidad de energia % como fuente del campo. Se puede demostrar que esta magnitud es la
componente Tno de un tensor simétrico de tipo (0,2) Ty (tensor de energia impulso). Esta propiedad,
junto con las deducciones acerca de cuales deben ser el resto de componentes del tensor y su propiedad
simétrica, estan basadas en consideraciones puramente fisicas, y se escapan de los contenidos de este
trabajo. Puede consultarse, por ejemplo [3].

Conociendo la descripcién matemdtica que debe tener la fuente del campo gravitatorio, podemos
esperar que las ecuaciones tomen la forma?

GIJV — K‘Tuv, (46)

donde Gy serd un tensor que describa la curvatura del espacio (tensor de Einstein), T,y el tensor de
energia-impulso, y K una constante de proporcionalidad.

Tensor de Einstein Para obtener una expresion explicita del tensor de Einstein Gy, se le imponen
ciertas condiciones razonables:

= Gy debe ser un tensor de tipo simétrico de tipo (0,2), por serlo Tyy.

» Gy tiene que ser un objeto puramente geométrico, es decir, debe venir dado en funcién de la
métrica gy y.

» Gy debe contener segundas derivadas de la métrica para poder tener una teoria dindmica y recu-
perar la ecuacién de Poisson
VO =4aGypM.

s Gy debe ser lineal en el tensor de curvatura de Riemann para obtener una ecuacion diferencial
de segundo orden (y no mds) en los potenciales gravitatorios.

s V,G*Y =0, de laley de la conservacion de energfa y el momento?, vV, T# =0.

» Gy = 0 para el espacio de Minkowski.

Se puede demostrar (ver [3]) que la expresién mas general para un tensor simétrico de tipo (0,2),
construido por la métrica y sus derivadas, y que sea lineal en R,y es de la forma

Guv = Ryv + aguvR+guvA, 4.7)

2A partir de aqui seguimos el convenio usual de utilizar letras griegas como indices para describir las ecuaciones de
Einstein, como es habitual en los textos de Relatividad General.

3Dado que en Relatividad Especial, la ecuacién de la conservacion de la energia y el momento tiene la forma OuTHY =0,
su generalizacién covariante serd V, T#" = 0 (principio de equivalencia).
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donde o y A son constantes*. El limite newtoniano fija A = 0, y si ademds debe verificar el resto de
condiciones, queda completamente determinado por

1

Ecuaciones de Einstein (1915) Una comparacién con la formulacién newtoniana nos da el valor de la
constante de proporcionalidad impuesta en la ecuacién 4.6 como k = 8w Gy, donde Gy es la constante
de gravitacion de Newton. Con esto, se tiene que

1

Se trata de un sistema de ecuaciones diferenciales parciales no lineales acopladas de segundo orden.
Las soluciones exactas conocidas hasta ahora son casos en los que hay presente condiciones de alta
simetria. También puede obtenerse soluciones de modo aproximado, y mds recientemente mediante
métodos numéricos.

4.4. Solucion de Schwarzschild

La solucion de Schwarzschild, que corresponde a la solucion estética, con simetria esférica, de las
ecuaciones en el vacio (en este contexto quiere decir 7,y = 0), fue la primera solucién exacta encontrada
de las ecuaciones de Einstein mediante métodos directos. Aparecié unos meses después de que fuera
formulada la teorfa.

Nota. Las ecuaciones de Einstein pueden reescribirse como >
1 u

Condiciones

= De la condicidn de vacio, por la ecuacion 4.10, la métrica debe ser Ricci plana, es decir Ry = 0.
(En particular, la métrica de Minkowski 1,y = 0 es solucion, pero no es la tnica).

= Una solucion estatica implica que existe un sistema de coordenadas en el que g,y es independiente
de la coordenada temporal.

= Una solucién con simetria esférica implica que las secciones espaciales tienen una simetria que
es invariante bajo rotaciones ortogonales en tres dimensiones.

Con estas condiciones, en un sistema de coordenadas angulares (r, 0, ¢), para las secciones espaciales,
la métrica debe tener la forma

f(r)dr* +r*(d6* + sen®(0)do?). (4.11)
Luego la ecuacién de la métrica (con la coordenada temporal) debe ser

ds* = =X dr? + 2B0)gy? 4 2 (d¢? — sen*(0)d?), (4.12)

donde A(r),B(r) son funciones independientes de la coordenada temporal y que van a caracterizar la
solucion.

4A la constante A se la conoce como constante cosmolégica. Hoy en dia se sabe que no es exactamente cero. Esto no
contradice el limite newtoniano, pues su aproximacién sigue siendo buena.
5 oM _sH : o di B L Hp —
Ya que g™ gy = gy = 0y , subiendo un indice y contrayendo 7; =R— ;gyR=R—2R=—R
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Solucién de Schwarzschild Se puede probar, a partir de la métrica propuesta por la ecuacion 4.12,
que la forma de la métrica de la solucién es

-1

donde M es una constante de integracion que hay que fijar en la resolucién de las ecuaciones diferen-
ciales.

Interpretacion de la solucion Para soluciones estdticas y con curvatura pequefia, se tiene que (ver
[31) goo ~ 1+ 2®. En nuestro caso goo = (1—2£), luego ® ~ —%. Y como ® = —Gy (mecdnica
newtoniana), tenemos

M ~ Gym, 4.14)

y podemos interpretar que la solucidén de Schwarzschild describe la curvatura en el vacio provocada
por un objeto esférico y estitico en el origen. Esta interpretacion es coherente con que para M = 0
(aunsencia del cuerpo masivo), recuperamos la solucién trivial (Minkowski). Y que para valores de
coordenada radial muy elevados, se tiene

M
- <<1, (4.15)

y la ecuacién de la métrica se parece cada vez mas a la de Minkowski, un resultado también consistente
con la teorfa gravitacional cldsica a distancias muy alejadas de la fuente del campo.

Nota. La singularidad matemadtica que presenta la solucion en r = 2M es irrelevante por el siguiente
motivo. Para los casos usuales como, por ejemplo, el campo gravitatorio generado por una estrella, la
cantidad la cantidad 2M suele ser muy pequefia comparada con el radio de estos objetos. Dentro de
ellos, donde r se aproximaria cada vez mds a 2M, la solucién de Schwarzschild ya no es vélida, pues
serfa T,y # 0. De todos modos, incluso en un caso en el que la cantidad 2M fuera lo suficientemente
grande, esta singularidad no es fisica, porque puede eliminarse mediante un cambio de coordenadas.

Asi, la solucién viene definida por un abierto conexo de R* (luego orientable temporalmente), es
decir, para una variedad espacio-tiempo (M, g) con la métrica dada por la ecuacién 4.13. La posibilidad
extender las soluciones a dominios mds grandes viene descrita mediante las extensiones de Krustal. Un
desarrollo completo puede verse en [8].

Nota. Aunque matemadticamente las restricciones planteadas por Schwarzschild sean muy fuertes, de-
bido a la interpretacién de su solucién, modeliza una situaciéon que nos es familiar. En particular, la
solucién de Schwarzschild nos permite calcular las geodésicas mediante la ecuacién 3.13, y con ellas
calcular correcciones relativistas en Orbitas planetarias (perihelio de Mercurio) o deflexiones de luz.

Teorema de Birkhoff Una de las condiciones que impuso Schwarzschild para encontrar la primera
solucién a las ecuaciones de Einstein fue la de un modelo estético, para el cual hay unicidad en la
solucidén en funcién de M. Sin embargo, las condiciones se pueden relajar y tiempo después se descubri6
(teorema de Birkhoff) que la solucién de Schwarzschild es la dnica con simetria esférica en el vacio,
sin necesidad de imponer una independencia temporal. La demostracion es similar (mds laboriosa), y
consiste en buscar las métricas posibles que se ajusten a

ds® = =1 dr? + B0 dr 1 1 (dg* + sen’(0)d¢?) (4.16)

donde ahora la dependencia de las funciones A(z,r),B(t,r) que determinan la métrica, es también tem-
poral. En particular, del teorema de Birkhoff se deduce que no existen soluciones del vacio que no sean
estaticas.
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