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Abstract

This work is a brief introduction to lifetime distributions, that is, to the probabilistic description of
random variables that model lifetimes, for example, of a machine or a human being.

In the first chapter we begin by defining the main concepts and functions to be used. We recall

the basic probabilistic functions of a random variable X, such as the distribution function F, survival
function F and probability density function f.
We will introduce very useful concepts in reliability theory, like the hazard function R(x) = —logF (x).
When X has density, the derivative almost everywere of the hazard function defines the hazard rate.
That is, the hazard rate is defined as r(x) = f(x)/F(x) if F(x) > 0. We will also define the residual life
distribution F;, which is the conditional distribution of the remaining life given the survival until time
t. We will see some basic properties verified for these functions. We define the concept of mixture and
how it appears in a natural way in our setting. We will also recall the main univariate distributions of
interest in reliability.

In the study of the monotonicity of hazard rates, the concavity and convexity of the logF play a
fundamental role, so that in the second chapter we recall concepts such as convex or concave functions.
We will also see how the log concavity of a function is closely related to the concept of total positi-
vity. Thus, we shall define the concept of totally positive function of order k (T P;) and the concept
of Pdlya frequency function of order k (PFj) and how those concepts are related to log-concavity and
log-convexity.

The third chapter is a fundamental part of the work, in which we study in depth the hazard rates.

We will begin by defining the concepts of log-concave and log-convex density function and how they
condition their distribution and survival functions to be log-concave or log-convex.
We will give an alternative definition of hazard rate using the notion of residual life and we will see
propositions that relate the monotonicity of hazard rates to the log-concavity (convexity) of the survival
function, which allow us to give characterizations of monotone hazard rates in terms of determinants.
We will study in depth the increasing and decreasing hazard rates and some specific properties of these
ones. Two aspects to remark are, firstly, that the convolutions of distributions with increasing hazard
rates have increasing hazard rate and, secondly, that mixtures of distributions with decreasing hazard
rates have decreasing hazard rates. We will also study bathub hazard rates which are of great interest as
they combine decreasing, constant and increasing hazard rates.

Finally, in the fourth and final chapter we introduce coherent systems, one of the most important
probabilistic models in reliability theory. A coherent system is made up of different components, and
the operation of the system depends on the operation of one, several or all of the components that make
it up (for example, consider an aircraft (system) with several engines (components)). Depending on
the number of components required for the system to work, we will distinguish a series, parallel or
k-out-of-n systems.
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v Abstract

We will consider the reliability function of a coherent system and its expression in each of the systems
we have described. We will introduce the notion of system lifetime as a function of the lifetimes of its
components. In particular, we will investigate the connection between the lifetime of a system k-out-
of-n and the concept of order statistics. We will also express the hazard function of the lifetime of a
coherent system by means of the hazard function of the component lifetimes. Finally, we will discuss
whether a coherent system wears out in the same way as its components do.
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Capitulo 1

Conceptos preliminares de calculo de
probabilidades

En este primer capitulo sentaremos las bases de lo que va a ser nuestro trabajo, definiendo funciones
y conceptos basicos en la teoria de la probabilidad y ampliando con otros muy utiles en fiabilidad, que
utilizaremos en el resto de capitulos.

1.1. Funciones asociadas a una variable aleatoria

Comenzamos definiendo funciones probabilisticas basicas relacionadas con una variable aleatoria.

Definicion 1. Sea Q un espacio de probabilidad y X : Q — R una variable aleatoria. Se denomina
funcion de distribucion de la variable aleatoria X a la funcién F, definida sobre el intervalo (-oo, o)
dada por

F(x)=P{X <x}, VxeR.

Esta funcién de distribucidén es monétona no decreciente, continua por la derecha y tiene limites a
izquierda en todo su dominio. Ademds, lim,_, o F(x) = 0y limy_0 F(x) = 1.

Definicion 2. Dada una variable aleatoria X con funcién de distribucién F', llamamos funcion de super-
vivencia a la funcién F, definida sobre el intervalo (-co, o) dada por

F(x)=P{X>x}=1-F(x), VxeR.

Obviamente, al ser el complementario de la funcién de distribucién es mondtona decreciente y
lim, o F(x) =1y lim,_ F(x) =0.

Definicion 3. Sea X una variable aleatoria que toma valores sobre un conjunto discreto xi,x2, ..., Xy, . - .
y sea p(x;) = P{X =x;}, i = 1,2,..., entonces,

F(x)=Y p(x), VxeR.

xi <x
donde p se denomina funcion de masa de probabilidad de la variable aleatoria X .

Definicion 4. Suponer que existe una funcién f medible no negativa, tal que

Flx) = /_ 1 f(z)dz, VxeR,

entonces, X (0 F) se dice absolutamente continua y f se llama funcion de densidad de probabilidad de
la variable aleatoria X (o F).
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La tasa de fallo, que definimos a continuacion, tiene gran interés en el contexto de fiabilidad (con-
fiabilidad). Si la variable aleatoria muestra la vida ttil de una unidad o individuo, esta funcién mide la
probabilidad de fallo instantdneo en el momento x. En primer lugar, introduciremos la funcién de fallo.

Definicion 5. Llamamos funcion de fallo de F o de X, ala funcién R, definida sobre el intervalo (—oo, o)
tal que,

R(x) = —logF (x). (1.1)

Notar que R(x) = o si F(x) = 0 y que para una variable aleatoria no negativa, R(0—) = 0. R es
decreciente, y lim,_, R(x) = . Ademds cualquier funcién con estas caracteristicas es una funcién de
fallo.

La derivada de la funcién de fallo, (si existe), define la tasa de fallo, que tiene una interpretacion
mas intuitiva.

Definicién 6. Sea F una funcién de distribucion absolutamente continua con funcién de densidad f,
llamamos tasa de fallo de F o de X a una funcion r definida sobre el intervalo (—oe, o) tal que,

r(x) = (1.2)
oo, si F(x) =0.
Las tasas de fallo no son dnicas ya que las densidades tampoco lo son. La mayoria de las veces,
se hace referencia a tasa de fallo cuando F es absolutamente continua y R diferenciable, entonces su

derivada es una tasa de fallo, r.
Para comprender mejor las tasas de fallo es ttil tener en cuenta que

. Px<X <x+A|X > x]
r(x) =lim
A0 A

Asi, si X representa por ejemplo, el tiempo de vida de una maquina, la probabilidad anterior repre-
senta la probabilidad instantdnea de fallo en x, dado que se ha llegado con vida a ese momento. Nétese
que de las ecuaciones (1.1) y (1.2) cuando F(0) = 0, tenemos la siguiente ecuacion:

F(x)=exp {—R(x)} =exp {—/Ox r(z) dz}. (1.3)

que muestra cémo obtener la funcidon de supervivencia a partir de R y de r. Notemos que la segunda
parte de la ecuacién sélo se cumple si F' es absolutamente continua.

Tasas de fallo monotonas

Una funcién de distribucién F, se dice que tiene una tasa de fallo creciente si tiene una densidad f
para la cual r = f/F es creciente. Con una tasa de fallo creciente, la probabilidad de fallo en un instante
de tiempo aumenta a medida que el dispositivo u organismo envejece, que puede entenderse como una
descripcion matematica del "desgaste”. La nocion similar de una tasa de fallo decreciente es de menor
interés, ya que puede considerarse como una descripcién matemdtica de "mejora con la edad". De todos
modos, hay ejemplos claros de articulos que mejoran con los afios (vino, queso,...) luego hay aplicacio-
nes también de este concepto.

La siguiente funcién no tiene una interpretacion tan intuitiva, pero resulta util para describir propie-
dades de forma de una variable aleatoria.



Definicion 7. Llamamos funcion de fallo inversa de F o de X ala funciéon S definida sobre el intervalo
(-0, o0) tal que,
S(x) =1logF(x).

Notar que S(x) = —oo, 5i F(x) = 0.

Sea F una funcién de distribucién absolutamente continua con funcién de densidad f, llamamos
tasa de fallo inversa de F o de X a una funcién s definida sobre el intervalo (-0, o) tal que,

f()
F(x)

s(x) =

Notar que S(x) =log F (x) y R(x) = —log F(x), tal y como las hemos definido, ambas funciones son
decrecientes. Ademads r y s cumplen las siguientes relaciones de monotonia.

Proposicion 1. La funcién de fallo r y la funcién de fallo inversa s, tienen las siguientes propiedades
de monotonia:

S es creciente = r es creciente,
r es decreciente = s es decreciente.

Su reciproco no es cierto.

Demostracion. La prueba de estos resultados pueden obtenerse facilmente de la relacién
r(x) = s(x)(F(x)/F(x)). La primera implicacion se verifica, por ejemplo, dado que, si s es creciente
entonces r es producto de funciones crecientes. 0

Para las definiciones siguientes, consideramos variables aleatorias no negativas. Dichas definiciones
vienen motivadas por el estudio de tiempos de vida de sistemas.

Definicion 8. Sea F funcién de distribucién tal que F(0) = 0. La distribucion de la vida residual, F; de
F, cuando ¢ > 0 es tal que F'(¢) > 0, viene dada por,

F,(x):F(}:(j_)t),XZO

Si F tiene funcién de densidad f, entonces F; tiene funcidn de densidad f; y tasa de fallo r, dadas
por,

ft(X)ZW,xZO, (1.4)
r,(x):;;((jcj:z)):r(x—kt),xzo. (1.5)

La distribucién de vida residual F; es una distribucién condicional de la vida restante dada la super-
vivencia hasta el tiempo t. Asi, F;(x) = P(X > x+1| X > t) representa la probabilidad de sobrevivir x
unidades mds sabiendo que se ha llegado con vida a un instante t. La distribucién de vida residual es de
bastante interés practico ya que resulta interesante considerar el tiempo de vida restante de un sistema
(coches usados, personas,...) una vez que se ha alcanzado la edad 7.

El siguiente resultado relaciona el valor esperado de una variable aleatoria con sus funciones de
distribucién y supervivencia. Serd ttil en la definicion de tiempo medio de vida residual.
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Proposicion 2. Sea X una variable aleatoria con funciones de distribucion y supervivencia F y F res-
pectivamente, se tiene:

EX:/OOOF(x) dx—/_(;F(x) dx

Para variables aleatorias no negativas, es decir, para distribuciones tales que F(x) = 0 para x < 0,

EX = /OwF(x)dx.

Demostracion. Su prueba se puede encontrar en Billingsley P. (1995) p. 79 [3]. En primer lugar se
demuestra para variables discretas y por aproximacion, se tiene para cualquier variable aleatoria. O

Definicion 9. Sea F funcién de distribucion tal que F(0) = 0. La funcion de vida media residual m(t)
es la media de la distribucién de vida residual F; en funcién de t. Esto es m(t) = [ x dF;(x) si F(t) >0,
0 en otro caso.

Cuando F tiene media finita u, entonces la funcién de vida media residual viene dada por (téngase en
cuenta el resultado anterior y la definicion 8),

> Fx+1)  [*F(2) . =
m(t) = /oF(t)dx_/, F(t)dz paratsi F(t) >0, (1.6)

0 si F(t) =0.

1.2. Mixturas de distribuciones
Sean F| y F» funciones de distribuciéon y 0 < 7 < 1. Si consideramos
F=7nF+7k, (1.7)

donde T = 1 — 7 o, equivalentemente, F' = 7, F| + F> entonces decimos que F es una mixtura de
F| y F. F es obviamente, una funcién de distribucion.

A menos que F sea la funcién de distribucién de una variable aleatoria constante, F' se puede ex-
presar como una mixtura de dos distribuciones diferentes en infinitas formas, por lo que una mixtura
no tiene una expresion unica. Sin embargo, podemos encontrar ejemplos donde las mixturas aparecen
de forma natural. Si F representa la distribucién del tiempo de vida de un humano en una determinada
poblacioén, dicho tiempo de vida podria depender del género (hombre - mujer) y entonces ese tiempo de
vida tendria una expresion natural en términos de mixtura.

Ademas puede darse el caso de que las diferentes subpoblaciones tengan una estructura mas comple-
ja piénsese por ejemplo, en seguros de coche y el tiempo hasta un accidente en diferentes grupos de
asegurados, lo que motiva lo siguiente:

Definicion 10. Sea F = {Fy | 6 € ®} una familia de funciones de distribuciéon y G una funcién de
distribucién que toma valores en ©. Entonces, la mixtura de F respecto de G viene dada por,

F(x) = / Fo(x) dG(6). (1.8)
JO
Las mixturas también reciben el nombre de distribuciones compuestas.

Las funciones de densidad (si existen) y las de supervivencia de mixturas son mixturas de las fun-
ciones de densidad y supervivencia correspondientes, esto es:

0= [ o) d6(0) y  Fx)= [ Fax) dG(6)



Para la funcién de fallo y tasa de fallo las expresiones anteriores en términos de mixturas, no se
verifican. Cuando las distribuciones Fy de la ecuacion (1.8) tienen funcién de densidad fy, F tiene tasa

de fallo
_ Jofo(x) dG(0)
Jo Fo(x) dG(8)’

que, obviamente, no es la mixtura de las tasas de fallo.

r(x) (1.9

Volvamos al caso particular de (1.7) donde F es la mixtura de dos distribuciones F; y F3, con
funciones de densidad respectivamente f; y f». Entonces la mixtura tiene densidad 7 fi (x) 4+ 7T f2(x) y si
r1 y rp son las tasas de fallo de F y F3, se tiene

)= TR i)+ Pl (1.10)
donde
(1) = — 1) () =1 p(x)
P = TF (x) + TF(x) AN A

Este caso especial tiene bastante importancia en fiabilidad, mds adelante trabajaremos sobre él.

1.3. Ejemplos de familias paramétricas

Las siguientes distribuciones; exponencial, Gamma, Weibull y Beta, tienen un gran interés en el
admbito de la fiabilidad, recordamos sus definiciones y algunas de sus propiedades. Ademds, recordamos
la distribucién binomial, que se utilizara en el capitulo 4.

1.3.1. Distribucién exponencial

Para esta distribucion, el pardmetro A > 0 es un pardmetro de escala, la funcién de densidad de esta
distribucién viene dada por f(x) = Ae~** para x > 0.
En este caso es ficil ver
Fx)=e ™, x>0,

Fx)=1—¢* x>0y
r(x) =24, x>0.

por tanto, la tasa de fallo es constante (el sistema ni mejora ni empeora con la edad). Mds adn, si X tiene
distribucién, exponencial, es facil ver que

P(X >x+1/X>1)= F;ff(j)’) — F(x) = P(X > x),

es decir, la distribucién del tiempo de vida residual a partir de un tiempo t coincide con la distribucién
original. Esta propiedad se conoce como ausencia de memoria.
Si X tiene una distribucién exponencial con parametro A, para r > —1,

,ur:EX’:/ X Ae ™M dx=T(r+1)/A",
0

donde T es la funcién Gamma, esto es I'(t) = [+~ 'e~'dt. La distribucién exponencial es una de las
distribuciones mds frecuentemente utilizadas para modelizar tiempo de vida. Sin embargo, en situa-
ciones en las que no resulta realista utilizar esta variable, las distribuciones gamma y Weibull son una
alternativa bastante flexible.
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1.3.2. Distribucion Gamma

La funci6n de densidad gamma depende de nuevo de un pardmetro escalar A > 0 y ademds depende
de un parimetro de forma v > 0. Esta viene dada por

fx| A, v) =AY e ™/T(v), x> 0.

La funcién de densidad de la distribucién gamma tiene una expresién sencilla, pero la funcién de
supervivencia y la funcién de tasa de fallo tienen forma explicita s6lo para valores de v naturales.
Observamos que con el pardmetro v = 1, se tiene la distribucién exponencial, v < 1 darfa una densidad
decreciente (en su soporte) y vV > 1 una densidad unimodal.

1.3.3. Distribucion Weibull

Esta familia de distribuciones tiene un pardmetro escalar A y un pardmetro de forma o, ambos
positivos. A diferencia de la distribuciéon Gamma, la funcién de supervivencia aqui tiene una forma més
simple, ya que se define como

F(x) = exp{—(Ax)*}, x > 0.

Y la funcién de densidad viene dada por,
f(x) = aA(Ax)* Texp{—(Ax)*}, x> 0.

Por tanto, tiene una tasa de fallo,
r(x) = aA(Ax)* 1, x> 0.

Observamos como r es creciente para o > 1 y decreciente para ¢&¢ < 1. La distribucién Weibull, es otra
familia que incluye la distribucién exponencial (¢t = 1).

1.3.4. Distribucion Beta

Definicion 11. Llamamos funcién beta a la funcioén:

B(u,v) —/1t”_1(1—t)v_ldt (1.11)
) - O .

La integral anterior es finita para 0 < u, v < oo. Aunque el dominio de la funcién beta puede ser
extendido, éste es con el que trabajaremos. La funcién de densidad de la distribucién beta viene dada

por:
1

B(u,v)

x""1(1—x)""!, para todo x € [0,1].

fx) =

La distribucion beta y la cola de una distribucién binomial

Consideramos una distribucién binomial. Esto es dado n € Ny 0 < p < 1, tomamos una variable
aleatoria discreta cuya funcién de masa viene dada por P(X = j) = (;f)pf(l —p)" 7 j=0,1,2,...,n.
Recordamos que la distribucién binomial cuenta con el nimero de éxitos en n ensayos independientes
(lanzamiento de una moneda; éxito = cara, por ejemplo), cuando la probabilidad de éxito en cada ensayo

es p. La férmula

e\ PR o L O L

)P/ (L=p)" ) = ; (1.12)
E(]) B(k,n—k+1)

da una conexidén bien conocida y a menudo ttil entre la cola superior de una distribucién binomial y
distribucién beta. O alternativamente, podemos escribir (considerando la cola inferior de la binomial).

k=1 7\ n_._fpltkfl(l_t)nfkdt
‘;o<f>pj(l_p) = Blkyn—k+1) (1.13)

Esta férmula puede probarse por induccién sobre k integrando por partes. (Marshall A.W and Olkin 1.
(1993) 30 pp. 497-508) [8]. Utilizaremos esta relacion en el capitulo 4 pagina 24.



Capitulo 2

Preliminares analiticos: Convexidad y
positividad total

La convexidad y la positividad total son una herramienta analitica fundamental en nuestro trabajo.
En este capitulo veremos un breve resumen de los aspectos mds importantes sobre estos conceptos que
serdn de gran utilidad en el estudio de las distribuciones de tiempos de vida.

2.1. Concavidad y convexidad: funciones log-concavas y log-convexas.

En el estudio de la monotonia de las tasas de fallo juega un papel fundamental la concavidad y
convexidad del logaritmo de F'. Para ello, recordamos algunas cuestiones relativas a estos conceptos
que podemos encontrar en Rockafeller R.T. (1970) [12]

Definicion 12. Decimos que un subconjunto A de R” es convexo si para todo x, y € A se verifica
ox+aycAVY ac|0,1],siendox=1—a.

Definicion 13. Sea ¢ una funcién real definida en un conjunto convexo A. Decimos que ¢ es una funcion
convexa si

dlax+ay) <op(x)+ad(y) Vx,ycA yVac|0,1].

Si se invierte la desigualdad decimos que la funcién es concava; es decir ¢ es concava < —¢ es convexa.
Por otra parte, una funcién ¢ se dice log-concava si log¢ es concava. Para evitar desigualdades involu-
crando al infinito, diremos que ¢ es log-céncava si y sélo si:

dlax+ay) < o(x)%¢(y)' % Vx,y €A (2.1)

Las siguientes proposiciones son ttiles para el estudio de estas funciones. Se enuncian para la con-
vexidad. Las correspondientes proposiciones para la concavidad pueden obtenerse mediante un cambio
de signo, (¢ céncava = - ¢ convexa).

Proposicion 3.

i) Una funcién ¢ definida en A es convexa si y s6lo si g(a) = ¢ (ax+ &y) es una funcién convexa
ena € [0,1]Vx,y €A.

ii) Enel cason =1y A =1 un intervalo, ¢ es convexa si y solo si

P) —9(x1) _ 9(y2) —¢(x2)

Y1 —X1 o Yo — X2

cuando x; <y <y, x1 <x2 < Yp.

iii) Enel cason =1y A = [ un intervalo, ¢ es convexa si y solo si

¢(x+A)—¢(x) es creciente en x VA > 0.

7
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iv) Sin=1,A = (a,b) es un intervalo abierto y ¢ es diferenciable en (a,b), entonces ¢ es convexa si
y solo si la derivada ¢’ de ¢ es creciente en (a,b).

v) Sin=1,A = (a,b) es un intervalo abierto y ¢ es dos veces diferenciable en (a,b), entonces ¢ es
convexa si y solo si la segunda derivada ¢” de ¢ es no negativa.

Ademais se tiene este resultado muy ttil acerca de la diferenciabilidad de funciones convexas.

Proposicion 4. Sea ¢ una funcién finita convexa definida en un intervalo abierto / € R. Entonces ¢ es
diferenciable excepto posiblemente en un subconjunto contable de I. Ademds, ¢’ es continua y creciente
en relacién con el subconjunto denso D € I donde ¢ es diferenciable.

Demostracion. La demostracion de esta proposicion se puede encontrar en Rockafeller R.T. (1970) p.
244 [12]. O

El siguiente resultado nos habla de la preservacion bajo composicion.

Proposicion 5. Sean ¢, s, ..., ¢, funciones convexas definidas en el conjunto convexo A € R" y sea h
una funcién convexa creciente definida en R¥, entonces W(x) = (¢ (x), §2(x), ..., g (x)) es convexa en
A. De manera andloga, si @1, ¢», ..., ¢ son funciones céncavas definidas en el conjunto convexo A € R" y
h es una funcién céncava creciente definida en R¥, entonces y(x) = a(¢1(x), ¢2(x), ..., o (x)) es céncava
en A.

En particular, cuando k =n =1y A = R resulta que:

(i) Si ¢ es convexay h es creciente y convexa, entonces h(¢(-)) es convexa.
(ii) Si ¢ es coéncavay h es creciente y concava, entonces (¢ (-)) es concava.
(iii) Si ¢ es convexay h es decreciente y concava, entonces i(¢(-)) es concava.
(iv) Si ¢ es concava y h es decreciente y convexa, entonces h(¢(-)) es convexa.

Observacion 1.

a) Si en los apartados anteriores las hipdtesis relativas a la convexidad (concavidad) de h se susti-
tuyen por la log-convexidad (log-concavidad), entonces la composicién a(¢(-)) es log-convexa
(log-coéncava).

b) La suma de funciones convexas es convexa y la suma de funciones céncavas es céncava. El
producto de funciones log convexas es log-convexo y el de funciones log céncavas es log-céncavo.

La siguiente proposicién muestra la relacion entre concavidad y log-concavidad.
Proposicion 6.
(i) Si ¢ es una funcién positiva y log¢ es convexo, entonces ¢ es convexa.

(i1) Si ¢ es una funcién positiva concava, entonces log¢ es concavo.

2.2. Positividad total

La log-concavidad de una funcién estd muy relacionada con el concepto de positividad total. Una
referencia fundamental (en la que podemos encontrar los resultados que veremos a continuacién) es el
libro de Karlin S. (1968) [7].



Definicion 14. Sean A, B subconjuntos de R. Una funcién real K definida en A x B se dice que es fotal-
mente positiva de orden k, T P, si paratodo x| < -« < Xp, y1 < <ym (xi €A, y; € B),y para todom, 1 <
m <k,
K(x17y1) K('xlaym>
1y Ym
K('xmayl) K(xm7Ym)
En el caso particular en que m = 2, se tiene:
K (xl,m) _ |K(x1,y1) K(x1,2)
Y1, Y2 K(x2,y1) K(x2,y2)

Cuando las desigualdades anteriores son todas estrictas, decimos que K es estrictamente positivo
total de orden k (STP;). Si K es TP, (STP;) para todo k = 1,2,..., se dice que es positiva total (estric-
tamente positiva total) de orden oo, T P, (ST P.).

= K(x1,y1)K (x2,y2) — K (x2,1)K (x2,y1) > 0.

Ejemplo 1. La funcién indicador
1 six<y,
me:{ .
0 six>y —oo<x,y< oo,
es T P.
Ejemplo 2. La funcién indicador
0 six<y,
K(x,y) = .
1 six>y —oo<x,y< oo,
es T P.

Estos ejemplos concretos serdn de gran utilidad en el capitulo siguiente. Finalmente, damos la si-
guiente definicién que relacionard la positividad total de orden 2 con la log-concavidad o convexidad.

Definicion 15. Una funcién f con valores reales, definida en (—oo,00) se dice que es una funcion de
frecuencias de Pdlya de orden k (PF) si la funcién K(x,y) = f(y —x),—o0 < x, y < oo, es totalmente
positiva de orden k.

Tenemos las siguientes proposiciones acerca de la log-concavidad y log-convexidad.

Proposicion 7. La funcién
K(x,y) = f(y—x),—oo <x, y < oo, (2.2)

es TP, siy solo si f es no negativa y el logaritmo de f es concavo en (—oo, o).
Asi, log-concavidad equivale a PF,. Para funciones log-convexas se tiene:

Proposicion 8. La funcién
K(x,y)=f(y+x), 0<x, y<eo,

es TP, enx, y > 0siy solo sifesno negativa y log de f es convexo en [0,o0).

El siguiente resultado va a ser utilizado en el teorema 2. Se le suele llamar férmula de composicion
basica, y puede considerarse una generalizacion de la férmula de Binet-Cauchy en teoria de matrices.

Lema 1. Sean K y L funciones reales definidas en A x B'y B x C, respectivamente, donde A, By C
son subconjuntos de R Si ¢ es una medida real ¢ — finita y la integral definida sobre B M(x,y) =
| BK(x,z)L(z,y) do(z) converge absolutamente, entonces con la notacion utilizada en la definicién 14,

M(xl""’x’"> :// K(xl’“"xm>L(Z1"“’Zm> do(zy)---do(zy).
YiyeesYm 21 <<y ZlyesZim YiyeesYm
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Una consecuencia de la férmula de composicién bésica es el siguiente teorema, una de las propie-
dades mads bdésicas y utiles de las funciones totalmente positivas.

Teorema 1. SiKesTP,enAxB,LesTP,enBx C,y o esuna medida real ¢ — finita, entonces
M(xy) = [ K(xo)L(z.y) do).
B

8 T Pyin(mn) en A x C.



Capitulo 3

Familias no paramétricas: Densidades y
tasas de fallo

Este tercer capitulo constituye una parte fundamental del trabajo, en él estudiamos en profundidad
las tasas de fallo. Comenzaremos el capitulo definiendo los conceptos de funcién de densidad log-
céncava y log-convexa, veremos que las primeras son unimodales y también cdmo condicionan a sus
funciones de distribucién y funcién de supervivencia a ser log-céncavas o log-convexas. Daremos una
definicién alternativa de tasa de fallo utilizando la nocién de vida residual y veremos proposiciones
que relacionan la monotonia de las funciones de fallo con la log-concavidad (convexidad) de la funcién
de supervivencia y nos permiten dar las caracterizaciones de tasas de fallo mondtonas en términos de
determinantes. Veremos las tasas de fallo crecientes y decrecientes y algunas propiedades especificas
de distribuciones con esta propiedad y las tasas de fallo de tipo bafiera que son de gran interés ya que
combina tasa de fallo decreciente, constante y creciente.

3.1. Densidades log-concavas y log-convexas

Las densidades log-céncavas y log-convexas son muy interesantes en el estudio de tiempos de vida
ya que muchas de las densidades que se utilizan mds frecuentemente en este contexto tienen dichas
propiedades. Veremos como una tasa de fallo creciente (decreciente) puede relacionarse con la log-
concavidad (log-convexidad) de la densidad.

Definicion 16. Si F es una funcion de distribucién absolutamente continua, con f funcién de densidad
y ésta es log-céncava en R entonces, se dice que F' tiene una funcion de densidad log-concava. Si
f(x) =0, x <0y f es log-convexo en [0,c), entonces se dice que F fiene una funcion de densidad
log-convexa.

El logaritmo de muchas densidades estdndar es concavo o convexo. Por la proposicién 3 (iv), pode-
mos ver que:

(i) La densidad de la normal, f(x) =

_u)?
exp {()62;;)} , —o0 < x < oo es log-cOncava.

1
V2no
(i) La densidad de una gamma, es log-céncava para v > 1 y log-convexa para v < 1.

(iii) La densidad de Weibull, es log-céncava para & > 1 y log-convexa para o < 1.

Demostracion. Comprobemos, por ejemplo (ii): Tomamos logaritmos en la funcién de densidad de una
\4

gamma de manera que se tiene, logf(x) = log N(V)> + (v —1)logx — Ax. Derivamos respecto de x:
d v—1

d—log f(x) = —— — A. Asi la derivada serd decreciente si v > 1, creciente si v < 1 y constante si
X

v =1 (exponencial), y por la proposicién 3 (iv) se tiene el resultado. O

11
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Vamos a ver algunos resultados sobre distribuciones con densidades log-concavas y log-convexas.
Comenzaremos con la siguiente proposicion que trata de la unimodalidad de densidades log-céncavas.

Proposicion 9. Las densidades log-concavas son unimodales, es decir, no disminuyen hasta cierto punto
y no aumentan mds all4 de ese punto.

Demostracion. Para ver que una densidad es unimodal, basta con ver que para una constante ¢ cual-
quiera positiva, f(x) —c cambia de signo a lo sumo dos veces, y con orden —,+, —, si son dos cambios
de signo. Esto ocurre si y solo si logf(x) —d tiene para cualquier constante d, a lo sumo dos cambios
de signo, con orden —,+,—. El patrén de cambio de signo se verifica porque logf es concavo. Ver
proposicién 4. O

En la siguiente proposicion trataremos la prreservacion de densidades log-concavas bajo mixturas.

Proposicion 10. Sea {fy,0 € A} una familia de densidades log-convexas en un intervalo / y suponga-
mos que A es un conjunto abierto convexo. Si fp(x) es una funcién medible de 6 paracadax € Aysi G
es una funcién de distribucién de probabilidad en A, entonces la mixtura f(x) = [ fo(x) dG(0) es una
densidad log-convexa.

Demostracion. La demostracién se encuentra en Marshall y Olkin (1979, p.452) [9] O

Es siguiente resultado nos habla de la transmisién de log-concavidad y log-convexidad de faFy F.

Proposicion 11. Si f es log-concava, entonces F' y F son log-concavas. Y si f es log-convexa en [0, ),
entonces F es log-convexa en [0, ).

Demostracion. Supongamos que log f es concava, por la proposicion 7, esto es equivalente a que f(x —
y) sea totalmente positiva de orden 2, TP,. Sea K la funcién indicador dada en el ejemplo 1, K(x,y) =
1 six<yyK(x,y) =0six>yentonces se tiene,

Fle-2)= [ fo-2)dy= [ Kxnf-2) dv.

como K es totalmente positiva, entonces F (x — z) es totalmente positiva de orden 2 en x y z (teorema
1), entonces F es log-céncava.
La comprobacién de log-convexidad es similar. 0

En la siguiente proposicion vemos cémo son la tasa de fallo y la tasa de fallo inversa de densidades
log-céncavas y log-convexas.

Proposicion 12. Si f es log-céncava, entonces la tasa de fallo » = f/F de F es creciente, y la tasa de
fallo inversa s = f/F de F es decreciente. Si f es log-convexa en [0,0), entonces la tasa de fallo r es
decreciente en [0, )

Demostracion. Si f es log-céncava, por las proposiciones 4 y 11, entonces logF y logF son céncavas,
luego tienen derivadas decrecientes. Esto es equivalente a que r es creciente y s es decreciente. Andlogo
para el caso f es log-convexo en [0, ). O

Observacion 2. La distribucién gamma tiene tasa de fallo creciente o decreciente segtin Vv, por las
propiedades de log concavidad y log convexidad mencionadas en la pdgina 11 y por la proposicién 12.
Esto seria dificil de comprobar directamente dado que en una gamma, F' no tiene forma explicita para
V no natural.

El siguiente ejemplo muestra como el reciproco de la proposicidn anterior es falso. Es posible que una
distribucién tenga una tasa de fallo creciente y una densidad que no sea log-céncava.
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Ejemplo 3. Supongamos que 7(x) = x+ (14x)~!, x > 0. Puede comprobarse por diferenciabilidad que
r es creciente y que por tanto R(x) = [3r(t) dt = $x* +log(1+x) es convexo (ver proposicién 3 (iv)).
Ademds logF (x) = —R(x), luego F es log-céncavo.

Para ver que f no es ni céncavo ni convexo, usaremos la formula logf(x) = logr(x) + logF (x) con la
que se puede comprobar que la segunda derivada de log f(x) es estrictamente positiva en 0 y llegard un
punto en el que se hace negativa. (Por la proposicién 4, log f no puede ser ni céncava, ni convexa).

Observacion 3. Los tratamientos de convexidad y concavidad logaritmica difieren en que concavidad
logaritmica puede requerirse en todo R; si logf es céncavo en [0,00) y f(x) = 0 para x < 0, entonces
log f es concavo en (—oo,00) usar (2.1). Esto mismo no puede decirse para la convexidad logaritmica. De
acuerdo con la proposicion 12, si log f es convexo en [0, o) entonces F tiene una tasa de fallo decreciente
en [0,00) y por tanto, la densidad es decreciente en [0, o). Peo una funcién de densidad, tiene que integrar
1 y por tanto no puede ser decreciente en (—oo, ).

En la siguiente proposiciéon vemos que f log-convexa también implica F log-concava (recuérdese
por la proposicién 11 que f log-céncava implica F log-céncava).

Proposicion 13. Si f(x) =0, x <0y logf es convexo en [0,0), entonces log F es concavo en (—oo,00).

Demostracion. Bajo las hipdtesis con respecto a f, se sigue de la proposicionl2, que F tiene una tasa de
fallo decreciente y por tanto f es decreciente. Esto significa, por la proposicién 3, que F es concava en
[0,00) y por la proposicién 6, F es log concavo en [0, o). O

3.2. Tasas de fallo monotonas

Las propiedades de forma de f implican la monotonia de las tasas de fallo, como hemos visto en la
proposicién 12. Sin embargo, las condiciones de dicha proposicion no son necesarias, y ademds, seria
conveniente ampliar este concepto a variables no necesariamente absolutamente continuas. Por ello,
vamos a dar una definicién més general de tasa de fallo, utilizando la nocién de vida residual.

Definicion 17. Sea F una distribucién tal que F(x) = 0, x < 0. Entonces se dice que F tiene una tasa
de fallo creciente [decreciente] si¥ x >0y ¥Vt > 0tal que F(t) < 1,

_ P(t<X<t+4x) F(t+x)—F(x) F@)—F(t+x)
Pt<X<t+x|X>t)= PIX > 1) TR ) )

es creciente en ty F(0~) = 0 [decreciente en t].

Si X es un tiempo de vida, esta condicion dice que la probabilidad de fallar en un intervalo de tiem-
po de longitud x, aumenta [disminuye] a medida que crece t. En la proposicién 14 relacionaremos este
concepto con la monotonia de los tiempos de vida residuales. El concepto de tasa de fallo creciente
podria extenderse a distribuciones como la normal que tiene medida positiva en el intervalo (—eo,0). No
hay problema en considerar t < O en la definicién 17, aunque se pierde el concepto de tiempo de vida.
Para tasas de fallo decrecientes, el soporte de dichas distribuciones debe tener un punto final izquierdo
finito que normalmente se considera que es 0 (recuérdese la observacién 3).

Dos aspectos a remarcar y que veremos mds adelante son, en primer lugar que las convoluciones
de distribuciones de F con tasa de fallo creciente tienen tasa de fallo creciente y por otro lado que las
mixturas de distribuciones de F con tasa de fallo decrecientes tienen tasa de fallo decreciente.

La siguiente proposicién da una condicidn para la tasa de fallo mondtona que suele ser mas conve-
niente de verificar que la condicién de la definicion.
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Proposicion 14. Una distribucion F, tiene una tasa de fallo creciente [decreciente] siy solo si para todo t

talque F (1) >0, F (1) = Fg(t; ) es decreciente [creciente] en t para todo x > 0, es decir, las distribuciones

de la vida residual, disminuyen [aumentan] en t.

Demostracion. Para todo x > 0y para todo t tal que F(¢) < 1,

F(1) —_F(t—l—x) 1 (f—l—x) 3.1
F(r) F(r)
es creciente en t siy solo si F(r+x) / F(t) es decreciente. O

Notemos que de la proposicién anterior deducimos que las tasas de fallo monétonas implican que
la vida media residual es mondtona en t (ver 1.6).
Las siguientes proposiciones relacionan la monotonia de las funciones de fallo con la log-concavidad
(convexidad) de la funcién de supervivencia.

Proposicion 15. Si F tiene una distribucion tal que F'(x) = 0 para x < 0 entonces F tiene una tasa de fallo
creciente [decreciente] si y solo si la funcién de fallo R = —logF es convexa donde es finita [concava
en [0,0)].

Demostracion. Para todo t tal que F (1) < 1, (3.1) es creciente en t si'y solo si logF (1 +x) — logF () es
decreciente en t. De acuerdo con la proposicién 3 (iii), esto es equivalente a la concavidad de logF, 1o
que quiere decir que R = —logF es convexo. O

Proposicién 16. Supongamos que F(0—) =0 y F tiene funcién de densidad. Entonces, F tiene una
tasa de fallo creciente [decreciente] si y s6lo si hay una funcién de densidad f tal que la tasa de fallo
correspondiente = f/F es creciente [decreciente] en [0, o)

Demostracion. Este resultado es una consecuencia inmediata de la proposicién anterior, derivando R =
—logF y usando la proposicién 4, que establece que una funcién serd cdncava o convexa segin su
derivada sea creciente o decreciente. O

La proposicién 15, junto con la proposicién 7, nos permiten dar las siguientes caracterizaciones de
tasas de fallo mondtonas en términos de determinantes.

Proposicion 17. La funcién de distribucién F, tiene una tasa de fallo creciente si y solo si el determinante

>0

- )

‘f(ﬁ —s1) F(ti—s2)
F(l‘z—sl) F(l‘z—sZ)

donde s1 < 52, 1) < 1, es decir, F' es una funcién de frecuencia Pélya de orden 2. (Ver definicién 15).
La funcién de distribucion F tiene una tasa de fallo decreciente si y solo si el soporte de F es [0,0) y el
determinante

(t1 +52) >

F(tl +S1)
(a+s2)| — 7

F(tg—i-sl)

F
F

donde s1 < 87,1, <t y s1+1; >0, es decir, F(x+y) es totalmente positiva en x € y, x+y > 0 (ver
definicién 14).
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3.2.1. Tasas de fallo crecientes

La idea intuitiva de una tasa de fallo creciente viene dada por la interpretacion de r(7)dt como la
probabilidad condicional de fallo en el intervalo [¢,7 + dt] dada la supervivencia hasta el tiempo t. Asi,
con una tasa de fallo creciente, la probabilidad de fallo en el siguiente instante de tiempo aumenta a
medida que el dispositivo o el organismo envejece. En cierto sentido, esta es una traduccién matemaética
del concepto intuitivo de "envejecimiento adverso".

Veamos ahora propiedades que son especificas de distribuciones con esta propiedad.

Proposicion 18. Si F tiene una tasa de fallo creciente, entonces F tiene densidad excepto posiblemente
en el punto final derecho del soporte, donde puede tener una masa positiva.

Este resultado es una consecuencia de la definicién de concavidad logaritmica. (Ver proposicion 4
y tener en cuenta que si F' es log-concava en [0, a] y vale O en adelante, continda siendo log-concava),
recordar (2.1). Demuestra que el uso de la definicién no requiere de la existencia de una densidad.

Resultados de preservacion de tasas de fallo crecientes

El siguiente teorema establece que la clase de distribuciones con tasas de fallo crecientes son cerra-
das bajo convoluciones. La interpretacion intuitiva del teorema es: Si tenemos dos dispositivos y cada
uno de ellos se desgasta en el sentido de que tienen una tasa de fallo creciente, y si uno de los disposi-
tivos se utiliza como repuesto para el otro y se pone en servicio en el momento en que falla el primero,
este sistema (“un dispositivo y su repuesto”) se desgasta en el sentido de que tiene una tasa de fallo
creciente (asumiendo que las dos duraciones de vida son independientes).

Definicion 18. Dadas dos funciones de distribucién F y G se denomina convolucion de F y G a la
expresion

FxG(t / F(t—y)dG(y), teR

Si X e Y son variables aleatorias independientes con distribuciones F' y G, entonces F x G es la funcién
de distribucién de X + Y.

Ademés si estas variables tienen respectivamente densidades f y g la densidad de Z = X 4 Y viene dada
por

fz(t) = fx x fr (1) /fxl— Vfy(0)dy, t€R

Teorema 2. (Barlow R.E., Richard E., Marshall A.W., and Proschan F. (1963) 34 pp. 375-389) [1]. Si
F y G tienen tasa de fallo crecientes, entonces el producto de convolucién H = F * G tiene una tasa de
fallo creciente.

Demostracion. Supongamos que F y G tienen funciones de densidad f y g. Como dice la proposicién
17, la condicién de una tasa de fallo creciente puede ser escrita en términos de un determinante. Para
(t —up) (h—s)g(s—uy)ds [F(n—s)g(s—u)ds

nh<nyu <up;
(t1 —ur) ‘f ) !
(tr —up) JF(ty—s)g(s—uy)ds [F(ta—s)g(s—uz))ds
)
)

F
F

a a
D—‘H a

(2 —uy)
71 —s1) F(t; —s2) g(sy —up)

_//v]<sz (th—s1) F(t2—s2) g(s2—up)

en la dltima igualdad se ha aplicado la férmula de composicion basica. (Lema 1).
Integrando por partes la integral anterior

=[]
51<82

dsordsy;

g(s1—u
g(s2—uy

1? th—s1) f(ti—s2)

dsod
F(ty—s1) f(ta—s2) 52451

‘éj(sl—ul) g(s1 —u2)
G(sp —up) G(z—uz)
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Debemos comprobar que D > 0. El signo del primer determinante es el mismo que el de

f(l2 — Sz)F(tz — Sz) B f(l‘] — SQ)F([] — S2>
F(lz—Sg)F(tz—.ﬁ) F(t1—Sz)F(l1 —Sl)’
asumiendo que los denominadores no son cero (si lo fuesen, ese determinante seria > 0). Pero
[(=s2) _ f(ti=s2)
F(ty—s2) — F(t; —s7)

por hipétesis y

F(l‘z —Sz) > F(l‘l —Sz)

F(l‘z —Sz) - F(l‘l —Sl)
por la proposicién 17. Asi, el primer determinante es no negativo. Con un argumento similar, podemos
ver que el segundo determinante es también no negativo, por lo tanto D > 0. Por la proposicién 17,
vemos que H tiene una tasa de fallo creciente.

Si la densidad f y/o g no existen se requiere un argumento limite para completar la demostracién.
O

En muchas ocasiones las convoluciones no tienen expresiones sencillas (por ejemplo, sumas de
exponenciales o gammas con distintos pardmetros de escala). Pero el resultado anterior nos indica que
podemos asegurar una tasa de fallo creciente si partimos de sumandos con tasa de fallo creciente.
Finalmente, tenemos el siguiente resultado acerca de la vida residual.

Proposicion 19. Si F tiene una tasa de fallo creciente, entonces la funcién de distribucion de vida
residual F; también tiene una tasa de fallo creciente.

Demostracion. Comprobacién directa. (Recuérdese (1.5)). ]

Mixturas con tasa de fallo crecientes

En el siguiente ejemplo vamos a ver como las mixturas de distribuciones con tasa de fallo creciente
no tienen por qué tener tasa de fallo creciente.

Ejemplo 4. Supongamos que ry(x) = 1 — e, ry(x) = a+ri(x). Si a < b < a*>/4, por ejemplo si

a = b > 4, entonces la mixtura con el mismo peso de las distribuciones correspondientes F; y F> tiene
una tasa de fallo r estrictamente decreciente aunque r; y r, sean ambas estrictamente crecientes.

Para ver esto, sea una mixtura con 7 = 7 = 5 donde las distribuciones respectivas tienen tasas de fallo

como las definidas arriba. Por la ecuacién (1.3) se tiene F>(x) = exp(— [i (a+ri(x)dx)) = e “F (x).
Por tanto, recordando la ecuacién (1.10) la tasa de fallo de la mixtura viene dada por:

23160 nF (x) B
r(x) = 2R () + 2h () ri(x)+ < - nFl(x)+7'rF2(x)> r(x) =ri(x)+a

luego, r/(x) < 0 para todo x si y solo si

F(x) <a’e /(1 4+e %)%

La inecuacién anterior se reduce a b(1 +e~%)? < a?e(=)x,

La parte izquierda de esta inecuacidn es estrictamente decreciente en x > 0, y como a < b, la parte
derecha es creciente en x. Para x = 0 se satisface la inecuacién si b < a* /4. Asf, la inecuacion se cumple
paratodo x > 0,sia < b < a/4.

—ax

1 4+eax’

Notar que en el ejemplo anterior, r, es positiva en 0 y r; esta acotada superiormente. Estas carac-
teristicas son esenciales para que la mixtura tenga una tasa de fallo decreciente. Asumiendo que la tasa
de fallo es diferenciable, Gurland J. and Sethuraman J. (1995) 90 pp. 1416-1423 [6] consiguieron una
condicién necesaria y suficiente para que la mixtura de dos distribuciones con tasas de fallo creciente
tuviese tasa de fallo decreciente; en el ejemplo anterior puede verse una comprobacion directa de esto.
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3.2.2. Tasas de fallo decrecientes

Un articulo tiene una tasa de fallo decreciente si a medida que envejece disminuye la probabilidad
de fallo (muerte). Por ejemplo, los humanos podemos mostrar una probabilidad decreciente a fallar en
un trabajo parcial a medida que ganamos experiencia y practica. Las mixturas son quizés la fuente mas
importante de distribuciones con tasa de fallo decreciente.

La siguiente proposicion fundamental es muy interesante para las aplicaciones.

Proposicion 20. Si F' es una mixtura de exponenciales, entonces tiene una tasa de fallo decreciente. En
general, si F tiene una funcién de densidad log-convexa, entonces tiene una tasa de fallo decreciente.

Demostracion. Este resultado se prueba con las proposiciones 10y 12. O

Notese que la densidad exponencial es log-lineal y por tanto, log-convexa. Las mezclas de distribu-
ciones exponenciales aparecen en muchas aplicaciones y esta es una fuente importante de distribuciones
con una tasa de fallo decreciente. En el articulo de Proschan F. (1963) 5 pp. 375-384 [11] puede verse
un ejemplo clasico de modelizacién de fallos en instalaciones de aire acondicionado con mezclas de
exponenciales.

Comentamos ahora algunas propiedades importantes sobre distribuciones con tasas de fallo decre-
ciente.

Proposicion 21. Supongamos que F(0~) =0y que F tiene una tasa de fallo decreciente. Entonces, F
tiene densidad excepto en el origen, donde puede tener masa positiva. Hay una versién f de la densidad
que es decreciente y cumple f(x) > 0, Vx > 0.

Demostracion. Una distribucién F tiene una tasa de fallo decreciente cuando R = —logF es céncava
en [0,o0). Por tanto, R tiene derivada continua para un conjunto numerable de puntos (ver proposicion
4). Donde esta derivada exista, servird como una densidad, en otro caso podemos definir la derivada
usando continuidad a derecha. Como R’ = f/F es decreciente (de nuevo por proposicién 4) y por tanto
f es decreciente puesto que f = R'F . Si hubiera un punto a < o tal que F(a) = 0, entonces, R(a) = oo
y la concavidad de R no se cumpliria (ya que R no podria definirse finita por debajo de a). Ademads, si
hay un punto b > 0 tal que F(b) = 1, entonces R(b) = 0y, como R es decreciente , de nuevo no hay
concavidad en R salvo R(x) = 0, ¥x > 0 pero entonces F no es una distribucion.

O

Resultados de preservacion de tasas de fallo decreciente.

Proposicion 22. Si F tiene una tasa de fallo decreciente, entonces la distribucion de vida residual F;,
también tienen una tasa de fallo decreciente.

Demostracion. Demostracion similar a la proposicion 19. O

Teorema 3. (Barlow R.E. and Proschan F. (1975)) [1]. La familia de distribuciones con una tasa de fallo
decreciente es cerrada bajo la formacién de mixturas.

Demostracion. La prueba es similar a la de la proposicion 10, sustituyendo densidades por funciones de
supervivencia. Recuérdese, por la proposicion 5, que si F tiene una tasa de fallo decreciente, entonces
F es log-convexa. 0

Las tasas de fallo decrecientes no se preservan bajo convolucién. La convolucién de exponenciales
(sumandos con tasa de fallo constante), como sabemos es de tasa de fallo creciente recuérdese el teorema

2 (o convolucién de distribuciones gamma de v = 3 (ambas con el mismo parametro de escala), que es

4 .
gamma con V = 3 y tiene tasa de fallo creciente).
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3.2.3. Tasas de fallo de tipo baifiera

La primera motivacion para el estudio de este tipo de tasas de fallo, viene dada por la idea de
suponer que un dispositivo u organismo proviene de una mezcla de individuos. Aquellos individuos con
defectos que amenazan su vida al nacer sufren una alta tasa de mortalidad prematura, pero a medida
que se envejece sin fallar, la probabilidad condicional de que un defecto que amenaza la vida esté
presente disminuye y, por lo tanto, la tasa de riesgo disminuye. Llega un momento (Illamémosle a), en
que las muertes por defectos congénitos es razonable asumir que ya no se producen y los accidentes se
convierten en la tinica causa significativa de muerte, por lo que la tasa de riesgo se mantiene constante.
Pero eventualmente, en el momento b (b >a), los efectos adversos de la edad comienzan a hacerse sentir
y la tasa de riesgo comienza a aumentar.

Definicion 19. Se dice que una distribucién tiene una tasa de fallo tipo bafiera si para algin 0 < a < b,
la tasa de fallo r(r) es decreciente en t, 0 < 7 < a es constante en el intervalo a < ¢ < b y es creciente en
t,t>b.

Mixturas con tasas de fallo de tipo banera

Sean F| y F, distribuciones asociadas a fallos debidos a defectos (F}) y a eventuales desgastes (F>),
respectivamente y 7 representa la proporcion de la poblacién con defectos de nacimiento. La funcién
de supervivencia de la mixtura serfa:

7'L'F1 (X) + ﬁ'Fz (x)

Se supone que hay un tiempo a después del cual no se producen muertes por defecto y también hay un
tiempo b antes del cual no ocurren muertes por desgaste. Sia < b, F} y F, tienen soporte en [0,a] y [b, o)
respectivamente, y los soportes de F y F> no se solapan. Cuando existen las densidades, la densidad de la
mixtura es 0 entre a y b. Esta densidad es poco realista en la prictica, ya que siempre existe la posibilidad
de que se produzca un fallo debido a un accidente, independientemente de la edad del dispositivo. Por lo
general, se supone que el tiempo de espera para un accidente se distribuye exponencialmente, ya que la
distribucién exponencial tiene una tasa de fallo constante o sea, se asume que el riesgo por accidente se
mantiene constante. Por lo tanto, el tiempo real de fallo es el tiempo minimo de espera para una muerte
por accidente y por otras causas. Debido a que la funcién de supervivencia del minimo de variables
aleatorias independientes es el producto de las funciones de supervivencia individuales, es decir,

P(min(Y,Z) >x) =P(Y >x)P(Z >x), x€R,

con Y el tiempo hasta el fallo debido a la mixtura y Z el tiempo hasta el fallo por accidente, es natural
considerar el modelo
F(x) = e M[rF (x) + 7F(x)] (3.2)
Es fécil comprobar que si F' viene dada por (3.2) entonces su tasa de fallo es la suma de las tasas de
fallo la parte exponencial y la de la mixtura 7F; (x) + @F>(x), esto es:

<b, (3.3)

donde r, es ka tasa de fallo correspondiente a F.

Ya que la distribucién F; tiene soporte [0, a], no puede tener una tasa de fallo decreciente. Pero bajo
ciertas condiciones, r puede disminuir en el intervalo [0,a).
Aunque el modelo (3.2) se usa a menuda para modelar tasa de fallo de tipo bafiera y explicar su presen-
cia, se necesitan condiciones adicionales para que (3.3) tenga forma de bafiera.
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Proposicion 23. Supongamos que r viene dado por (3.3). Una condicién necesaria (pero no suficiente)
para que r(x) sea decreciente en x € [0,a) es que la densidad f(x) sea decreciente en x € [0,a).

Demostracion. Para evitar las complicaciones de un argumento limite, supongamos que la densidad f;
es diferenciable. Entonces r es diferenciable en [0,a), y este 1’ es negativo si y s6lo si

(mF1 (x)7) + f{(x) + [fi(x))* <0.

Esto ocurre solo si f] (x) < 0. O






Capitulo 4

Fiabilidad en sistemas coherentes

Las familias de distribuciones de tiempos de vida se han estudiado principalmente en el contexto de
la teoria de la fiabilidad. La teoria que se ha desarrollado para estas familias ha implicado, por tanto, la
nocién de componentes y sistemas que pueden ser mecanicos, eléctricos, hidrdulicos e incluso bioldgi-
COS.

Este capitulo comienza con una discusidn de una clase de sistemas llamados sistemas coherentes
¢, los cuales estdn formado por distintos componentes y el funcionamiento de los mismos depende
del funcionamiento de uno, varios o todos los componentes. Dependiendo del nimero de componen-
tes necesarios para que el sistema funcione hablaremos de un sistema en serie, en paralelo o k de n.
Definiremos subconjuntos de trayectoria o de corte minimo y de cémo un sistema coherente puede
representarse por medio de estos subconjuntos. Hablaremos de la funcion de fiabilidad de un sistema
coherente y describiremos el tiempo hasta el fallo para componentes idénticamente distribuidas. En par-
ticular, mostraremos la conexidn entre los sistemas k de n y los estadisticos ordenados. Hablaremos del
concepto de transformacion de fallo y de si un sistema coherente se desgasta de la misma forma con la
que lo hacen sus componentes.

El estudio de tales sistemas, junto con ideas adicionales que se originaron en la teoria de la fiabilidad,
ayuda a explicar los origenes y la importancia de las familias no paramétricas discutidas en el capitulo
anterior.

4.1. Sistemas coherentes

Los sistemas coherentes aparecen por primera vez en un articulo de Birnbaum, Esary y Saunders
(1961) [4]. Este articulo escrito con la ayuda de los Laboratorios de Investigacion Cientifica de Boeing,
fue el comienzo de una larga serie de articulos que dieron resultados sobre sistemas coherentes. En este
capitulo tan sélo vamos a ver una breve introduccién a la teoria de los sistemas coherentes.

Los sistemas coherentes son un concepto fundamental en la teoria de la fiabilidad, aunque puedan
parecer de utilidad limitada. Se basan en la idea de que los componentes y sistemas sélo tienen dos
estados, funcionando (1) y fallando (0); en la préctica, es mds frecuente que los componentes y sis-
temas tengan una multitud de estados posibles. Sin embargo, en la mayoria de ocasiones, es posible
clasificar en cada uno de estos dos estados a los componentes, de modo que el estado del sistema queda
determinado por el estado de los componentes, haciendo ttil la nocién de sistema coherente.

4.1.1. Funciones de estructura del sistema

La idea principal es la premisa de que si el sistema es coherente, la reparacién de un componente
fallido no causa el fallo del sistema. Por tanto, la funcién ¢ que identifica el estado del sistema debe

21
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aumentar cuando aumentamos una de sus componentes de O (fallo) a 1 (funcionando). Uno no esperaria
que el sistema funcionara cuando todos los componentes han fallado y ni siquiera estaria interesado en
un sistema que no funcionara cuando todos los componentes funcionan. Estas ideas son la base de la
siguiente definicion.

Definicion 20. Una funcién binaria ¢ de n variables binarias se llama sistema coherente (de orden n) o
funcion de estructura coherente si:

(i) ¢(0,...,0)=0,
@) o(1,...,1)=1,
(iii) ¢ es creciente en cada uno de sus argumentos.

La intencion aqui es asumir que los componentes del sistema han sido etiquetados por los nimeros
1,2,...,n y asi para el argumento x; indicar si el i-ésimo componente del sistema estd funcionando
(x; = 1) o ha fallado (x; = 0). El valor de ¢ indica de la misma manera si el sistema estéd funcionando o
ha fallado.

Observacion 4. Para cualquier vector X = (xp,...,x,), sea (0;,X) el vector x alterado por la colocacion
de 0 en el i-ésimo lugar y sea (1;,x) el vector x alterado por la colocacién de 1 en el i-ésimo lugar. Con
esta notacion, se tiene,

¢(x) = xi9(1;,%) + (1 —x1)9(0;,x). 4.1)

A menudo se requiere de un sistema coherente en el que cada componente sea relevante; es decir,
para cada i, existe un x tal que ¢(0;,x) =0, ¢(1;,x) = 1. Este requisito no se impone en la definicién
anterior y, de hecho, a veces ni siquiera se imponen las propiedades (i) y (ii) de dicha definicién. La ra-
z6n de esto es que los sistemas ¢ (0;,x) y ¢(1;,X) con n— 1 componentes no necesariamente verificarian
las anteriores propiedades.

Los dos sistemas coherentes mas sencillos son:

n
1 Sistema en serie: ¢ (x1,...,x,) =min(xy,...,x,) = [] x;. (S6lo funciona si todas sus componentes
i=1
funcionan). Ver figura 4.1.

@ @ ——-@—— ((n unidades)

Figura 4.1: Diagrama de un sistema en serie

n
2 Sistema paralelo: §(xi,...,x,) = max(xy,...,x,) =1 —[](1 —x;). (S6lo funciona si una o mds
i=1
de sus componentes funcionan). Ver figura 4.2.

/
)
@ [ (nunidades)

+

Figura 4.2: Diagrama de un sistema en paralelo
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En un humano, dos ojos o dos pulmones podria considerarse el hecho de que forman un sistema
paralelo, sin embargo, dos piernas formarifan un sistema en serie, ya que ambas son necesarias para
caminar.

Un sistema coherente, estd acotado superiormente por el sistema paralelo e inferiormente por el
sistema en serie. En fiabilidad, se utilizan sistemas paralelos porque proporcionan redundancia para au-
mentar la vida ttil del sistema (es decir, ponemos componentes redundantes, pero asi el sistema dura
mds que con s6lo un componente).

Un sistema mds general es el sistema k de n que funciona si y solo si al menos k de las n com-
ponentes funcionan. Un sistema en serie es un sistema n de n y uno en paralelo es un sistema 1 de n.
Por ejemplo, un avién con tres motores, que puede volar con dos motores en funcionamiento forma un
sistema 2 de 3, dicho sistema tiene como funcién de estructura:

O(x1,x0,x3) =1 — (1 —x1x2) (1 — x1x3) (1 — xpx3) = X120 + X1X3 + X2x3 — 2X1 X2X3. 4.2)

Esta funcién de estructura es simétrica (no varia con permutaciones de sus argumentos) y ¢(0,0,0) =
¢(1,0,0) =0, ¢(1,1,0) = ¢(1,1,1) = 1. Si ¢ es una funcién de estructura coherente, entonces ¢p =
(I —xi,...,1 —x,) define otra funcién de estructura coherente, que llamaremos el dual de ¢. Ademads

(0p)p = 9.

4.1.2. Conjuntos de trayectoria y de corte

Como hemos mencionado antes, las componentes de un sistema coherente se denotan con los nu-
meros 1,2,...,n por tanto, cualquier subconjunto de componentes se denota con un subconjunto del
conjunto 1,2, ...,n. Se denomina conjunto de trayectoria de la estructura coherente ¢ a un subconjunto
P tal que ¢(x) = 1, cuando x; = 1, para todo i € P. Del mismo modo se denomina conjunto de corte de
la estructura coherente ¢ a un subconjunto C, tal que ¢ (x) = 0 cuando x; = 0, para todo i € C.

Se dice que el conjunto de trayectoria P es un conjunto de trayectoria minima si ninglin subconjunto
propio de P es conjunto de trayectoria minima y que el conjunto de corte C es un conjunto de corte mi-
nimo si ningtn subconjunto propio de C es conjunto de corte. Un sistema coherente puede representarse
o bien colocando las componentes de cada trayectoria minima en serie y luego colocando estos sistemas
en paralelo o colocando las componente de cada corte minimo en paralelo y luego colocar estos sistemas
en serie. Estas representaciones vienen dadas por :

¢ (x) = maxp minjcp, X; = minc maxiec; Xi, 4.3)
donde P es el conjunto de todos los conjuntos de trayectoria minima y C es el conjunto de todos los
conjuntos de corte minimo. De este modo la funcién de estructura (4.2) de un sistema 2 de 3, se convierte
en:

0 (x) = max[min(x,x2),min(x1,x3),min(x2,x3)| = min[max(xy,x2), max(xy,x3),max(xz,x3)]. (4.4)

La similitud de estas formas se debe al hecho inusual de que para un sistema 2 de 3 los conjuntos de
trayectoria minima y de corte minimo coinciden.

Ejemplo 5. Supongamos que los conjuntos de trayectoria minima son {1,2} y {3} y los de corte minimo
son {1,3} y {2,3}. La ecuacién (4.2) se convierte en:

0(x) = max {minlx;,x2], x5} = min {maxfx, 3], max{ra, ). 45)
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Figura 4.3: Diagrama del ejemplo 5 en términos de sistemas de conjuntos de trayectoria.

Figura 4.4: Diagrama del ejemplo 5 en términos de sistemas de conjutos de corte

La primera forma de esta estructura, se ilustra en la figura 4.3, y la segunda en la figura 4.4, donde
vemos que la componente 3 aparece dos veces ya que estd en los dos conjuntos de corte minimo.

4.2. Funciones de fiabilidad

En las aplicaciones, el estado de los componentes de un sistema coherente es aleatorio, y estdn
representados por variables aleatorias X; con distribuciones Bernoulli y se suele asumir que cada uno
funciona de modo independiente. Sea p; = P(X; = 1) = 1 — P(X; = 0) = EX;. Cuando los argumentos
de una funcién de estructura coherente son aleatorios, su valor esperado es una funcién de las p;. Las
funciones de fiabilidad tienen un papel muy importante en la teoria de sistemas coherentes.

Definicion 21. La funcién de fiabilidad h de un sistema coherente ¢ viene dada por,
h(piy....pn) =EO0(X1,...,X,), 0<p;<1, i=1,2,....n

donde se asume que Xi,...,X, son independientes y con distribucién Bernoulli con probabilidad de
éxito P.

La funcién de fiabilidad de un sistema en serie viene dada por h(py, ..., p,) = I1p; mientras que la de
un sistema paralelo viene dada por h(py,...,p,) = 1 —II(1 — p;) y la funcién de fiabilidad de un sistema
2de 3 es h(p1,p2,p3) = p1p2+ P1p3+ pap3 — 2p1p2p3. (Se obtienen al sustituir en las expresiones del
final de la pagina 22 y en la ecuacion (4.2) las x; por X; y tomando esperanzas). Cuando todos los tiempos
de vida de los componentes son independientes e idénticamente distribuidas, la funcién de fiabilidad
puede escribirse en funcién del valor comuin p. Por ejemplo, en este caso, el nimero de componentes
funcionando de un sistema k de n es una variable aleatoria binomial y por tanto su funcién de fiabilidad
es la probabilidad de que funcionen k o mas componentes, que podemos escribir como,

" /n ) ) P [kfl(l_t)nfk
h(p) = i—pyri=[ " g 0<p<l, 4.
(p) E(l.)p( p) /O Bln ki@ 0SP (4.6)

donde B es la funcién Beta y la integral viene de la ecuacién (1.12).

Supongamos ahora, que cada componente del sistema tiene un tiempo de vida 7;. Para cada instan-
te t, definimos X; = 0 o 1, segun la variable aleatoria 7; < f o T; > ¢, es decir, T; estd por debajo o por
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encima del umbral 7. Supongamos también que los 7; son independientes con distribucién ' comun. En-
tonces, en (4.6), Hy(t) = h(F (t)) es la funcién de supervivencia del estadistico ordenado (n—k+1) de
una muestra aleatoria de tamaifio n de F'. (Recuérdese que dadas 71, ..., 7, variables aleatorias indepen-
dientes e idénticamente distribuidas, el estadistico ordenado k-ésimo es el k-ésimo valor més pequefio
cuando se ordenan las variables de menor a mayor). La funcién de supervivencia de un estadistico orde-
nado la podemos encontrar en Rohatgi, V.K. and Ehsanes Saleh, A. K. Md. (2001) p.174 [14] y con ella
podriamos comprobar su coincidencia con la férmula (4.6). Esto es asi porque en un sistema k de n, el
fallo se produce en el instante en que se produce el fallo n-k+1. Asi, los sistemas k de n tienen interés
también fuera del ambito de la fiabilidad.

El siguiente resultado ser4 ttil para describir la forma de un sistema coherente.

Lema 2. (Esary.D., Marshall A.W y Proschan E., (1970) pp. 849-860) [5]. Si & es la funcién de fiabilidad
de un sistema coherente, entonces

h(p?,....p%) = [h(p1,...,pn)]%, 0< O < 1. 4.7)

Demostracion. (Barlow R.E. and Prochan F. (1975)) [2]. Para esta demostracion, es conveniente sim-
plificar la notacién primero. Denotaremos p® = (p?, ...,p%)yenelcasoenque 8 =1,p=(p1,...,pn).

Para probar la ecuacién por induccidn sobre n es conveniente probar el resultado para la clase de
funciones de fiabilidad de sistemas coherentes aumentados por las funciones idénticamente 0 o 1. El
lema es trivial para n = 1, ya que entonces h(p) = p, 0 < p < 1. Ahora, supongamos que el resultado
es cierto para n-1. Esto implica por la ecuacion (4.7) que,

h(12:p%) = [h(10,)]° v h(04,0%) > [A(04,0)]°.
Por la ecuacion (4.1),
h(p®) = ph(1,p%) + (1= p)h(0,,p%).
Juntando las dos anteriores,
h(p®) = py (1. p))° + (1= p) [1(0n, p))°
Queda por demostrar que el lado derecho de la inecuacién anterior es mayor o igual que
h(p1s- .., pu)]® = [puh(1n,p) + (1= pu)h(0,,p)]%, 0< O < 1.
Con la notacién hA(1,,p) =xy h(0,,p) =y, es necesario demostrar que para0 < p, <1y 0< 6 < 1,
pax® + (1=p)y? = (pux+ (1= pa)y)® >0, x>y > 0.

Fijamos y y consideramos en lado izquierdo de la ecuacién anterior como una funcién g(x) de x. Obsér-
vese que g(y) =0y que g'(x) >0cuandox >yyaque0< 6 < 1. O

4.3. Consideracion del tiempo: funciones de vida coherentes

En la discusion de sistemas coherentes, se introdujo el concepto de tiempo de fallo para componentes
idénticamente distribuidas para mostrar la conexién entre sistemas k de n y los estadisticos ordenados.
De manera més general, supongamos un sistema coherente, donde cada componente i lleva asociada un
tiempo de vida T}, con funcién de supervivencia F;. Llamamos T al tiempo de vida del sistema coherente.
Entonces, la funcién de supervivencia de 7' puede expresarse como

F(t) = h(F\(t),...,E(1)). (4.8)
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Es decir, cada componente funciona en el instante t con probabilidad P, = P(T; > t) = F;(t), y por la defi-
nicién 21, A(p;, ..., py) indica en el instante t, la probabilidad de que el sistema esté en funcionamiento,
es decir

h(pi,...,pn) =P(T >1t) =F(1). (4.9)

Para trabajar con sistemas coherentes es muy util tener en cuenta la transformada de fallo, que da la
transformada de fallo del sistema en términos de la transformada de fallo de los componentes, atin bajo
el supuesto de que los tiempos de vida de los componentes son independientes.

Definiciéon 22. La funcién ) que da la funcién de fallo del sistema en términos de las funciones de
fallo de los componentes se denomina transformada de fallo del sistema coherente. Més precisamente,
definimos 1) como,

N(P1,.--,Pn) = —logh(e P ....eP), 0<p; <o i=1,...,n

En particular si R; = —/logF; representa la funcién de fallo de cada T; (recuérdese (1.1)), podemos
escribir la funcién de fallo de T (recterdese (1.3)):

R(t) = —logF (1) = N(R1(1), ..., Ru(t)) = —logh(N) ... R ®) (4.10)

Ademds con la notacién introducida en la definicién 22, el lema 2 puede reescribirse en términos de
la transformada de fallo del sistema.

Proposicion 24. (Esary J.D., Marshall A.W. and Proschan F. (1970) pp. 849-860) [5]. La transformacién
de fallo 1 de un sistema coherente tiene forma estrellada en su dominio extendido, eso es dado p =

(P15---Pn)

Nap) <a(n(p))para0<a<1ly0<p;<e, i=1,2,...,n.

4.4. Desgaste

La nocién de una tasa de fallo creciente se introdujo en sus origenes debido a su atractivo intui-
tivo como una representaciéon matemdtica del "desgaste". En este apartado discutimos si un sistema
coherente se desgasta de la misma forma con la que lo hacen sus componentes.

Ejemplo 6. Sean T} y 7> tiempos de vida independientes exponencialmente distribuidas con parametros
A1y Ay. El sistema paralelo con componentes 77 y 75 tiene la siguiente funcién de supervivencia:

F(X) _ efllx_i_eflgx _ef()«HJLg)x7

(apliquese (4.8) a la funcién de fiabilidad de un sistema en serie que puede verse en la pagina 22). Y
una tasa de fallo r dada por:

_ f(x) _ )’le_klx +)“26_12x — (A‘l + 2‘2)6_(11_'%2))‘ _ Aox Aix Aox Ax
r(x) - F(x) a e*llx+€*12X—ef(ll+lz)x o [Ale P Ape™ — 1]/ [8 et 1]

La vida 1til de un sistema paralelo es el maximo de la vida ttil de los componentes. Se puede verifi-
car por diferenciacién que si A} = A, = A (las componentes estdn idénticamente distribuidas) entonces
la tasa de fallo anterior es creciente en x. Pero si A; # A, entonces la tasa de fallo no es creciente en x.

De un modo mds general, supongamos que dos componentes en paralelo tienen tiempos de vida
X e Y, distribuciones Fx y Fy y densidades fx y fy. Entonces, la vida itil del sistema Z = max(X,Y)
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tiene funcion de supervivencia Fz(x) = 1 — Fy(x)Fy(x), funcién de distribucion Fz(x) = Fy (x)Fy(x),
densidad f;(x) = fi(x)F,(x) + Fx(x) fy(x) y un tasa de fallo

r (X) _ fZ(x) _ fx(x)Fy(x) +F;C(x)fy(x)
2T Ry 1 — Fx (x)Fy (x)

Donde los coeficientes de rx(x), ry(x) representan, respectivamente, las tasas de fallo de las com-
ponentes X e Y. En el caso de que X e Y estén idénticamente distribuidas, con distribucién F' y tasas de
fallo r, entonces se tiene que la tasa de fallo de Z es

Fx(x)Fy (x) Ly (x) Fx(x)Fy(x)
1-FOF ) T )R ()

= rx(x)

o) =205y

si r es creciente, entonces, rz €s creciente.

Mas atin, tenemos este resultado general para sistemas k de n con componentes independientes e
idénticamente distribuidas. Fué dado por Barlow R.E y Proschan F. (1975) [2] y discutido por Samanie-
go F.J. (1985) [13].

Proposicion 25. Si todas las componentes de un sistema k de n estdn idénticamente distribuidas, son
independientes y tienen una tasa de fallo creciente, entonces el sistema tiene una tasa de fallo creciente.

Demostracién. Llamaremos H a la funcién de supervivencia del sistema. La monotonia de la tasa de
fallo se prueba viendo que la derivada del logH (t) es decreciente, usar la proposicién 15. Para ello,
es conveniente mostrar primero que la funcién de fiabilidad / de un sistema k de n, tiene la propiedad
de que ph'(p)/h(p) es decreciente en p. Usando la ecuacién (4.6) y diferenciando el integrando de la
derecha respecto de p (por el teorema fundamental del cdlculo) se tiene,

) pkfl(l _p)nfk
ph'(p) _ " Blkn—k+1) _ pa-pmt
h(p) N (O L Pok=10q _ yn—k
iy

~1
ptk_l 1—1¢ n—k -1 1 1— n—k
U Gl dt} _ / = (””) du|
Jo pr(1=p)" Jo I—p
Nétese que en la ultima igualdad se ha hecho el cambio de variable t=pu. Para ver que la expresion
anterior es decreciente basta derivar el integrando de la derecha respecto de p.

Ahora, sea F' la distribucién comin de los componentes de un sistema k de n y sea H la distribucion de
la vida util del sistema. Entonces,

diogh (1) _ dlogh(F (1)) _ [Fc)h'(F(r))] £(0)
dt dt h(E(t)) | F(t)

El primer factor de la igualdad anterior es creciente ya que tanto F(¢) como ph'(p)/h(p) son decre-
cientes. La segunda parte es también creciente puesto que F es log-céncavo. Asi la ecuacién anterior es
decreciente en t porque es el negativo del producto de dos funciones crecientes no negativas. O

Nota 1. El ejemplo 6 muestra que la clase de distribuciones con una tasa de fallo creciente no es cerrada
con la formacién de sistemas coherentes es decir, un sistema coherente puede tener componentes con
una duracién de vida independiente donde todos tienen tasa de fallo creciente, pero eso no significa que
la duracién del sistema tenga tasa de fallo creciente. Es decir, el resultado anterior no se puede extender
a sistemas coherentes generales.
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