
Distribuciones de tiempos de vida
y aplicaciones

Lorena Garcés Vijuesca
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Directora del trabajo: Carmen Sangüesa Lafuente
14 de septiembre de 2018





Abstract

This work is a brief introduction to lifetime distributions, that is, to the probabilistic description of
random variables that model lifetimes, for example, of a machine or a human being.

In the first chapter we begin by defining the main concepts and functions to be used. We recall
the basic probabilistic functions of a random variable X, such as the distribution function F, survival
function F̄ and probability density function f.
We will introduce very useful concepts in reliability theory, like the hazard function R(x) =−logF̄(x).
When X has density, the derivative almost everywere of the hazard function defines the hazard rate.
That is, the hazard rate is defined as r(x) = f (x)/F̄(x) if F̄(x)> 0. We will also define the residual life
distribution Ft , which is the conditional distribution of the remaining life given the survival until time
t. We will see some basic properties verified for these functions. We define the concept of mixture and
how it appears in a natural way in our setting. We will also recall the main univariate distributions of
interest in reliability.

In the study of the monotonicity of hazard rates, the concavity and convexity of the logF̄ play a
fundamental role, so that in the second chapter we recall concepts such as convex or concave functions.
We will also see how the log concavity of a function is closely related to the concept of total positi-
vity. Thus, we shall define the concept of totally positive function of order k (T Pk) and the concept
of Pólya frequency function of order k (PFk) and how those concepts are related to log-concavity and
log-convexity.

The third chapter is a fundamental part of the work, in which we study in depth the hazard rates.
We will begin by defining the concepts of log-concave and log-convex density function and how they
condition their distribution and survival functions to be log-concave or log-convex.
We will give an alternative definition of hazard rate using the notion of residual life and we will see
propositions that relate the monotonicity of hazard rates to the log-concavity (convexity) of the survival
function, which allow us to give characterizations of monotone hazard rates in terms of determinants.
We will study in depth the increasing and decreasing hazard rates and some specific properties of these
ones. Two aspects to remark are, firstly, that the convolutions of distributions with increasing hazard
rates have increasing hazard rate and, secondly, that mixtures of distributions with decreasing hazard
rates have decreasing hazard rates. We will also study bathub hazard rates which are of great interest as
they combine decreasing, constant and increasing hazard rates.

Finally, in the fourth and final chapter we introduce coherent systems, one of the most important
probabilistic models in reliability theory. A coherent system is made up of different components, and
the operation of the system depends on the operation of one, several or all of the components that make
it up (for example, consider an aircraft (system) with several engines (components)). Depending on
the number of components required for the system to work, we will distinguish a series, parallel or
k-out-of-n systems.
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IV Abstract

We will consider the reliability function of a coherent system and its expression in each of the systems
we have described. We will introduce the notion of system lifetime as a function of the lifetimes of its
components. In particular, we will investigate the connection between the lifetime of a system k-out-
of-n and the concept of order statistics. We will also express the hazard function of the lifetime of a
coherent system by means of the hazard function of the component lifetimes. Finally, we will discuss
whether a coherent system wears out in the same way as its components do.
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Capítulo 1

Conceptos preliminares de cálculo de
probabilidades

En este primer capítulo sentaremos las bases de lo que va a ser nuestro trabajo, definiendo funciones
y conceptos básicos en la teoría de la probabilidad y ampliando con otros muy útiles en fiabilidad, que
utilizaremos en el resto de capítulos.

1.1. Funciones asociadas a una variable aleatoria

Comenzamos definiendo funciones probabilísticas básicas relacionadas con una variable aleatoria.

Definición 1. Sea Ω un espacio de probabilidad y X : Ω→ R una variable aleatoria. Se denomina
función de distribución de la variable aleatoria X a la función F , definida sobre el intervalo (-∞, ∞)
dada por

F(x) = P{X ≤ x}, ∀x ∈ R.

Esta función de distribución es monótona no decreciente, continua por la derecha y tiene límites a
izquierda en todo su dominio. Además, lı́mx→−∞ F(x) = 0 y lı́mx→∞ F(x) = 1.

Definición 2. Dada una variable aleatoria X con función de distribución F , llamamos función de super-
vivencia a la función F̄ , definida sobre el intervalo (-∞, ∞) dada por

F̄(x) = P{X > x}= 1−F(x), ∀x ∈ R.

Obviamente, al ser el complementario de la función de distribución es monótona decreciente y
lı́mx→−∞ F̄(x) = 1 y lı́mx→∞ F̄(x) = 0.

Definición 3. Sea X una variable aleatoria que toma valores sobre un conjunto discreto x1,x2, . . . ,xn, . . .
y sea p(xi) = P{X = xi}, i = 1,2, ..., entonces,

F(x) = ∑
xi≤x

p(xi), ∀x ∈ R.

donde p se denomina función de masa de probabilidad de la variable aleatoria X .

Definición 4. Suponer que existe una función f medible no negativa, tal que

F(x) =
∫ x

−∞

f (z) dz, ∀x ∈ R.,

entonces, X (o F) se dice absolutamente continua y f se llama función de densidad de probabilidad de
la variable aleatoria X (o F).
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2 Capítulo 1. Conceptos preliminares de cálculo de probabilidades

La tasa de fallo, que definimos a continuación, tiene gran interés en el contexto de fiabilidad (con-
fiabilidad). Si la variable aleatoria muestra la vida útil de una unidad o individuo, esta función mide la
probabilidad de fallo instantáneo en el momento x. En primer lugar, introduciremos la función de fallo.

Definición 5. Llamamos función de fallo de F o de X , a la función R, definida sobre el intervalo (−∞,∞)
tal que,

R(x) =− log F̄(x). (1.1)

Notar que R(x) = ∞ si F̄(x) = 0 y que para una variable aleatoria no negativa, R(0−) = 0. R es
decreciente, y lı́mx→∞ R(x) = ∞. Además cualquier función con estas características es una función de
fallo.

La derivada de la función de fallo, (si existe), define la tasa de fallo, que tiene una interpretación
más intuitiva.

Definición 6. Sea F una función de distribución absolutamente continua con función de densidad f ,
llamamos tasa de fallo de F o de X a una función r definida sobre el intervalo (−∞, ∞) tal que,

r(x) =


f (x)
F̄(x)

, si F̄(x)> 0,

∞, si F̄(x) = 0.

(1.2)

Las tasas de fallo no son únicas ya que las densidades tampoco lo son. La mayoría de las veces,
se hace referencia a tasa de fallo cuando F es absolutamente continua y R diferenciable, entonces su
derivada es una tasa de fallo, r.
Para comprender mejor las tasas de fallo es útil tener en cuenta que

r(x) = lı́m
4↓0

P[x < X ≤ x+4|X > x]
4

.

Así, si X representa por ejemplo, el tiempo de vida de una máquina, la probabilidad anterior repre-
senta la probabilidad instantánea de fallo en x, dado que se ha llegado con vida a ese momento. Nótese
que de las ecuaciones (1.1) y (1.2) cuando F(0) = 0, tenemos la siguiente ecuación:

F̄(x) = exp {−R(x)}= exp {−
∫ x

0
r(z) dz}. (1.3)

que muestra cómo obtener la función de supervivencia a partir de R y de r. Notemos que la segunda
parte de la ecuación sólo se cumple si F es absolutamente continua.

Tasas de fallo monótonas

Una función de distribución F , se dice que tiene una tasa de fallo creciente si tiene una densidad f
para la cual r = f/F̄ es creciente. Con una tasa de fallo creciente, la probabilidad de fallo en un instante
de tiempo aumenta a medida que el dispositivo u organismo envejece, que puede entenderse como una
descripción matemática del "desgaste". La noción similar de una tasa de fallo decreciente es de menor
interés, ya que puede considerarse como una descripción matemática de "mejora con la edad". De todos
modos, hay ejemplos claros de artículos que mejoran con los años (vino, queso,...) luego hay aplicacio-
nes también de este concepto.

La siguiente función no tiene una interpretación tan intuitiva, pero resulta útil para describir propie-
dades de forma de una variable aleatoria.
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Definición 7. Llamamos función de fallo inversa de F o de X a la función S definida sobre el intervalo
(-∞, ∞) tal que,

S(x) = logF(x).

Notar que S(x) =−∞, si F(x) = 0.

Sea F una función de distribución absolutamente continua con función de densidad f , llamamos
tasa de fallo inversa de F o de X a una función s definida sobre el intervalo (-∞, ∞) tal que,

s(x) =
f (x)
F(x)

.

Notar que S(x) = logF(x) y R(x) =− log F̄(x), tal y como las hemos definido, ambas funciones son
decrecientes. Además r y s cumplen las siguientes relaciones de monotonía.

Proposición 1. La función de fallo r y la función de fallo inversa s, tienen las siguientes propiedades
de monotonía:

s es creciente⇒ r es creciente,
r es decreciente⇒ s es decreciente.

Su recíproco no es cierto.

Demostración. La prueba de estos resultados pueden obtenerse fácilmente de la relación
r(x) = s(x)(F(x)/F̄(x)). La primera implicación se verifica, por ejemplo, dado que, si s es creciente
entonces r es producto de funciones crecientes.

Para las definiciones siguientes, consideramos variables aleatorias no negativas. Dichas definiciones
vienen motivadas por el estudio de tiempos de vida de sistemas.

Definición 8. Sea F función de distribución tal que F(0) = 0. La distribución de la vida residual, Ft de
F , cuando t ≥ 0 es tal que F̄(t)> 0, viene dada por,

F̄t(x) =
F̄(x+ t)

F̄(t)
, x≥ 0.

Si F tiene función de densidad f , entonces Ft tiene función de densidad ft y tasa de fallo rt dadas
por,

ft(x) =
f (x+ t)

F̄(t)
, x≥ 0, (1.4)

rt(x) =
f (x+ t)
F̄(x+ t)

= r(x+ t), x≥ 0. (1.5)

La distribución de vida residual Ft es una distribución condicional de la vida restante dada la super-
vivencia hasta el tiempo t. Así, F̄t(x) = P(X > x+ t| X > t) representa la probabilidad de sobrevivir x
unidades más sabiendo que se ha llegado con vida a un instante t. La distribución de vida residual es de
bastante interés práctico ya que resulta interesante considerar el tiempo de vida restante de un sistema
(coches usados, personas,...) una vez que se ha alcanzado la edad t.

El siguiente resultado relaciona el valor esperado de una variable aleatoria con sus funciones de
distribución y supervivencia. Será útil en la definición de tiempo medio de vida residual.
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Proposición 2. Sea X una variable aleatoria con funciones de distribución y supervivencia F y F̄ res-
pectivamente, se tiene:

EX =
∫

∞

0
F̄(x) dx−

∫ 0

−∞

F(x) dx

Para variables aleatorias no negativas, es decir, para distribuciones tales que F(x) = 0 para x < 0,

EX =
∫

∞

0
F̄(x)dx.

Demostración. Su prueba se puede encontrar en Billingsley P. (1995) p. 79 [3]. En primer lugar se
demuestra para variables discretas y por aproximación, se tiene para cualquier variable aleatoria.

Definición 9. Sea F función de distribución tal que F(0) = 0. La función de vida media residual m(t)
es la media de la distribución de vida residual Ft en función de t. Esto es m(t) =

∫
∞

0 x dFt(x) si F̄(t)> 0,
0 en otro caso.
Cuando F tiene media finita µ , entonces la función de vida media residual viene dada por (téngase en
cuenta el resultado anterior y la definición 8),

m(t) =


∫

∞

0

F̄(x+ t)
F̄(t)

dx =
∫

∞

t

F̄(z)
F̄(t)

dz para t si F̄(t)> 0,

0 si F̄(t) = 0.
(1.6)

1.2. Mixturas de distribuciones

Sean F1 y F2 funciones de distribución y 0 < π < 1. Si consideramos

F = πF1 + π̄F2, (1.7)

donde π̄ = 1− π o, equivalentemente, F̄ = π, F̄1 + π̄F̄2 entonces decimos que F es una mixtura de
F1 y F2. F es obviamente, una función de distribución.

A menos que F sea la función de distribución de una variable aleatoria constante, F se puede ex-
presar como una mixtura de dos distribuciones diferentes en infinitas formas, por lo que una mixtura
no tiene una expresión única. Sin embargo, podemos encontrar ejemplos donde las mixturas aparecen
de forma natural. Si F representa la distribución del tiempo de vida de un humano en una determinada
población, dicho tiempo de vida podría depender del género (hombre - mujer) y entonces ese tiempo de
vida tendría una expresión natural en términos de mixtura.
Además puede darse el caso de que las diferentes subpoblaciones tengan una estructura más comple-
ja piénsese por ejemplo, en seguros de coche y el tiempo hasta un accidente en diferentes grupos de
asegurados, lo que motiva lo siguiente:

Definición 10. Sea F = {Fθ | θ ∈ Θ} una familia de funciones de distribución y G una función de
distribución que toma valores en Θ. Entonces, la mixtura de F respecto de G viene dada por,

F(x) =
∫

Θ

Fθ (x) dG(θ). (1.8)

Las mixturas también reciben el nombre de distribuciones compuestas.

Las funciones de densidad (si existen) y las de supervivencia de mixturas son mixturas de las fun-
ciones de densidad y supervivencia correspondientes, esto es:

f (x) =
∫

Θ

fθ (x) dG(θ) y F̄(x) =
∫

Θ

F̄θ (x) dG(θ).
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Para la función de fallo y tasa de fallo las expresiones anteriores en términos de mixturas, no se
verifican. Cuando las distribuciones Fθ de la ecuación (1.8) tienen función de densidad fθ , F tiene tasa
de fallo

r(x) =
∫

Θ
fθ (x) dG(θ)∫

Θ
F̄θ (x) dG(θ)

, (1.9)

que, obviamente, no es la mixtura de las tasas de fallo.

Volvamos al caso particular de (1.7) donde F es la mixtura de dos distribuciones F1 y F2, con
funciones de densidad respectivamente f1 y f2. Entonces la mixtura tiene densidad π f1(x)+ π̄ f2(x) y si
r1 y r2 son las tasas de fallo de F1 y F2, se tiene

r(x) =
π f1(x)+ π̄ f2(x)
πF̄1(x)+ π̄F̄2(x)

= p(x)r1(x)+ p̄(x)r2(x), (1.10)

donde

p(x) =
πF̄1(x)

πF̄1(x)+ π̄F̄2(x)
y p̄(x) = 1− p(x).

Este caso especial tiene bastante importancia en fiabilidad, más adelante trabajaremos sobre él.

1.3. Ejemplos de familias paramétricas

Las siguientes distribuciones; exponencial, Gamma, Weibull y Beta, tienen un gran interés en el
ámbito de la fiabilidad, recordamos sus definiciones y algunas de sus propiedades. Además, recordamos
la distribución binomial, que se utilizará en el capítulo 4.

1.3.1. Distribución exponencial

Para esta distribución, el parámetro λ > 0 es un parámetro de escala, la función de densidad de esta
distribución viene dada por f (x) = λe−λx para x≥ 0.
En este caso es fácil ver

F̄(x) = e−λx, x≥ 0,

F(x) = 1− e−λx, x≥ 0 y

r(x) = λ , x≥ 0.

por tanto, la tasa de fallo es constante (el sistema ni mejora ni empeora con la edad). Más aún, si X tiene
distribución, exponencial, es fácil ver que

P(X > x+ t/X > t) =
F̄(x+ t)

F̄(t)
= F̄(x) = P(X > x),

es decir, la distribución del tiempo de vida residual a partir de un tiempo t coincide con la distribución
original. Esta propiedad se conoce como ausencia de memoria.

Si X tiene una distribución exponencial con parámetro λ , para r >−1,

µr = EX r =
∫

∞

0
xr

λe−λx dx = Γ(r+1)/λ
r,

donde Γ es la función Gamma, esto es Γ(t) =
∫

∞

0 tz−1e−tdt. La distribución exponencial es una de las
distribuciones más frecuentemente utilizadas para modelizar tiempo de vida. Sin embargo, en situa-
ciones en las que no resulta realista utilizar esta variable, las distribuciones gamma y Weibull son una
alternativa bastante flexible.
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1.3.2. Distribución Gamma

La función de densidad gamma depende de nuevo de un parámetro escalar λ > 0 y además depende
de un parámetro de forma ν > 0. Ésta viene dada por

f (x | λ ,ν) = λ
νxν−1e−λx/Γ(ν), x≥ 0.

La función de densidad de la distribución gamma tiene una expresión sencilla, pero la función de
supervivencia y la función de tasa de fallo tienen forma explícita sólo para valores de ν naturales.
Observamos que con el parámetro ν = 1, se tiene la distribución exponencial, ν < 1 daría una densidad
decreciente (en su soporte) y ν > 1 una densidad unimodal.

1.3.3. Distribución Weibull

Esta familia de distribuciones tiene un parámetro escalar λ y un parámetro de forma α , ambos
positivos. A diferencia de la distribución Gamma, la función de supervivencia aquí tiene una forma más
simple, ya que se define como

F̄(x) = exp{−(λx)α}, x≥ 0.

Y la función de densidad viene dada por,

f (x) = αλ (λx)α−1exp{−(λx)α}, x≥ 0.

Por tanto, tiene una tasa de fallo,
r(x) = αλ (λx)α−1, x≥ 0.

Observamos como r es creciente para α > 1 y decreciente para α < 1. La distribución Weibull, es otra
familia que incluye la distribución exponencial (α = 1).

1.3.4. Distribución Beta

Definición 11. Llamamos función beta a la función:

B(u,v) =
∫ 1

0
tu−1(1− t)v−1dt (1.11)

La integral anterior es finita para 0 < u, v < ∞. Aunque el dominio de la función beta puede ser
extendido, éste es con el que trabajaremos. La función de densidad de la distribución beta viene dada
por:

f (x) =
1

β (u,v)
xu−1(1− x)v−1, para todo x ∈ [0,1].

La distribución beta y la cola de una distribución binomial

Consideramos una distribución binomial. Esto es dado n ∈ N y 0 < p < 1, tomamos una variable
aleatoria discreta cuya función de masa viene dada por P(X = j) =

(n
j

)
p j(1− p)n− j, j = 0,1,2, . . . ,n.

Recordamos que la distribución binomial cuenta con el número de éxitos en n ensayos independientes
(lanzamiento de una moneda; éxito = cara, por ejemplo), cuando la probabilidad de éxito en cada ensayo
es p. La fórmula

n

∑
j=k

(
n
j

)
p j(1− p)n− j =

∫ p
0 tk−1(1− t)n−kdt
B(k,n− k+1)

, (1.12)

da una conexión bien conocida y a menudo útil entre la cola superior de una distribución binomial y
distribución beta. O alternativamente, podemos escribir (considerando la cola inferior de la binomial).

k−1

∑
j=0

(
n
j

)
p j(1− p)n− j =

∫ 1
p tk−1(1− t)n−kdt

B(k,n− k+1)
. (1.13)

Esta fórmula puede probarse por inducción sobre k integrando por partes. (Marshall A.W and Olkin I.
(1993) 30 pp. 497-508) [8]. Utilizaremos esta relación en el capítulo 4 página 24.



Capítulo 2

Preliminares analíticos: Convexidad y
positividad total

La convexidad y la positividad total son una herramienta analítica fundamental en nuestro trabajo.
En este capítulo veremos un breve resumen de los aspectos más importantes sobre estos conceptos que
serán de gran utilidad en el estudio de las distribuciones de tiempos de vida.

2.1. Concavidad y convexidad: funciones log-cóncavas y log-convexas.

En el estudio de la monotonía de las tasas de fallo juega un papel fundamental la concavidad y
convexidad del logaritmo de F̄ . Para ello, recordamos algunas cuestiones relativas a estos conceptos
que podemos encontrar en Rockafeller R.T. (1970) [12]

Definición 12. Decimos que un subconjunto A de Rn es convexo si para todo x, y ∈ A se verifica
αx+ ᾱy ∈ A ∀ α ∈ [0,1], siendo ᾱ = 1−α.

Definición 13. Sea φ una función real definida en un conjunto convexo A. Decimos que φ es una función
convexa si

φ(αx+ ᾱy)≤ αφ(x)+ ᾱφ(y) ∀ x,y ∈ A y ∀ α ∈ [0,1].

Si se invierte la desigualdad decimos que la función es cóncava; es decir φ es cóncava⇔−φ es convexa.
Por otra parte, una función φ se dice log-cóncava si logφ es cóncava. Para evitar desigualdades involu-
crando al infinito, diremos que φ es log-cóncava si y sólo si:

φ(αx+ ᾱy)≤ φ(x)α
φ(y)1−α , ∀ x,y ∈ A. (2.1)

Las siguientes proposiciones son útiles para el estudio de estas funciones. Se enuncian para la con-
vexidad. Las correspondientes proposiciones para la concavidad pueden obtenerse mediante un cambio
de signo, (φ cóncava⇒ - φ convexa).

Proposición 3.

i) Una función φ definida en A es convexa si y sólo si g(α) = φ(αx+ ᾱy) es una función convexa
en α ∈ [0,1] ∀ x,y ∈ A.

ii) En el caso n = 1 y A = I un intervalo, φ es convexa si y solo si

φ(y1)−φ(x1)

y1− x1
≤ φ(y2)−φ(x2)

y2− x2
cuando x1 < y1 ≤ y2, x1 ≤ x2 < y2.

iii) En el caso n = 1 y A = I un intervalo, φ es convexa si y solo si

φ(x+4)−φ(x) es creciente en x ∀4> 0.

7
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iv) Si n = 1, A = (a,b) es un intervalo abierto y φ es diferenciable en (a,b), entonces φ es convexa si
y solo si la derivada φ ′ de φ es creciente en (a,b).

v) Si n = 1, A = (a,b) es un intervalo abierto y φ es dos veces diferenciable en (a,b), entonces φ es
convexa si y solo si la segunda derivada φ ′′ de φ es no negativa.

Además se tiene este resultado muy útil acerca de la diferenciabilidad de funciones convexas.

Proposición 4. Sea φ una función finita convexa definida en un intervalo abierto I ∈ R. Entonces φ es
diferenciable excepto posiblemente en un subconjunto contable de I. Además, φ ′ es continua y creciente
en relación con el subconjunto denso D ∈ I donde φ es diferenciable.

Demostración. La demostración de esta proposición se puede encontrar en Rockafeller R.T. (1970) p.
244 [12].

El siguiente resultado nos habla de la preservación bajo composición.

Proposición 5. Sean φ1,φ2, ...,φk funciones convexas definidas en el conjunto convexo A ∈ Rn y sea h
una función convexa creciente definida en Rk, entonces ψ(x) = h(φ1(x),φ2(x), ...,φk(x)) es convexa en
A. De manera análoga, si φ1,φ2, ...,φk son funciones cóncavas definidas en el conjunto convexo A∈Rn y
h es una función cóncava creciente definida en Rk, entonces ψ(x) = h(φ1(x),φ2(x), ...,φk(x)) es cóncava
en A.

En particular, cuando k = n = 1 y A = R resulta que:

(i) Si φ es convexa y h es creciente y convexa, entonces h(φ(·)) es convexa.

(ii) Si φ es cóncava y h es creciente y cóncava, entonces h(φ(·)) es cóncava.

(iii) Si φ es convexa y h es decreciente y cóncava, entonces h(φ(·)) es cóncava.

(iv) Si φ es cóncava y h es decreciente y convexa, entonces h(φ(·)) es convexa.

Observación 1.

a) Si en los apartados anteriores las hipótesis relativas a la convexidad (concavidad) de h se susti-
tuyen por la log-convexidad (log-concavidad), entonces la composición h(φ(·)) es log-convexa
(log-cóncava).

b) La suma de funciones convexas es convexa y la suma de funciones cóncavas es cóncava. El
producto de funciones log convexas es log-convexo y el de funciones log cóncavas es log-cóncavo.

La siguiente proposición muestra la relación entre concavidad y log-concavidad.

Proposición 6.

(i) Si φ es una función positiva y logφ es convexo, entonces φ es convexa.

(ii) Si φ es una función positiva cóncava, entonces logφ es cóncavo.

2.2. Positividad total

La log-concavidad de una función está muy relacionada con el concepto de positividad total. Una
referencia fundamental (en la que podemos encontrar los resultados que veremos a continuación) es el
libro de Karlin S. (1968) [7].
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Definición 14. Sean A, B subconjuntos de R. Una función real K definida en A x B se dice que es total-
mente positiva de orden k, T Pk, si para todo x1 < · · ·< xm, y1 < · · ·< ym (xi ∈A, yi ∈B),y para todo m,1≤
m≤ k,

K
(

x1, ...,xm

y1, ...,ym

)
≡

∣∣∣∣∣∣∣
K(x1,y1) · · · K(x1,ym)

...
...

K(xm,y1) · · · K(xm,ym)

∣∣∣∣∣∣∣≥ 0.

En el caso particular en que m = 2, se tiene:

K
(

x1,x2
y1,y2

)
≡
∣∣∣∣K(x1,y1) K(x1,y2)
K(x2,y1) K(x2,y2)

∣∣∣∣= K(x1,y1)K(x2,y2)−K(x2,y1)K(x2,y1)≥ 0.

Cuando las desigualdades anteriores son todas estrictas, decimos que K es estrictamente positivo
total de orden k (ST Pk). Si K es T Pk (ST Pk) para todo k = 1,2, . . . , se dice que es positiva total (estric-
tamente positiva total) de orden ∞,T P∞ (ST P∞).

Ejemplo 1. La función indicador

K(x,y) =

{
1 si x≤ y,
0 si x > y,−∞ < x,y < ∞,

es T P∞.

Ejemplo 2. La función indicador

K(x,y) =

{
0 si x < y,
1 si x≥ y,−∞ < x, y < ∞,

es T P∞.

Estos ejemplos concretos serán de gran utilidad en el capítulo siguiente. Finalmente, damos la si-
guiente definición que relacionará la positividad total de orden 2 con la log-concavidad o convexidad.

Definición 15. Una función f con valores reales, definida en (−∞,∞) se dice que es una función de
frecuencias de Pólya de orden k (PFk) si la función K(x,y) = f (y− x),−∞ < x, y < ∞, es totalmente
positiva de orden k.

Tenemos las siguientes proposiciones acerca de la log-concavidad y log-convexidad.

Proposición 7. La función
K(x,y) = f (y− x),−∞ < x, y < ∞, (2.2)

es T P2 si y solo si f es no negativa y el logaritmo de f es cóncavo en (−∞,∞).

Así, log-concavidad equivale a PF2. Para funciones log-convexas se tiene:

Proposición 8. La función
K(x,y) = f (y+ x), 0≤ x, y < ∞,

es T P2 en x, y≥ 0 si y solo si f es no negativa y log de f es convexo en [0,∞).

El siguiente resultado va a ser utilizado en el teorema 2. Se le suele llamar fórmula de composición
básica, y puede considerarse una generalización de la fórmula de Binet-Cauchy en teoría de matrices.

Lema 1. Sean K y L funciones reales definidas en A x B y B x C, respectivamente, donde A, B y C
son subconjuntos de R Si σ es una medida real σ − f inita y la integral definida sobre B M(x,y) =∫

BK(x,z)L(z,y) dσ(z) converge absolutamente, entonces con la notación utilizada en la definición 14,

M
(

x1, ...,xm

y1, ...,ym

)
=
∫
· · ·
∫

z1<···<zm

K
(

x1, ...,xm

z1, ...,zm

)
L
(

z1, ...,zm

y1, ...,ym

)
dσ(z1) · · ·dσ(zm).
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Una consecuencia de la fórmula de composición básica es el siguiente teorema, una de las propie-
dades más básicas y útiles de las funciones totalmente positivas.

Teorema 1. Si K es T Pm en A x B, L es T Pn en B x C, y σ es una medida real σ − f inita, entonces

M(x,y) =
∫

B
K(x,z)L(z,y) dσ(z).

es T Pmin(m,n) en A x C.



Capítulo 3

Familias no paramétricas: Densidades y
tasas de fallo

Este tercer capítulo constituye una parte fundamental del trabajo, en él estudiamos en profundidad
las tasas de fallo. Comenzaremos el capítulo definiendo los conceptos de función de densidad log-
cóncava y log-convexa, veremos que las primeras son unimodales y también cómo condicionan a sus
funciones de distribución y función de supervivencia a ser log-cóncavas o log-convexas. Daremos una
definición alternativa de tasa de fallo utilizando la noción de vida residual y veremos proposiciones
que relacionan la monotonía de las funciones de fallo con la log-concavidad (convexidad) de la función
de supervivencia y nos permiten dar las caracterizaciones de tasas de fallo monótonas en términos de
determinantes. Veremos las tasas de fallo crecientes y decrecientes y algunas propiedades específicas
de distribuciones con esta propiedad y las tasas de fallo de tipo bañera que son de gran interés ya que
combina tasa de fallo decreciente, constante y creciente.

3.1. Densidades log-cóncavas y log-convexas

Las densidades log-cóncavas y log-convexas son muy interesantes en el estudio de tiempos de vida
ya que muchas de las densidades que se utilizan más frecuentemente en este contexto tienen dichas
propiedades. Veremos como una tasa de fallo creciente (decreciente) puede relacionarse con la log-
concavidad (log-convexidad) de la densidad.

Definición 16. Si F es una función de distribución absolutamente continua, con f función de densidad
y ésta es log-cóncava en R entonces, se dice que F tiene una función de densidad log-cóncava. Si
f (x) = 0, x < 0 y f es log-convexo en [0,∞), entonces se dice que F tiene una función de densidad
log-convexa.

El logaritmo de muchas densidades estándar es cóncavo o convexo. Por la proposición 3 (iv), pode-
mos ver que:

(i) La densidad de la normal, f (x) =
1√

2πσ
exp
{
−(x−µ)2

2σ2

}
, −∞ < x < ∞ es log-cóncava.

(ii) La densidad de una gamma, es log-cóncava para ν ≥ 1 y log-convexa para ν ≤ 1.

(iii) La densidad de Weibull, es log-cóncava para α ≥ 1 y log-convexa para α ≤ 1.

Demostración. Comprobemos, por ejemplo (ii): Tomamos logaritmos en la función de densidad de una

gamma de manera que se tiene, log f (x) = log
(

λ ν

µ(ν)

)
+(ν−1)logx−λx. Derivamos respecto de x:

d
dx

log f (x) =
ν−1

x
− λ . Así la derivada será decreciente si ν > 1, creciente si ν < 1 y constante si

ν = 1 (exponencial), y por la proposición 3 (iv) se tiene el resultado.

11
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Vamos a ver algunos resultados sobre distribuciones con densidades log-cóncavas y log-convexas.
Comenzaremos con la siguiente proposición que trata de la unimodalidad de densidades log-cóncavas.

Proposición 9. Las densidades log-cóncavas son unimodales, es decir, no disminuyen hasta cierto punto
y no aumentan más allá de ese punto.

Demostración. Para ver que una densidad es unimodal, basta con ver que para una constante c cual-
quiera positiva, f (x)− c cambia de signo a lo sumo dos veces, y con orden −,+,−, si son dos cambios
de signo. Esto ocurre si y solo si log f (x)− d tiene para cualquier constante d, a lo sumo dos cambios
de signo, con orden −,+,−. El patrón de cambio de signo se verifica porque log f es cóncavo. Ver
proposición 4.

En la siguiente proposición trataremos la prreservación de densidades log-cóncavas bajo mixturas.

Proposición 10. Sea { fθ ,θ ∈ A} una familia de densidades log-convexas en un intervalo I y suponga-
mos que A es un conjunto abierto convexo. Si fθ (x) es una función medible de θ para cada x ∈ A y si G
es una función de distribución de probabilidad en A, entonces la mixtura f (x) =

∫
fθ (x) dG(θ) es una

densidad log-convexa.

Demostración. La demostración se encuentra en Marshall y Olkin (1979, p.452) [9]

Es siguiente resultado nos habla de la transmisión de log-concavidad y log-convexidad de f a F y F̄ .

Proposición 11. Si f es log-cóncava, entonces F̄ y F son log-cóncavas. Y si f es log-convexa en [0,∞),
entonces F̄ es log-convexa en [0,∞).

Demostración. Supongamos que log f es cóncava, por la proposición 7, esto es equivalente a que f (x−
y) sea totalmente positiva de orden 2, T P2. Sea K la función indicador dada en el ejemplo 1, K(x,y) =
1 si x≤ y y K(x,y) = 0 si x > y entonces se tiene,

F̄(x− z) =
∫

∞

x
f (y− z) dy =

∫
∞

−∞

K(x,y) f (y− z) dy,

como K es totalmente positiva, entonces F̄(x− z) es totalmente positiva de orden 2 en x y z (teorema
1), entonces F̄ es log-cóncava.
La comprobación de log-convexidad es similar.

En la siguiente proposición vemos cómo son la tasa de fallo y la tasa de fallo inversa de densidades
log-cóncavas y log-convexas.

Proposición 12. Si f es log-cóncava, entonces la tasa de fallo r = f/F̄ de F es creciente, y la tasa de
fallo inversa s = f/F de F es decreciente. Si f es log-convexa en [0,∞), entonces la tasa de fallo r es
decreciente en [0,∞)

Demostración. Si f es log-cóncava, por las proposiciones 4 y 11, entonces logF̄ y logF son cóncavas,
luego tienen derivadas decrecientes. Esto es equivalente a que r es creciente y s es decreciente. Análogo
para el caso f es log-convexo en [0,∞).

Observación 2. La distribución gamma tiene tasa de fallo creciente o decreciente según ν , por las
propiedades de log concavidad y log convexidad mencionadas en la página 11 y por la proposición 12.
Esto sería difícil de comprobar directamente dado que en una gamma, F no tiene forma explícita para
ν no natural.
El siguiente ejemplo muestra como el recíproco de la proposición anterior es falso. Es posible que una
distribución tenga una tasa de fallo creciente y una densidad que no sea log-cóncava.
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Ejemplo 3. Supongamos que r(x) = x+(1+x)−1, x≥ 0. Puede comprobarse por diferenciabilidad que
r es creciente y que por tanto R(x) =

∫ x
0 r(t) dt = 1

2 x2 + log(1+ x) es convexo (ver proposición 3 (iv)).
Además logF̄(x) =−R(x), luego F̄ es log-cóncavo.
Para ver que f no es ni cóncavo ni convexo, usaremos la fórmula log f (x) = logr(x)+ logF̄(x) con la
que se puede comprobar que la segunda derivada de log f (x) es estrictamente positiva en 0 y llegará un
punto en el que se hace negativa. (Por la proposición 4, log f no puede ser ni cóncava, ni convexa).

Observación 3. Los tratamientos de convexidad y concavidad logarítmica difieren en que concavidad
logarítmica puede requerirse en todo R; si log f es cóncavo en [0,∞) y f (x) = 0 para x < 0, entonces
log f es cóncavo en (−∞,∞) usar (2.1). Esto mismo no puede decirse para la convexidad logarítmica. De
acuerdo con la proposición 12, si log f es convexo en [0,∞) entonces F tiene una tasa de fallo decreciente
en [0,∞) y por tanto, la densidad es decreciente en [0,∞). Peo una función de densidad, tiene que integrar
1 y por tanto no puede ser decreciente en (−∞,∞).

En la siguiente proposición vemos que f log-convexa también implica F log-cóncava (recuérdese
por la proposición 11 que f log-cóncava implica F log-cóncava).

Proposición 13. Si f (x) = 0, x < 0 y log f es convexo en [0,∞), entonces log F es cóncavo en (−∞,∞).

Demostración. Bajo las hipótesis con respecto a f, se sigue de la proposición12, que F tiene una tasa de
fallo decreciente y por tanto f es decreciente. Esto significa, por la proposición 3, que F es cóncava en
[0,∞) y por la proposición 6, F es log cóncavo en [0,∞).

3.2. Tasas de fallo monótonas

Las propiedades de forma de f implican la monotonía de las tasas de fallo, como hemos visto en la
proposición 12. Sin embargo, las condiciones de dicha proposición no son necesarias, y además, sería
conveniente ampliar este concepto a variables no necesariamente absolutamente continuas. Por ello,
vamos a dar una definición más general de tasa de fallo, utilizando la noción de vida residual.

Definición 17. Sea F una distribución tal que F(x) = 0, x < 0. Entonces se dice que F tiene una tasa
de fallo creciente [decreciente] si ∀ x > 0 y ∀ t ≥ 0 tal que F(t)< 1,

P(t < X ≤ t + x | X > t) =
P(t < X ≤ t + x)

P(X > t)
=

F(t + x)−F(x)
1−F(t)

=
F̄(t)− F̄(t + x)

F̄(t)
,

es creciente en t y F(0−) = 0 [decreciente en t].

Si X es un tiempo de vida, esta condición dice que la probabilidad de fallar en un intervalo de tiem-
po de longitud x, aumenta [disminuye] a medida que crece t. En la proposición 14 relacionaremos este
concepto con la monotonía de los tiempos de vida residuales. El concepto de tasa de fallo creciente
podría extenderse a distribuciones como la normal que tiene medida positiva en el intervalo (−∞,0). No
hay problema en considerar t < 0 en la definición 17, aunque se pierde el concepto de tiempo de vida.
Para tasas de fallo decrecientes, el soporte de dichas distribuciones debe tener un punto final izquierdo
finito que normalmente se considera que es 0 (recuérdese la observación 3).

Dos aspectos a remarcar y que veremos más adelante son, en primer lugar que las convoluciones
de distribuciones de F con tasa de fallo creciente tienen tasa de fallo creciente y por otro lado que las
mixturas de distribuciones de F con tasa de fallo decrecientes tienen tasa de fallo decreciente.

La siguiente proposición da una condición para la tasa de fallo monótona que suele ser más conve-
niente de verificar que la condición de la definición.
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Proposición 14. Una distribución F, tiene una tasa de fallo creciente [decreciente] si y solo si para todo t
tal que F̄(t)> 0, F̄(t) = F̄(t+x)

F̄(t) es decreciente [creciente] en t para todo x≥ 0, es decir, las distribuciones
de la vida residual, disminuyen [aumentan] en t.

Demostración. Para todo x≥ 0 y para todo t tal que F(t)< 1,

F̄(t)− F̄(t + x)
F̄(t)

= 1− F̄(t + x)
F̄(t)

(3.1)

es creciente en t si y solo si F̄(t + x) / F̄(t) es decreciente.

Notemos que de la proposición anterior deducimos que las tasas de fallo monótonas implican que
la vida media residual es monótona en t (ver 1.6).
Las siguientes proposiciones relacionan la monotonía de las funciones de fallo con la log-concavidad
(convexidad) de la función de supervivencia.

Proposición 15. Si F tiene una distribución tal que F(x) = 0 para x< 0 entonces F tiene una tasa de fallo
creciente [decreciente] si y solo si la función de fallo R = −logF̄ es convexa donde es finita [cóncava
en [0,∞)].

Demostración. Para todo t tal que F(t)< 1, (3.1) es creciente en t si y solo si logF̄(t + x)− logF̄(t) es
decreciente en t. De acuerdo con la proposición 3 (iii), esto es equivalente a la concavidad de logF̄ , lo
que quiere decir que R =−logF̄ es convexo.

Proposición 16. Supongamos que F(0−) = 0 y F tiene función de densidad. Entonces, F tiene una
tasa de fallo creciente [decreciente] si y sólo si hay una función de densidad f tal que la tasa de fallo
correspondiente r = f/F̄ es creciente [decreciente] en [0,∞)

Demostración. Este resultado es una consecuencia inmediata de la proposición anterior, derivando R =
−logF̄ y usando la proposición 4, que establece que una función será cóncava o convexa según su
derivada sea creciente o decreciente.

La proposición 15, junto con la proposición 7, nos permiten dar las siguientes caracterizaciones de
tasas de fallo monótonas en términos de determinantes.

Proposición 17. La función de distribución F, tiene una tasa de fallo creciente si y solo si el determinante

∣∣∣∣F̄(t1− s1) F̄(t1− s2)
F̄(t2− s1) F̄(t2− s2)

∣∣∣∣≥ 0,

donde s1 ≤ s2, t1 ≤ t2 es decir, F̄ es una función de frecuencia Pólya de orden 2. (Ver definición 15).
La función de distribución F tiene una tasa de fallo decreciente si y solo si el soporte de F es [0,∞) y el
determinante ∣∣∣∣F̄(t1 + s1) F̄(t1 + s2)

F̄(t2 + s1) F̄(t2 + s2)

∣∣∣∣≥ 0,

donde s1 ≤ s2, t1 ≤ t2 y s1 + t1 ≥ 0, es decir, F̄(x+ y) es totalmente positiva en x e y, x+ y ≥ 0 (ver
definición 14).
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3.2.1. Tasas de fallo crecientes

La idea intuitiva de una tasa de fallo creciente viene dada por la interpretación de r(t)dt como la
probabilidad condicional de fallo en el intervalo [t, t +dt] dada la supervivencia hasta el tiempo t. Así,
con una tasa de fallo creciente, la probabilidad de fallo en el siguiente instante de tiempo aumenta a
medida que el dispositivo o el organismo envejece. En cierto sentido, esta es una traducción matemática
del concepto intuitivo de "envejecimiento adverso".

Veamos ahora propiedades que son específicas de distribuciones con esta propiedad.

Proposición 18. Si F tiene una tasa de fallo creciente, entonces F tiene densidad excepto posiblemente
en el punto final derecho del soporte, donde puede tener una masa positiva.

Este resultado es una consecuencia de la definición de concavidad logarítmica. (Ver proposición 4
y tener en cuenta que si F̄ es log-cóncava en [0, a] y vale 0 en adelante, continúa siendo log-cóncava),
recordar (2.1). Demuestra que el uso de la definición no requiere de la existencia de una densidad.

Resultados de preservación de tasas de fallo crecientes

El siguiente teorema establece que la clase de distribuciones con tasas de fallo crecientes son cerra-
das bajo convoluciones. La interpretación intuitiva del teorema es: Si tenemos dos dispositivos y cada
uno de ellos se desgasta en el sentido de que tienen una tasa de fallo creciente, y si uno de los disposi-
tivos se utiliza como repuesto para el otro y se pone en servicio en el momento en que falla el primero,
este sistema (“un dispositivo y su repuesto") se desgasta en el sentido de que tiene una tasa de fallo
creciente (asumiendo que las dos duraciones de vida son independientes).

Definición 18. Dadas dos funciones de distribución F y G se denomina convolución de F y G a la
expresión

F ∗G(t) =
∫

∞

−∞

F(t− y)dG(y), t ∈ R

Si X e Y son variables aleatorias independientes con distribuciones F y G, entonces F ∗G es la función
de distribución de X +Y .
Además si estas variables tienen respectivamente densidades f y g la densidad de Z = X +Y viene dada
por

fZ(t) = fX ∗ fY (t) =
∫

∞

−∞

fX(t− y) fY (y)dy, t ∈ R

Teorema 2. (Barlow R.E., Richard E., Marshall A.W., and Proschan F. (1963) 34 pp. 375-389) [1]. Si
F y G tienen tasa de fallo crecientes, entonces el producto de convolución H = F ∗G tiene una tasa de
fallo creciente.

Demostración. Supongamos que F y G tienen funciones de densidad f y g. Como dice la proposición
17, la condición de una tasa de fallo creciente puede ser escrita en términos de un determinante. Para
t1 < t2 y u1 < u2;

D =

∣∣∣∣H̄(t1−u1) H̄(t1−u2)
H̄(t2−u1) H̄(t2−u2)

∣∣∣∣= ∣∣∣∣∫ F̄(t1− s)g(s−u1)ds
∫

F̄(t1− s)g(s−u2)ds∫
F̄(t2− s)g(s−u1)ds

∫
F̄(t2− s)g(s−u2))ds

∣∣∣∣
=
∫ ∫

s1<s2

∣∣∣∣F̄(t1− s1) F̄(t1− s2)
F̄(t2− s1) F̄(t2− s2)

∣∣∣∣ ∣∣∣∣g(s1−u1) g(s1−u2)
g(s2−u1) g(s2−u2)

∣∣∣∣ds2ds1;

en la última igualdad se ha aplicado la fórmula de composición básica. (Lema 1).
Integrando por partes la integral anterior

D =
∫ ∫

s1<s2

∣∣∣∣F̄(t1− s1) f (t1− s2)
F̄(t2− s1) f (t2− s2)

∣∣∣∣ ∣∣∣∣g(s1−u1) g(s1−u2)
Ḡ(s2−u1) Ḡ(s2−u2)

∣∣∣∣ds2ds1.
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Debemos comprobar que D≥ 0. El signo del primer determinante es el mismo que el de

f (t2− s2)F̄(t2− s2)

F̄(t2− s2)F̄(t2− s1)
− f (t1− s2)F̄(t1− s2)

F̄(t1− s2)F̄(t1− s1)
,

asumiendo que los denominadores no son cero (si lo fuesen, ese determinante sería ≥ 0). Pero

f (t2− s2)

F̄(t2− s2)
≥ f (t1− s2)

F̄(t1− s2)

por hipótesis y
F̄(t2− s2)

F̄(t2− s2)
≥ F̄(t1− s2)

F̄(t1− s1)

por la proposición 17. Así, el primer determinante es no negativo. Con un argumento similar, podemos
ver que el segundo determinante es también no negativo, por lo tanto D ≥ 0. Por la proposición 17,
vemos que H tiene una tasa de fallo creciente.

Si la densidad f y/o g no existen se requiere un argumento límite para completar la demostración.

En muchas ocasiones las convoluciones no tienen expresiones sencillas (por ejemplo, sumas de
exponenciales o gammas con distintos parámetros de escala). Pero el resultado anterior nos indica que
podemos asegurar una tasa de fallo creciente si partimos de sumandos con tasa de fallo creciente.
Finalmente, tenemos el siguiente resultado acerca de la vida residual.

Proposición 19. Si F tiene una tasa de fallo creciente, entonces la función de distribución de vida
residual Ft también tiene una tasa de fallo creciente.

Demostración. Comprobación directa. (Recuérdese (1.5)).

Mixturas con tasa de fallo crecientes

En el siguiente ejemplo vamos a ver como las mixturas de distribuciones con tasa de fallo creciente
no tienen por qué tener tasa de fallo creciente.

Ejemplo 4. Supongamos que r1(x) = 1− e−bx, r2(x) = a+ r1(x). Si a ≤ b < a2/4, por ejemplo si
a = b > 4, entonces la mixtura con el mismo peso de las distribuciones correspondientes F1 y F2 tiene
una tasa de fallo r estrictamente decreciente aunque r1 y r2 sean ambas estrictamente crecientes.

Para ver esto, sea una mixtura con π = π̄ =
1
2

y donde las distribuciones respectivas tienen tasas de fallo

como las definidas arriba. Por la ecuación (1.3) se tiene F̄2(x) = exp(−
∫ x

0 (a+ r1(x)dx)) = e−axF̄1(x).
Por tanto, recordando la ecuación (1.10) la tasa de fallo de la mixtura viene dada por:

r(x) =
πF̄1(x)

πF̄1(x)+ π̄F̄2(x)
r1(x)+

(
1− πF̄1(x)

πF̄1(x)+ π̄F̄2(x)

)
r2(x) = r1(x)+a

e−ax

1+ e−ax .

luego, r′(x)< 0 para todo x si y solo si

r′1(x)< a2e−ax/(1+ e−ax)2.

La inecuación anterior se reduce a b(1+ e−ax)2 < a2e(b−a)x.
La parte izquierda de esta inecuación es estrictamente decreciente en x ≥ 0, y como a ≤ b, la parte
derecha es creciente en x. Para x = 0 se satisface la inecuación si b < a2/4. Así, la inecuación se cumple
para todo x≥ 0, si a≤ b < a2/4.

Notar que en el ejemplo anterior, r2 es positiva en 0 y r1 esta acotada superiormente. Estas carac-
terísticas son esenciales para que la mixtura tenga una tasa de fallo decreciente. Asumiendo que la tasa
de fallo es diferenciable, Gurland J. and Sethuraman J. (1995) 90 pp. 1416-1423 [6] consiguieron una
condición necesaria y suficiente para que la mixtura de dos distribuciones con tasas de fallo creciente
tuviese tasa de fallo decreciente; en el ejemplo anterior puede verse una comprobación directa de esto.



17

3.2.2. Tasas de fallo decrecientes

Un artículo tiene una tasa de fallo decreciente si a medida que envejece disminuye la probabilidad
de fallo (muerte). Por ejemplo, los humanos podemos mostrar una probabilidad decreciente a fallar en
un trabajo parcial a medida que ganamos experiencia y práctica. Las mixturas son quizás la fuente más
importante de distribuciones con tasa de fallo decreciente.

La siguiente proposición fundamental es muy interesante para las aplicaciones.

Proposición 20. Si F̄ es una mixtura de exponenciales, entonces tiene una tasa de fallo decreciente. En
general, si F̄ tiene una función de densidad log-convexa, entonces tiene una tasa de fallo decreciente.

Demostración. Este resultado se prueba con las proposiciones 10 y 12.

Nótese que la densidad exponencial es log-lineal y por tanto, log-convexa. Las mezclas de distribu-
ciones exponenciales aparecen en muchas aplicaciones y esta es una fuente importante de distribuciones
con una tasa de fallo decreciente. En el artículo de Proschan F. (1963) 5 pp. 375-384 [11] puede verse
un ejemplo clásico de modelización de fallos en instalaciones de aire acondicionado con mezclas de
exponenciales.

Comentamos ahora algunas propiedades importantes sobre distribuciones con tasas de fallo decre-
ciente.

Proposición 21. Supongamos que F(0−) = 0 y que F tiene una tasa de fallo decreciente. Entonces, F
tiene densidad excepto en el origen, donde puede tener masa positiva. Hay una versión f de la densidad
que es decreciente y cumple f (x)> 0, ∀x > 0.

Demostración. Una distribución F tiene una tasa de fallo decreciente cuando R = −logF̄ es cóncava
en [0,∞). Por tanto, R tiene derivada continua para un conjunto numerable de puntos (ver proposición
4). Donde esta derivada exista, servirá como una densidad, en otro caso podemos definir la derivada
usando continuidad a derecha. Como R′ = f/F̄ es decreciente (de nuevo por proposición 4) y por tanto
f es decreciente puesto que f = R′F̄ . Si hubiera un punto a < ∞ tal que F̄(a) = 0, entonces, R(a) = ∞

y la concavidad de R no se cumpliría (ya que R no podría definirse finita por debajo de a). Además, si
hay un punto b > 0 tal que F̄(b) = 1, entonces R(b) = 0 y, como R es decreciente , de nuevo no hay
concavidad en R salvo R(x) = 0, ∀x > 0 pero entonces F no es una distribución.

Resultados de preservación de tasas de fallo decreciente.

Proposición 22. Si F tiene una tasa de fallo decreciente, entonces la distribución de vida residual Ft ,
también tienen una tasa de fallo decreciente.

Demostración. Demostración similar a la proposición 19.

Teorema 3. (Barlow R.E. and Proschan F. (1975)) [1]. La familia de distribuciones con una tasa de fallo
decreciente es cerrada bajo la formación de mixturas.

Demostración. La prueba es similar a la de la proposición 10, sustituyendo densidades por funciones de
supervivencia. Recuérdese, por la proposición 5, que si F tiene una tasa de fallo decreciente, entonces
F̄ es log-convexa.

Las tasas de fallo decrecientes no se preservan bajo convolución. La convolución de exponenciales
(sumandos con tasa de fallo constante), como sabemos es de tasa de fallo creciente recuérdese el teorema

2 (o convolución de distribuciones gamma de ν =
2
3

(ambas con el mismo parámetro de escala), que es

gamma con ν =
4
3

y tiene tasa de fallo creciente).
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3.2.3. Tasas de fallo de tipo bañera

La primera motivación para el estudio de este tipo de tasas de fallo, viene dada por la idea de
suponer que un dispositivo u organismo proviene de una mezcla de individuos. Aquellos individuos con
defectos que amenazan su vida al nacer sufren una alta tasa de mortalidad prematura, pero a medida
que se envejece sin fallar, la probabilidad condicional de que un defecto que amenaza la vida esté
presente disminuye y, por lo tanto, la tasa de riesgo disminuye. Llega un momento (llamémosle a), en
que las muertes por defectos congénitos es razonable asumir que ya no se producen y los accidentes se
convierten en la única causa significativa de muerte, por lo que la tasa de riesgo se mantiene constante.
Pero eventualmente, en el momento b (b >a), los efectos adversos de la edad comienzan a hacerse sentir
y la tasa de riesgo comienza a aumentar.

Definición 19. Se dice que una distribución tiene una tasa de fallo tipo bañera si para algún 0≤ a≤ b,
la tasa de fallo r(t) es decreciente en t, 0≤ t ≤ a es constante en el intervalo a≤ t ≤ b y es creciente en
t, t ≥ b.

Mixturas con tasas de fallo de tipo bañera

Sean F1 y F2 distribuciones asociadas a fallos debidos a defectos (F1) y a eventuales desgastes (F2),
respectivamente y π representa la proporción de la población con defectos de nacimiento. La función
de supervivencia de la mixtura sería:

πF̄1(x)+ π̄F̄2(x).

Se supone que hay un tiempo a después del cual no se producen muertes por defecto y también hay un
tiempo b antes del cual no ocurren muertes por desgaste. Si a < b, F1 y F2 tienen soporte en [0,a] y [b,∞)
respectivamente, y los soportes de F1 y F2 no se solapan. Cuando existen las densidades, la densidad de la
mixtura es 0 entre a y b. Esta densidad es poco realista en la práctica, ya que siempre existe la posibilidad
de que se produzca un fallo debido a un accidente, independientemente de la edad del dispositivo. Por lo
general, se supone que el tiempo de espera para un accidente se distribuye exponencialmente, ya que la
distribución exponencial tiene una tasa de fallo constante o sea, se asume que el riesgo por accidente se
mantiene constante. Por lo tanto, el tiempo real de fallo es el tiempo mínimo de espera para una muerte
por accidente y por otras causas. Debido a que la función de supervivencia del mínimo de variables
aleatorias independientes es el producto de las funciones de supervivencia individuales, es decir,

P(min(Y,Z)> x) = P(Y > x)P(Z > x), x ∈ R,

con Y el tiempo hasta el fallo debido a la mixtura y Z el tiempo hasta el fallo por accidente, es natural
considerar el modelo

F̄(x) = e−λx[πF̄1(x)+ π̄F̄2(x)] (3.2)

Es fácil comprobar que si F̄ viene dada por (3.2) entonces su tasa de fallo es la suma de las tasas de
fallo la parte exponencial y la de la mixtura πF̄1(x)+ π̄F̄2(x), esto es:

r(x) =


λ + π f1(x)

πF̄1(x)+π̄
, 0≤ x < a,

λ , a≤ x≤ b,
λ + r2(x), b < x.

(3.3)

donde r2 es ka tasa de fallo correspondiente a F2.

Ya que la distribución F1 tiene soporte [0,a], no puede tener una tasa de fallo decreciente. Pero bajo
ciertas condiciones, r puede disminuir en el intervalo [0,a).
Aunque el modelo (3.2) se usa a menuda para modelar tasa de fallo de tipo bañera y explicar su presen-
cia, se necesitan condiciones adicionales para que (3.3) tenga forma de bañera.
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Proposición 23. Supongamos que r viene dado por (3.3). Una condición necesaria (pero no suficiente)
para que r(x) sea decreciente en x ∈ [0,a) es que la densidad f1(x) sea decreciente en x ∈ [0,a).

Demostración. Para evitar las complicaciones de un argumento limite, supongamos que la densidad f1
es diferenciable. Entonces r es diferenciable en [0,a), y este r′ es negativo si y sólo si

(πF̄1(x)π̄)+ f ′1(x)+ [ f1(x)]2 < 0.

Esto ocurre solo si f ′1(x)< 0.





Capítulo 4

Fiabilidad en sistemas coherentes

Las familias de distribuciones de tiempos de vida se han estudiado principalmente en el contexto de
la teoría de la fiabilidad. La teoría que se ha desarrollado para estas familias ha implicado, por tanto, la
noción de componentes y sistemas que pueden ser mecánicos, eléctricos, hidráulicos e incluso biológi-
cos.

Este capítulo comienza con una discusión de una clase de sistemas llamados sistemas coherentes
φ , los cuales están formado por distintos componentes y el funcionamiento de los mismos depende
del funcionamiento de uno, varios o todos los componentes. Dependiendo del número de componen-
tes necesarios para que el sistema funcione hablaremos de un sistema en serie, en paralelo o k de n.
Definiremos subconjuntos de trayectoria o de corte mínimo y de cómo un sistema coherente puede
representarse por medio de estos subconjuntos. Hablaremos de la función de fiabilidad de un sistema
coherente y describiremos el tiempo hasta el fallo para componentes idénticamente distribuidas. En par-
ticular, mostraremos la conexión entre los sistemas k de n y los estadísticos ordenados. Hablaremos del
concepto de transformación de fallo y de si un sistema coherente se desgasta de la misma forma con la
que lo hacen sus componentes.

El estudio de tales sistemas, junto con ideas adicionales que se originaron en la teoría de la fiabilidad,
ayuda a explicar los orígenes y la importancia de las familias no paramétricas discutidas en el capítulo
anterior.

4.1. Sistemas coherentes

Los sistemas coherentes aparecen por primera vez en un artículo de Birnbaum, Esary y Saunders
(1961) [4]. Este artículo escrito con la ayuda de los Laboratorios de Investigación Científica de Boeing,
fue el comienzo de una larga serie de artículos que dieron resultados sobre sistemas coherentes. En este
capítulo tan sólo vamos a ver una breve introducción a la teoría de los sistemas coherentes.

Los sistemas coherentes son un concepto fundamental en la teoría de la fiabilidad, aunque puedan
parecer de utilidad limitada. Se basan en la idea de que los componentes y sistemas sólo tienen dos
estados, funcionando (1) y fallando (0); en la práctica, es más frecuente que los componentes y sis-
temas tengan una multitud de estados posibles. Sin embargo, en la mayoría de ocasiones, es posible
clasificar en cada uno de estos dos estados a los componentes, de modo que el estado del sistema queda
determinado por el estado de los componentes, haciendo útil la noción de sistema coherente.

4.1.1. Funciones de estructura del sistema

La idea principal es la premisa de que si el sistema es coherente, la reparación de un componente
fallido no causa el fallo del sistema. Por tanto, la función φ que identifica el estado del sistema debe
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aumentar cuando aumentamos una de sus componentes de 0 (fallo) a 1 (funcionando). Uno no esperaría
que el sistema funcionara cuando todos los componentes han fallado y ni siquiera estaría interesado en
un sistema que no funcionara cuando todos los componentes funcionan. Estas ideas son la base de la
siguiente definición.

Definición 20. Una función binaria φ de n variables binarias se llama sistema coherente (de orden n) o
función de estructura coherente si:

(i) φ(0, . . . ,0) = 0,

(ii) φ(1, . . . ,1) = 1,

(iii) φ es creciente en cada uno de sus argumentos.

La intención aquí es asumir que los componentes del sistema han sido etiquetados por los números
1,2, . . . ,n y así para el argumento xi indicar si el i-ésimo componente del sistema está funcionando
(xi = 1) o ha fallado (xi = 0). El valor de φ indica de la misma manera si el sistema está funcionando o
ha fallado.

Observación 4. Para cualquier vector x = (x1, . . . ,xn), sea (0i,x) el vector x alterado por la colocación
de 0 en el i-ésimo lugar y sea (1i,x) el vector x alterado por la colocación de 1 en el i-ésimo lugar. Con
esta notación, se tiene,

φ(x) = xiφ(1i,x)+(1− xi)φ(0i,x). (4.1)

A menudo se requiere de un sistema coherente en el que cada componente sea relevante; es decir,
para cada i, existe un x tal que φ(0i,x) = 0, φ(1i,x) = 1. Este requisito no se impone en la definición
anterior y, de hecho, a veces ni siquiera se imponen las propiedades (i) y (ii) de dicha definición. La ra-
zón de esto es que los sistemas φ(0i,x) y φ(1i,x) con n−1 componentes no necesariamente verificarían
las anteriores propiedades.

Los dos sistemas coherentes más sencillos son:

1 Sistema en serie: φ(x1, . . . ,xn) = min(x1, . . . ,xn) =
n
∏
i=1

xi. (Sólo funciona si todas sus componentes

funcionan). Ver figura 4.1.

Figura 4.1: Diagrama de un sistema en serie

2 Sistema paralelo: φ(x1, . . . ,xn) = max(x1, . . . ,xn) = 1−
n
∏
i=1

(1− xi). (Sólo funciona si una o más

de sus componentes funcionan). Ver figura 4.2.

Figura 4.2: Diagrama de un sistema en paralelo
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En un humano, dos ojos o dos pulmones podría considerarse el hecho de que forman un sistema
paralelo, sin embargo, dos piernas formarían un sistema en serie, ya que ambas son necesarias para
caminar.

Un sistema coherente, está acotado superiormente por el sistema paralelo e inferiormente por el
sistema en serie. En fiabilidad, se utilizan sistemas paralelos porque proporcionan redundancia para au-
mentar la vida útil del sistema (es decir, ponemos componentes redundantes, pero así el sistema dura
más que con sólo un componente).

Un sistema más general es el sistema k de n que funciona si y solo si al menos k de las n com-
ponentes funcionan. Un sistema en serie es un sistema n de n y uno en paralelo es un sistema 1 de n.
Por ejemplo, un avión con tres motores, que puede volar con dos motores en funcionamiento forma un
sistema 2 de 3, dicho sistema tiene como función de estructura:

φ(x1,x2,x3) = 1− (1− x1x2)(1− x1x3)(1− x2x3) = x1x2 + x1x3 + x2x3−2x1x2x3. (4.2)

Esta función de estructura es simétrica (no varía con permutaciones de sus argumentos) y φ(0,0,0) =
φ(1,0,0) = 0, φ(1,1,0) = φ(1,1,1) = 1. Si φ es una función de estructura coherente, entonces φD =
(1− x1, . . . ,1− xn) define otra función de estructura coherente, que llamaremos el dual de φ . Además
(φD)D = φ .

4.1.2. Conjuntos de trayectoria y de corte

Como hemos mencionado antes, las componentes de un sistema coherente se denotan con los nú-
meros 1,2, . . . ,n por tanto, cualquier subconjunto de componentes se denota con un subconjunto del
conjunto 1,2, . . . ,n. Se denomina conjunto de trayectoria de la estructura coherente φ a un subconjunto
P tal que φ(x) = 1, cuando xi = 1, para todo i ∈ P. Del mismo modo se denomina conjunto de corte de
la estructura coherente φ a un subconjunto C, tal que φ(x) = 0 cuando xi = 0, para todo i ∈ C.

Se dice que el conjunto de trayectoria P es un conjunto de trayectoria mínima si ningún subconjunto
propio de P es conjunto de trayectoria mínima y que el conjunto de corte C es un conjunto de corte mí-
nimo si ningún subconjunto propio de C es conjunto de corte. Un sistema coherente puede representarse
o bien colocando las componentes de cada trayectoria mínima en serie y luego colocando estos sistemas
en paralelo o colocando las componente de cada corte mínimo en paralelo y luego colocar estos sistemas
en serie. Estas representaciones vienen dadas por :

φ(x) = maxP mini∈Pj xi = minC maxi∈C j xi, (4.3)

donde P es el conjunto de todos los conjuntos de trayectoria mínima y C es el conjunto de todos los
conjuntos de corte mínimo. De este modo la función de estructura (4.2) de un sistema 2 de 3, se convierte
en:

φ(x) = max[min(x1,x2),min(x1,x3),min(x2,x3)] = min[max(x1,x2),max(x1,x3),max(x2,x3)]. (4.4)

La similitud de estas formas se debe al hecho inusual de que para un sistema 2 de 3 los conjuntos de
trayectoria mínima y de corte mínimo coinciden.

Ejemplo 5. Supongamos que los conjuntos de trayectoria mínima son {1,2} y {3} y los de corte mínimo
son {1,3} y {2,3}. La ecuación (4.2) se convierte en:

φ(x) = max {min[x1,x2],x3}= min {max[x1,x3],max[x2,x3]}. (4.5)
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Figura 4.3: Diagrama del ejemplo 5 en términos de sistemas de conjuntos de trayectoria.

Figura 4.4: Diagrama del ejemplo 5 en términos de sistemas de conjutos de corte

La primera forma de esta estructura, se ilustra en la figura 4.3, y la segunda en la figura 4.4, donde
vemos que la componente 3 aparece dos veces ya que está en los dos conjuntos de corte mínimo.

4.2. Funciones de fiabilidad

En las aplicaciones, el estado de los componentes de un sistema coherente es aleatorio, y están
representados por variables aleatorias Xi con distribuciones Bernoulli y se suele asumir que cada uno
funciona de modo independiente. Sea pi = P(Xi = 1) = 1−P(Xi = 0) = EXi. Cuando los argumentos
de una función de estructura coherente son aleatorios, su valor esperado es una función de las pi. Las
funciones de fiabilidad tienen un papel muy importante en la teoría de sistemas coherentes.

Definición 21. La función de fiabilidad h de un sistema coherente φ viene dada por,

h(p1, . . . , pn) = Eφ(X1, . . . ,Xn), 0 6 pi 6 1, i = 1,2, . . . ,n

donde se asume que X1, . . . ,Xn son independientes y con distribución Bernoulli con probabilidad de
éxito Pi.

La función de fiabilidad de un sistema en serie viene dada por h(p1, . . . , pn)=Πpi mientras que la de
un sistema paralelo viene dada por h(p1, . . . , pn) = 1−Π(1− pi) y la función de fiabilidad de un sistema
2 de 3 es h(p1, p2, p3) = p1 p2 + p1 p3 + p2 p3−2p1 p2 p3. (Se obtienen al sustituir en las expresiones del
final de la página 22 y en la ecuación (4.2) las xi por Xi y tomando esperanzas). Cuando todos los tiempos
de vida de los componentes son independientes e idénticamente distribuidas, la función de fiabilidad
puede escribirse en función del valor común p. Por ejemplo, en este caso, el número de componentes
funcionando de un sistema k de n es una variable aleatoria binomial y por tanto su función de fiabilidad
es la probabilidad de que funcionen k o más componentes, que podemos escribir como,

h(p) =
n

∑
i=k

(
n
i

)
pi(1− p)n−i =

∫ p

0

tk−1(1− t)n−k

B(k,n− k+1)
dt, 0 6 p 6 1, (4.6)

donde B es la función Beta y la integral viene de la ecuación (1.12).

Supongamos ahora, que cada componente del sistema tiene un tiempo de vida Ti. Para cada instan-
te t, definimos Xi = 0 o 1, según la variable aleatoria Ti 6 t o Ti > t, es decir, Ti está por debajo o por
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encima del umbral t. Supongamos también que los Ti son independientes con distribución F común. En-
tonces, en (4.6), H̄k(t) = h(F̄(t)) es la función de supervivencia del estadístico ordenado (n− k+1) de
una muestra aleatoria de tamaño n de F . (Recuérdese que dadas T1, . . . ,Tn variables aleatorias indepen-
dientes e idénticamente distribuidas, el estadístico ordenado k-ésimo es el k-ésimo valor más pequeño
cuando se ordenan las variables de menor a mayor). La función de supervivencia de un estadístico orde-
nado la podemos encontrar en Rohatgi, V.K. and Ehsanes Saleh, A. K. Md. (2001) p.174 [14] y con ella
podríamos comprobar su coincidencia con la fórmula (4.6). Esto es así porque en un sistema k de n, el
fallo se produce en el instante en que se produce el fallo n-k+1. Así, los sistemas k de n tienen interés
también fuera del ámbito de la fiabilidad.

El siguiente resultado será útil para describir la forma de un sistema coherente.

Lema 2. (Esary.D., Marshall A.W y Proschan F., (1970) pp. 849-860) [5]. Si h es la función de fiabilidad
de un sistema coherente, entonces

h(pθ
1 , . . . , pθ

n )> [h(p1, . . . , pn)]
θ , 0 6 θ 6 1. (4.7)

Demostración. (Barlow R.E. and Prochan F. (1975)) [2]. Para esta demostración, es conveniente sim-
plificar la notación primero. Denotaremos pθ = (pθ

1 , . . . , pθ
n ) y en el caso en que θ = 1, p = (p1, . . . , pn).

Para probar la ecuación por inducción sobre n es conveniente probar el resultado para la clase de
funciones de fiabilidad de sistemas coherentes aumentados por las funciones idénticamente 0 o 1. El
lema es trivial para n = 1, ya que entonces h(p) = p, 0 ≤ p ≤ 1. Ahora, supongamos que el resultado
es cierto para n-1. Esto implica por la ecuación (4.7) que,

h(1n,pθ )> [h(1n,p)]θ y h(0n,pθ )> [h(0n,p)]θ .

Por la ecuación (4.1),
h(pθ ) = pθ

n h(1n,pθ )+(1− pθ
n )h(0n,pθ ).

Juntando las dos anteriores,

h(pθ )≥ pθ
n [h(1n,p)]θ +(1− pθ

n )[h(0n,p)]θ .

Queda por demostrar que el lado derecho de la inecuación anterior es mayor o igual que

[h(p1, . . . , pn)]
θ = [pnh(1n,p)+(1− pn)h(0n,p)]θ , 0 6 θ 6 1.

Con la notación h(1n,p) = x y h(0n,p) = y, es necesario demostrar que para 0 6 pn 6 1 y 0 6 θ 6 1,

pθ
n xθ +(1− pθ

n )y
θ − (pnx+(1− pn)y)θ ≥ 0, x > y > 0.

Fijamos y y consideramos en lado izquierdo de la ecuación anterior como una función g(x) de x. Obsér-
vese que g(y) = 0 y que g′(x)≥ 0 cuando x > y ya que 0≤ θ ≤ 1.

4.3. Consideración del tiempo: funciones de vida coherentes

En la discusión de sistemas coherentes, se introdujo el concepto de tiempo de fallo para componentes
idénticamente distribuidas para mostrar la conexión entre sistemas k de n y los estadísticos ordenados.
De manera más general, supongamos un sistema coherente, donde cada componente i lleva asociada un
tiempo de vida Ti, con función de supervivencia F̄i. Llamamos T al tiempo de vida del sistema coherente.
Entonces, la función de supervivencia de T puede expresarse como

F̄(t) = h(F̄1(t), . . . , F̄n(t)). (4.8)
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Es decir, cada componente funciona en el instante t con probabilidad Pi =P(Ti > t) = F̄i(t), y por la defi-
nición 21, h(pi, . . . , pn) indica en el instante t, la probabilidad de que el sistema esté en funcionamiento,
es decir

h(p1, . . . , pn) = P(T > t) = F̄(t). (4.9)

Para trabajar con sistemas coherentes es muy útil tener en cuenta la transformada de fallo, que da la
transformada de fallo del sistema en términos de la transformada de fallo de los componentes, aún bajo
el supuesto de que los tiempos de vida de los componentes son independientes.

Definición 22. La función η que da la función de fallo del sistema en términos de las funciones de
fallo de los componentes se denomina transformada de fallo del sistema coherente. Más precisamente,
definimos η como,

η(ρ1, . . . ,ρn) =−logh(e−ρ1 , . . . ,e−ρn), 0≤ ρi ≤ ∞, i = 1, . . . ,n.

En particular si Ri = −logF̄i representa la función de fallo de cada Ti (recuérdese (1.1)), podemos
escribir la función de fallo de T (recúerdese (1.3)):

R(t) =−logF̄(t) = η(R1(t), . . . ,Rn(t)) =−logh(eR1(t), . . . ,eRn(t)) (4.10)

Además con la notación introducida en la definición 22, el lema 2 puede reescribirse en términos de
la transformada de fallo del sistema.

Proposición 24. (Esary J.D., Marshall A.W. and Proschan F. (1970) pp. 849-860) [5]. La transformación
de fallo η de un sistema coherente tiene forma estrellada en su dominio extendido, eso es dado ρρρ =
(ρ1, . . . ,ρn)

η(aρρρ)≤ a(η(ρρρ)) para 0≤ a≤ 1 y 0≤ ρi ≤ ∞, i = 1,2, . . . ,n.

4.4. Desgaste

La noción de una tasa de fallo creciente se introdujo en sus orígenes debido a su atractivo intui-
tivo como una representación matemática del "desgaste". En este apartado discutimos si un sistema
coherente se desgasta de la misma forma con la que lo hacen sus componentes.

Ejemplo 6. Sean T1 y T2 tiempos de vida independientes exponencialmente distribuidas con parámetros
λ1 y λ2. El sistema paralelo con componentes T1 y T2 tiene la siguiente función de supervivencia:

F̄(x) = e−λ1x + e−λ2x− e−(λ1+λ2)x,

(aplíquese (4.8) a la función de fiabilidad de un sistema en serie que puede verse en la página 22). Y
una tasa de fallo r dada por:

r(x) =
f (x)
F̄(x)

=
λ1e−λ1x +λ2e−λ2x− (λ1 +λ2)e−(λ1+λ2)x

e−λ1x + e−λ2x− e−(λ1+λ2)x
= [λ1eλ2x +λ2eλ1x−1]/ [eλ2x + eλ1x−1].

La vida útil de un sistema paralelo es el máximo de la vida útil de los componentes. Se puede verifi-
car por diferenciación que si λ1 = λ2 = λ (las componentes están idénticamente distribuidas) entonces
la tasa de fallo anterior es creciente en x. Pero si λ1 6= λ2 entonces la tasa de fallo no es creciente en x.

De un modo más general, supongamos que dos componentes en paralelo tienen tiempos de vida
X e Y , distribuciones FX y FY y densidades fX y fY . Entonces, la vida útil del sistema Z = max(X ,Y )
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tiene función de supervivencia F̄Z(x) = 1−FX(x)FY (x), función de distribución FZ(x) = FX(x)FY (x),
densidad fz(x) = fx(x)Fy(x)+Fx(x) fy(x) y un tasa de fallo

rZ(x) =
fZ(x)
F̄Z(x)

=
fx(x)Fy(x)+Fx(x) fy(x)

1−FX(x)FY (x)
= rX(x)

F̄X(x)FY (x)
1−FX(x)FY (x)

+ rY (x)
FX(x)F̄Y (x)

1−FX(x)FY (x)
.

Donde los coeficientes de rX(x), rY (x) representan, respectivamente, las tasas de fallo de las com-
ponentes X e Y . En el caso de que X e Y estén idénticamente distribuidas, con distribución F y tasas de
fallo r, entonces se tiene que la tasa de fallo de Z es

rZ(x) = 2r(x)
F(x)

1+F(x)
,

si r es creciente, entonces, rZ es creciente.

Más aún, tenemos este resultado general para sistemas k de n con componentes independientes e
idénticamente distribuidas. Fué dado por Barlow R.E y Proschan F. (1975) [2] y discutido por Samanie-
go F.J. (1985) [13].

Proposición 25. Si todas las componentes de un sistema k de n están idénticamente distribuidas, son
independientes y tienen una tasa de fallo creciente, entonces el sistema tiene una tasa de fallo creciente.

Demostración. Llamaremos H̄ a la función de supervivencia del sistema. La monotonía de la tasa de
fallo se prueba viendo que la derivada del logH̄(t) es decreciente, usar la proposición 15. Para ello,
es conveniente mostrar primero que la función de fiabilidad h de un sistema k de n, tiene la propiedad
de que ph′(p)/h(p) es decreciente en p. Usando la ecuación (4.6) y diferenciando el integrando de la
derecha respecto de p (por el teorema fundamental del cálculo) se tiene,

ph′(p)
h(p)

=

p
pk−1(1− p)n−k

β (k,n− k+1)∫ p

0

tk−1(1− t)n−k

β (k,n− k+1)
dt

=
pk(1− p)n−k∫ p

0
tk−1(1− t)n−kdt

=

=

[∫ p

0

tk−1(1− t)n−k

pk(1− p)n−k dt
]−1

=

[∫ 1

0
uk−1

(
1− pu
1− p

)n−k

du

]−1

,

Nótese que en la última igualdad se ha hecho el cambio de variable t=pu. Para ver que la expresión
anterior es decreciente basta derivar el integrando de la derecha respecto de p.
Ahora, sea F la distribución común de los componentes de un sistema k de n y sea H la distribución de
la vida útil del sistema. Entonces,

dlogH̄(t)
dt

=
dlogh(F̄(t))

dt
=−

[
F̄(t)h′(F̄(t))

h(F̄(t))

]
f (t)
F̄(t)

.

El primer factor de la igualdad anterior es creciente ya que tanto F̄(t) como ph′(p)/h(p) son decre-
cientes. La segunda parte es también creciente puesto que F̄ es log-cóncavo. Así la ecuación anterior es
decreciente en t porque es el negativo del producto de dos funciones crecientes no negativas.

Nota 1. El ejemplo 6 muestra que la clase de distribuciones con una tasa de fallo creciente no es cerrada
con la formación de sistemas coherentes es decir, un sistema coherente puede tener componentes con
una duración de vida independiente donde todos tienen tasa de fallo creciente, pero eso no significa que
la duración del sistema tenga tasa de fallo creciente. Es decir, el resultado anterior no se puede extender
a sistemas coherentes generales.
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