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0.1. Introducciéon

Este trabajo esta realizado dentro del marco de la mecanica cuantica, y supone una base
para introducirse en el mundo de la computacién. Un ordenador cuadntico presenta una serie de
propiedades como el paralelismo, que pueden ser cruciales para abordar desde una nueva pers-
pectiva problemas que resultan irresolubles, dejando a un lado las limitaciones de la tecnologia
clasica. La criptografia cuantica es una de las aplicaciones de mayor interés, que daria lugar a
comunicaciones completamente seguras donde cualquier espia serfa detectado como consecuencia
directa del teorema de no clonado. La construcciéon de un ordenador cuantico es el principal reto
dentro de la computacién cuantica, importantes empresas como IBM y Google han entrado a
participar en el desarrollo de ordenadores que sigan las leyes de la mecanica cuéntica, y que sean
capaces de utilizar fenémenos como la superposicion y el entrelazamiento. Todo esto ha concluido
en la creacion de IBM Quantum Experience, un proyecto realizado por la empresa IBM, donde
prototipos de ordenadores cuénticos han sido abiertos al ptiblico, hecho que es en si mismo, el
eje central de este trabajo. Una de las ideas que busca transmitir IBM es la necesidad de crear
un compromiso entre la mejora de la fidelidad y del ntmero de qubits. Existen diversos factores
que mejorar en el desarrollo de un ordenador cuéantico, pero sin duda el mayor reto es mantener
la calidad en sistemas de orden mayor y por lo tanto, construir ordenadores con una mayor can-
tidad de qubits, ya que al fin y al cabo, esta es una condicién necesaria para poder implementar
cualquier algoritmo util. No obstante la mejora de la fidelidad es fundamental para obtener unos
resultados correctos de estos algoritmos, existen diversos tipos de error, principalmente tres: el
error correspondiente a los estados, el error debido a las puertas y el error en la medida. El intento
de mejorar todas estas fuentes de error esta siendo llevado a cabo desde muy distintos ambitos
de la fisica, tanto teérica como experimental. Por este mismo motivo, una parte importante de
este trabajo consiste en entender los procesos que hay detras de la aparicién del error y obtener
resultados de ordenadores cuanticos reales que los ilustren.

0.2. Objetivos

= Comprender los principios bésicos de la computacién cuédntica

= Aprender qué es la computacion cuéntica, sus objetivos y sus limitaciones.
= Entender qué son puertas logicas cudnticas y su implementacion.

= Aprender a realizar simulaciones en un ordenador cuantico real.

= Uso de algoritmos cuanticos para obtener conclusiones sobre las capacidades de un orde-

nador cuantico real.
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0.3. Desarrollo del trabajo

La memoria esta estructurada en cuatro capitulos. En el primero hago una explicaciéon de
conceptos de mecéanica cuantica basicos, en concreto, introduzco el operador densidad,y los fe-
némenos de superposiciéon y entrelazamiento. Para concluir explico el proceso de decoherencia
y presento un modelo para ilustrarlo. En el segundo capitulo, comienzo con una introduccién
a la computacién cuéntica, presento conceptos basicos como el qubit y las principales puertas
logicas y finalmente hago una explicacion de las oscilaciones de Rabi y de como tiene lugar la
implementacion de las puertas logicas cuénticas. FEn el tercer capitulo presento IBM Quantum
experience y los ordenadores con los que he trabajado. Por tltimo en el cuarto capitulo, acabo
con los objetivos del trabajo haciendo una presentacion de los resultados obtenidos en los orde-
nadores cuanticos reales,en concreto, el estudio de la decoherencia mediante el desarrollo de un
algoritmo sencillo y el analisis de los resultados obtenidos en la implementaciéon de un algoritmo

de implementacion de la puerta Toffoli.



Capitulo 1

Conceptos de mecanica cuantica

1.1. Formalismo de la Matriz Densidad

1.1.1. Introduccién del operador densidad

Comienzo este trabajo presentando una herramienta que me ha resultado esencial a la hora
de trabajar con estados cuénticos, el operador densidad. Hasta este momento, siempre habia
trabajado conociendo por completo el estado de las particulas, utilizando funciones de onda per-
fectamente definidas. En este marco, contaba tnicamente con la incertidumbre de la medida,
propia de la mecanica cuantica, donde el valor obtenido en la mediciéon de un observable es pro-
babilistico. Sin embargo, durante este trabajo me ha resultado necesario aprender a incorporar,
la incertidumbre debida a la informacién incompleta sobre la funcién de onda que describe el
estado de las particulas.

De esta manera, una particula puede encontrarse en una mezcla estadistica de estados ¥y, cada
uno con una determinada probabilidad px, v en cada estado, la medida de un observable nos
puede dar un valor distinto con una determinada probabilidad. Es asi como a la incertidumbre
de la medida se le afiade la incertidumbre de no tener un estado perfectamente definido. A partir
de ahora, haré una distincion entre los estados perfectamente definidos, llamados puros, y los no
puros, también llamados estados mixtos o estados mezcla.

Para lidiar con este nuevo problema, se introduce el operador densidad p, el cual se puede definir
facilmente para estados puros a partir de la definicién de valor medio. Haciendo uso del dlgebra
bésica de la mecéanica cuantica el valor medio de un operador se puede expresar en una base a

través de las coordenadas:

() = calt)|un) (1.1)

n

(A)(E) = (T(1)[A[¥(t) Zc ) (unlAlup) = i (D)cp(t) Anp (1.2)

Podemos expresar estas coordenadas teniendo en cuenta que los coeficientes no son mas que la

proyeccion de los estados sobre la base:
Cn () p(t) = (W (t) un) (up| W (t)) = (up|¥(£)) (¥ (#)]un) (1.3)

3
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De donde podemos extraer la definicién del operador densidad:

p(t) = [W (@) (P (1)l (1.4)

Y su expresion matricial:
ppn = (up|p(t)|un) = ¢, (t)cp(t) (1.5)

En el caso mixto, la expresion del operador debe incluir las distintas funciones de onda que

describen el estado y sus respectivas probabilidades, por lo que su expresion es:

p(t) = prpr (1.6)
k

Donde pg es |V (t)) (Vi (t)], como se mostraba en la ecuacion ([1.4])

Propiedades generales del operador densidad

Enuncio aqui las propiedades principales del operador densidad para el caso de estados puros,
que como mostraré después, son analogas a las del caso mixto exceptuando que en este tltimo,
el operador no serd un proyector.

En primer lugar, el operador densidad es un operador hermitico, cumpliéndose:

p(t) = p'(t) (1.7)

Cuya matriz es definida positiva:
p(t) >0 (1.8)

Ademas, es el mismo para estados que difieren inicamente en un factor de fase constante:
i0
(W (t)), e |W(t)) — p(t) (1.9)

Nos permite obtener el valor medio de un operador, desarrollando la ecuacion (|1.2)):

(A1) =D (uplo(®)un) (un| Alup) =Y (uplp(t) Aluy) (1.10)

n,p p

De donde podemos identificar la propiedad siguiente:
(A)(t) = Telp(t)A] (1.11)
Por ultimo existe una propiedad importante relacionada con la traza de este operador:
Trip(t)] =1 (1.12)

Esta se puede deducir facilmente para el caso puro analizando la condicién de conservacién de
la probabilidad:

S len®2 =1=5" pan(t) = Trlp(t)] (1.13)
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Para el caso mixto, no hay més que observar que:
Telp(t)] = 3 piTrlpw(t)] = 1 (1.14)
k

Donde se ha tenido en cuenta que la traza de pi es 1 y que la suma de las probabilidades p; es
1.

Propiedades no generales

Todas las propiedades antes mostradas son comunes para el caso puro y mixto, no obstante,
el caso puro es un caso particular en el que el operador densidad es un proyector, como se puede

observar en la expresion Esto significa que un estado puro cumple la propiedad:

pr=p (1.15)

Y por tanto que
Tr[p?] = Tr[p] = 1 (1.16)

Ademas de que su espectro de autovalores estaré formado por A=1y A = 0.

Todo esto no es valido en estados que no son puros, en los cuales p? # p. De hecho, para estos
podemos deducir otra propiedad. Como la traza de p es 1, sus elementos de la diagonal seran
menores que uno, excepto en el caso puro que tendra ceros y un 1 (proyector). Los valores de la
diagonal de p? seran entonces niimeros menores que 1 elevados al cuadrado, excepto en el especial
caso del estado puro, que serdn de nuevo ceros y un 1. Este razonamiento concluye entonces,
en que la traza seréd siempre menor o igual que 1, donde este dltimo caso, corresponde al de un
estado puro (caso particular de los estados mezcla), es por esto que a la traza de p? se le llama

pureza.

Tr[p?] < 1 (1.17)

1.1.2. Traza parcial: Descripcion separada de una parte de un sistema fisico

Suponemos dos sistemas, €(1) y €(2), cuyas bases son |u, (1)) y |v,(2)) respectivamente. Ambos
sistemas, son subsistemas del espacio total € = €(1) ® €(2). Dentro de estas consideraciones,
habra una matriz densidad para el espacio €, que contenga la informacién de ambos subsistemas.
La traza parcial, permite obtener la matriz densidad de estos subsistemas y trabajar con ellos
aisladamente, sin tener en cuenta toda la informacién contenida en el sistema total. De esta forma
se pueden obtener los elementos de matriz de p(1), que es la matriz densidad correspondiente al
subsistema 1, simplemente contrayendo los indices del sistema 2, en la expresiéon del operador
densidad del sistema total:

(un (Dp(1) [ (1)) = > {un(D)|(0p(2)|plun (1)) ]0p(2)) =

p

= (un (1) p(D) s (1)) D (up(2)]p(2)up(2) (1.18)

p
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Donde p es el operador densidad del sistema total y donde se reconoce la suma como la traza
sobre el sistema 2:

p(1) = Trs ] (1.19)
analogamente podemos obtener:

p(2) = Tri[p] (1.20)

Aqui queda manifiesta la propiedad antes mencionada de obtener la informacién de un subsistema
a partir del sistema total. Podemos trasladar esta propiedad al célculo de valores medios de
observables:

Un operador A(1) que actiia en el espacio €(1) puede extenderse a un operador A(1) = A(1)®1(2)
que actta en €. Si tenemos entonces un operador del espacio total como /1(1), que solo actta en
un subespacio, podemos obtener su valor medio a través de la traza parcial:

(A1) = Tr(p(1)A(1)) (1.21)

1.2. Entrelazamiento y mezcla.

En este apartado introduzco los conceptos de superposiciéon y entrelazamiento, que son las
principales propiedades en las que se basa la computaciéon cuantica. Por otro lado, pretendo
introducir la relacién entre entrelazamiento y pérdida de pureza; Estudiaré méas adelante este
punto con un modelo sencillo, para ilustrar como este proceso de perdida de pureza es el principal
problema a la hora de desarrollar un ordenador cuéntico.

Generar superposicion consiste en crear un estado que es combinacion lineal de otros. Por ejemplo,
en un sistema de dos niveles podria obtenerse la siguiente superposicion:

1 0 1
V2 V2

Como explicaré mas adelante, la superposiciéon permite generalizar la unidad béasica de un orde-

v) )+ —7=1) (1.22)

nador, el bit, que puede tomar valores 0 y 1, al qubit, que contiene a todos los estados que sean
combinacion lineal de estos dos.
El entralazamiento es un fenémeno que involucra a varios qubits. Estos pueden entrelazarse dan-
do lugar a un nuevo estado, que se caracteriza por no poder escribirse como producto tensorial
de los estados anteriores. Por ejemplo, en un sistema de dos qubits se podria obtener un estado
con la siguiente forma:

W)

)|0B) + M1B) (1.23)

1 1
i Sl
El entrelazamiento tiene algunas consecuencias muy interesantes, en primer lugar un estado
entrelazado tiene la propiedad de que si realizamos una medida sobre un qubit, la medida sobre
el otro qubit queda completamente determinada. Por ejemplo, en el caso descrito en , al
medir A, el valor de B queda completamente determinado, de forma que si se obtiene |0), el valor
de B es |0)y si se obtiene |1), el valor de B es |1).

Otra caracteristica interesante es que una matriz densidad de dos estados que estén entrelaza-

dos, nos dara tras realizar una traza parcial, estados mixtos, independientemente de que fueran
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puros antes de entrelazarse. En el ejemplo (1.23)), dos estados puros (|0),|1)) se entrelazaban
dando lugar a un estado final, la traza parcial de este estado nos devolvera una matriz de un es-
tado mixto. En la siguiente tabla hago un resumen de los distintos comportamientos de la pureza:

Sistema total subsistema (traza parcial)
Sistema de estados producto Estados puros

Sistema de dos estados mixtos Estados mixtos

Sistema de dos estados puros que se entrelazan | Estados se vuelven mixtos

Ademas, el estado del ejemplo ([1.23), es un estado maximamente entrelazado y por lo tanto,
al realizar la traza parcial se obtendra una representaciéon proporcional a la matriz identidad.

1.3. Decoherencia

1.3.1. Marco del problema

La interaccién con el exterior, da lugar a procesos de decoherencia mediante los cuales, los
estados cuénticos se transforman en estados mezcla, transformando al sistema en un sistema
clasico. Este es el gran problema que tienen los ordenadores cuanticos en la actualidad,deben
mantenerse en un medio que los vuelve cada vez més clasicos. Trataré de ilustrar este proceso
de decoherencia usando un modelo sencillo, que nos permitira ademés, comprender porqué no

observamos con frecuencia fenémenos cuénticos en la naturaleza macroscopica.

1.3.2. Modelo de Phase Damping Channel

Supongamos una particula que puede encontrarse inicialmente en dos estados, zg y —xg. La
particula no estd completamente aislada, ya que el aislamiento nunca es perfecto, e interactia
con los fotones que le llegan. Por sencillez del modelo, suponemos también que la interaccion
tiene lugar unicamente con un fotén y que la masa de la particula es lo suficientemente grande
como para no variar su posicion al interactuar con él.

De esta forma, tenemos un sistema donde un fotén puede interactuar con la particula con una
probabilidad P, acabando en un estado que llamaré |1) o no interactuar acabando en un estado
|0). La funcion de onda que describe el proceso sera la siguiente:

|Wag) = VPlao)[1) + VI = Pla)[0) (1.24)

Anéalogamente si la partéula comienza en la posicion —xg, el foton llegara a un estado |0) en
caso de no interaccién. No obstante, si se produce interaccion , el estado del fotén después de la
interacciéon no seré |1), serd un estado distinto debido a las distintas condiciones iniciales, llamaré
a este estado final |2).

Teniendo en cuenta esto, la funcién de onda representativa del proceso sera:

W_s) = VP| — 20)|2) + V1 — P| — ) 0) (1.25)
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Si el experimento comienza con la paricula en zg, se tendra la primera funcién de ondas, si
inicialmente la particula esta en —zg, se tendra la segunda, de igual forma, si el sistema comienza
en una superposiciéon de ambos estados, la funciéon de ondas que describiré el proceso sera una

superposicion de las funciones de ondas anteriores:

W icial) = j§<|xo> + | - z0))[0) (1.26)

Cuya evoluciéon temporal dara lugar a la siguiente funciéon de onda:

|V finat) = \}i(\/ﬁ(lwom) + 1= 20)[2)) + V1 = P(| = z0) +[0))|0)) (1.27)

Este estado no puede escribirse como producto tensorial de sus estados iniciales, es un estado
entrelazado, como se explicé en la seccién Ahora bien, ya que solo estamos interesados en la
particula, la medida de interés, es la realizada sobre el espacio de la particula, no sobre el espacio
total. La traza parcial nos permite obtener la informacién que buscamos, sin embargo, como he
comentado en una parte previa de esta memoria, la traza parcial de la matriz densidad de un
estado entrelazado, tiene como resultado una matriz densidad de un estado mixto. Analizo con
maés detalle este punto, nuestro estado inicialmente era un estado puro, pero al interaccionar con

el foton se ha hecho mixto. El estado inicial de la particula era una superposicion:

‘\Ilpartcula> = Oz‘$0> -+ 6| — .CL‘()) (128)
| lal® ap*
Ppartcula = ( 505* ‘,8|2 ) (1.29)

El sistema sera también una superposicién de estados:
|Wsistema) = VP(alzo)|1) + B — 20)|2)) + V1 = P(B] — wo) + alx0))|0) (1.30)
con su correspondiente matriz 4x4:

Psistema — |\I]sistema><\1’sistema| (131)

Al realizar la traza parcial sobre el subespacio del foton se obtiene la siguiente matriz densidad

2 * -
Ppartcula = ( ‘O‘| aIB (1 P) ) (132)

de la particula:

Bar(1—P) 18]
Como se puede apreciar, los elementos de la diagonal no han variado al no variar la energia de
la particula como hemos supuesto al comienzo, no obstante los términos de fuera de la diagonal
se han hecho més pequenios. Iterando, para un scattering con n fotones se obtiene:

_ a2 ap*(1-—P)
=\ Bara—Pn 8P

Es de interés estudiar el término que aparece debido a la interaccion con los fotones, (1 — P)™.

(1.33)

P es la probabilidad de interaccién, podemos expresar P en funciéon de los pasos de tiempo
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mediante una constante I', por otro lado n es el niimero de interacciones y también puede ser
discretizado en funcion del tiempo n = t/At pudiendo reescribir el factor de interaccion de la
suiguente manera :

(1 —P)" = (1 — DAp)Y/A (1.34)
Haciendo infinitesimal el tiempo entre interacciones At — 0 obtenemos:
(1—P)"=e (1.35)

Donde la exponencial se obtiene resolviendo el limite con la regla de I'hépital:

lfim (1 — Tt)/At = 1 1.
Alm,(1 =) (1.36)
—tT
1_TA: —Tt
1/ 1 _F t/At — 1’ 1 PAt — 1' _— = —F 1
M (1 =THT =l === = Mmoo = T (1.37)
y por tanto:
lim (1 — DA¢)/At = 71t (1.38)
At—0

Con este resultado podemos expresar la matriz densidad (|1.33]) en funcion del tiempo:

‘a‘Q a,@*efrt
Ppartcula = ( Ba*e’” ’,3’2 (139)

De esta expresion se pueden sacar dos conclusiones fundamentales:
= Los elementos de fuera de la diagonal tienden a 0 exponencialmente con el tiempo
= Los elementos de la diagonal no varian

El primer punto es realmente el objetivo de este desarrollo, el hecho de que los elementos de fuera
de la diagonal se anulen exponencialmente con el tiempo significa, segtin lo que he explicado con
anterioridad, que el estado de la particula se hace mixto con el tiempo, y por lo tanto el sistema
se vuelve clasico, perdiendo las propiedades de superposicién inicial.

Queda entonces ilustrado el gran problema que afronta la construcciéon de un ordenador cuantico.
Deseamos crear maquinas que generen superposicion y entrelazamiento, pero estos sistemas no
pueden existir completamente aislados del entorno, y la interaccién con el mismo les hace perder
las propiedades por las que fueron construidos.

Sobre el segundo punto, simplemente quiero comentar que es consecuencia directa de que el
modelo aqui presentado no considera que la particula varia su energia o estado durante el proceso
de interaccion con el foton. Existe un modelo més elaborado que no presentaré aqui, por motivos
de espacio y por no alargar excesivamente esta ilustracion, que considera que la interaccién con el
foton puede dar lugar a procesos de emisién o absorcion, excitando o desexcitando a la particula.
En este modelo, llamado Amplitude Damping Channel, la energia de la particula varia, variando
por tanto su estado y en consecuencia se puede observar como los elementos diagonales de la
matriz densidad de la particula si varian. La variacion de los estados de la particula medida como

consecuencia de las interacciones supone otra fuente de ruido.



Capitulo 2

Computacién cuantica

2.1. Introduccién a la computacién cuantica

2.1.1. ;Por qué un ordenador cuantico?

Un ordenador cuantico es una maquina que funciona segun las leyes de la Mecénica Cuantica
y que por tanto, es capaz de aprovechar propiedades intrinsecamente cuanticas como el entrela-
zamiento y la superposicién.
Un ordenador cuyo funcionamiento se basara en las propiedades anteriores, presentaria un alto
grado de paralelismo, esto es, seria capaz de llevar a cabo multiples tareas de forma simultanea,
a diferencia de los ordenadores clasicos, cuyo funcionamiento es secuencial. Esto podria suponer
una reducciéon abismal en el tiempo de calculo y resolucién de problemas, como se ha confir-
mado en los algoritmos de Grover y Shor. En 2001 se di6 un salto importante en el campo de
la computacion cuéntica cuando el algoritmo de Shor fue implementado y comprobado en la
primera maquina cuantica, un ordenador de 7 qubits de IBM. En la figura [2.I] puede verse una
comparacion entre el algoritmo de Shor y un método clésico extraida de [1].

exp(const x d1/3)
best classical

algorithm

(number field sieve)

classical

record: |
230 digits |

const X d?

Shor’s algorithm

Number of operations

0 50 100 150 200 250 300

Number of digits d

Figura 2.1: Reduccion a tiempo polinémico del problema de factorizacion, mediante el algoritmo
de Shor, y comparaciéon con algoritmo clasico mas optimizado.
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Sistemas de encriptacion como RSA, basan su seguridad en la necesidad de tiempo de computo
del orden de millones de atios para su resolucién. El algoritmo de Shor, hasta entonces, un método
puramente teérico, permitia convertir este tiempo exponencial en polinémico, haciendo posible
la desencriptacion. Este es un ejemplo realmente visual de hasta donde puede llegar la propiedad
de paralelismo y en general, las capacidades de esta nueva tecnologia.

2.1.2. Concepto de qubit

El qubit es la cuantizacion del bit. Un ordenador cléasico, trabaja con una unidad basica, el
bit, que puede tomar los valores 1,0. Un ordenador cuantico sin embargo, utiliza como unidad
fundamental el qubit, un objeto mateméatico que puede encontrarse en dos posibles estados, |0)
y |1) y también en cualquier combinacion lineal de los mismos, es decir, puede existir en un
continuo de estados entre [0) y |1):

W) = |0) + B[1) (2.1)
La condicién |a|? + |8]? = 1 nos permite reescribir la expresion anterior de la forma siguiente:
0 io . O
|¥) = cos §|O> —i—e‘Psm§|1) (2.2)
¢ v 6 describen un punto en la esfera unitaria que se puede ver en la imagen Esta esfera
recibe el nombre de esfera de Bloch y nos proporciona una forma visual de entender los estados

de un qubit. También permite describir en ella las operaciones realizadas mediante las puertas
de las que hablaré mas adelante.

0)

1)

Figura 2.2: Representaciéon de un qubit en la Esfera de Bloch
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2.1.3. Puertas Cuanticas

Siguiendo con la analogia clasica, un ordenador realiza operaciones mediante el uso de puertas
logicas mientras que un ordenador cuantico realiza operaciones a través de puertas cuénticas.
Estas puertas cuanticas deben poder implementarse y por tanto, no puede contradecir las leyes de
la fisica. La evolucién temporal de un estado viene descrita en mecanica cuantica por el postulado
de evolucién, que dicta que para cualquier evoluciéon de un sistema, existe un operador U que
transforma el sistema de la forma:

‘\Ilfinal> = U‘\IJinicial> (23)

El operador evolucién es un operador unitario, por tanto, las puertas deben ser unitarias. Otra
ley fisica a tener en cuenta, es la restriccién dada por el teorema de no clonado, una restricciéon
que impide obtener y utilizar copias de un estado y nos recuerda que trabajamos en un problema
fisico y no en buscar una mera transformacién matematica que nos lleve de un estado a otro.
Las puertas pueden actuar simulateneamente en uno o mas qubits, siendo en realidad, operadores
en un espacio de Hilbert teniendo una representacion matricial. La imagen [2.3]muestra un ejemplo
de los diagramas habituales de la computaciéon cuéntica donde aparecen los distintos qubits en
su estado inicial. Las lineas simbolizan el paso del tiempo y sobre ellas estan las puertas, que
rigen la evolucion temporal de los qubits hasta que finalmente son medidos.

B o mg—
az o — = —J l l — -

aldl W _n

Figura 2.3: Diagrama en un ordenador de 5 qubits (IBM)

Una propiedad importante a mencionar es que el conjunto de puertas de 1 qubit y la puerta
CNOT de dos qubits, forman un conjunto universal, esto es, que cualquier operaciéon unitaria

posible puede ser expresada aproximadamente con una secuencia finita de puertas del conjunto.

A continuacion, en las imagenes [2.4][2.5] hago un breve compendio de las puertas que han
sido utilizadas en este trabajo . Notese que todas ellas son unitarias cumpliéndose que MMt =
MM =1.
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Puertas de 1 qubit

Hadamard

Puerta X

Puerta Y

Puerta Z

Puerta S

Puerta T

-] [

ERERONE

Inicial

Final

Inicial
Final

Inicial
Final

Inicial

Final

Inicial
Final

Inicial
Final
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(=)

0

)
)
|0)
|0)

e
Il
7 =N
SO
o |
<.
S

Figura 2.4: Simbolo, actuacién y representaciéon matricial de las puertas de 1 qubit

Una importante puerta de 2 qubits: Puerta CNOT

La puerta CNOT posee un primer qubit de control que regula la aplicaciéon de una puerta X

en el segundo qubit.

CNOT

inicial final

o 10 | 10 | 0
o | |0 | m
1) [0} 1) 1)
y | | o)

Figura 2.5: Simbolo, actuacién y representaciéon matricial de la puerta CNOT
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2.2. Implementacion fisica de puertas: Oscilaciones de Rabi

2.2.1. Puertas de 1 qubit

En este apartado busco explicar como se construyen los componentes fundamentales que
describen las operaciones realizadas sobre los qubits, las puertas. Existen diferentes formas de
implementar fisicamente un qubit, una de ellas consiste en usar espines. Los espines tienen
transiciones energéticas que pueden ser estimuladas con un campo, de forma que esta actuaciéon
de los campos daria lugar a las puertas. Es en este proceso de estimulacién de transiciones donde
entran en juego las oscilaciones de Rabi, generando las puertas.

Un Hamiltoniano independiente del tiempo muy habitual es el siguiente:

Ao,

Hy 5

(2.4)

Se trata de un Hamiltoniano constante, que representa un sistema de dos niveles de diferencia

de energias A.

€1 —

A

o

Figura 2.6: Niveles de energia del Hamiltoniano

A este Hamiltoniano se le puede afiadir un término dependiente del tiempo :

Ao,

H=Hy+H = + 2X cos(wt)oy (2.5)

Este término es lo que se conoce como un drive, una estimulacién con un campo variable con el
tiempo, que produce las llamadas oscilaciones de Rabi. Controlando estas oscilaciones podemos
generar superposiciones de estados |0) y |1), y por tanto implementar puertas de 1 qubit. Como
se muestra en el apéndice, la evolucién temporal dada por la ecuacion de Schrodinguer en el
caso particular de las condiciones iniciales indicadas en , para una funcién de ondas de la
forma de permite llegar a las ecuaciones , que no son soluciones exactas, sino que
se obtienen al aplicar la aproximacién RWA que desprecia los términos exponenciales que oscilan
muy rapidamente.

(W) = c1(8)[0) + c2(t)[1) (2.6)

1(0) =1 2(0) =0 (2.7)
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ler(8)]? = @ + (5)2 cos? > (2.8)
) = () sin? 2 2.9)

Que en resonancia, § = 0, se simplifican llegando a (2.10])(2.11)):

le1(t)]? = cos? % (2.10)
lea(t)]? = sin? % (2.11)

27
& T
nan un ciclo, por otro lado la probabilidad del estado |1) es 1 para t = QO Es decir, driveando

Para los valores ¢t = 0, la probabilidad de estar en el estado |0) es 1, estos valores determi-

correctamente, se puede generar superposicion entre el estado |0) y el estado |1) y por lo tanto
implementar puertas . Por ejemplo, un drive a lo largo de un intervalo completo mantiene el
qubit invariante, si se toman valores dentro de este intervalo podemos generar superposiciéon, en

i
concreto para t = 20 los coeficientes son iguales y se tiene una puerta Hadamard. Un pulso

de t = = invierte el qubit (esto es llamado pulso 7), lo que permite implementar un puerta X.
Las oscilaciones de Rabi solo producen cambios de coeficientes reales, para generar el resto de
puertas de la figura ,que introduzcen una fase imaginaria es necesario drivear con términos
que incorporen o, en el coseno de la expresion , asi se pueden generar puertas como la puerta
Y, o la puerta de fase. Genericamente este término puede escribirse como un sumatorio sobre
02,0y ¥ 0z ya que las tres sigmas de Pauli son los generadores de rotaciones en SU(2) y pueden
generar cualquier rotacion en las esfera de Bloch.

He realizado la evolucion de un estado |0) mediante el Hamiltoniano indicado en , utilizando
python y la herramienta qutip, este resultado ha sido comparado con la ecuacién y efecti-
vamente se comprueba que la evoluciéon de un qubit sigue el comportamiento de las ecuaciones
obtenidas y por tanto estas permiten explicar la evolucién temporal de un qubit. Los resultados se
presentan en la grafica[2.7], donde se observan las oscilaciones de Rabi completas para frecuencia

resonante, y como conforme se alejan de la resonancia van reduciendose hasta anularse y producir

un cambio nulo en el qubit. Los datos vienen expresados en unidades de f = T Por otro
lado, es interesante comprobar la validez de las soluciones aproximadas en la ﬁgura
puede observarse como si se aumenta la amplitud y se ignora la condicién de la aproximaciéon
RWA, las ecuaciones (que han sido obtenidas en el apéndice utilizando esta aproximacion para
poder resolver las ecuaciones diferenciales que nos deja la ecuacion de Schrodinger) dejan de
funcionar. También se puede observar como esto es mucho mas notorio fuera de resonancia, ya
que en resonancia una de las dos exponenciales que no se desprecian, tiene contribuciéon maxima
y no oscila, (e~#w=w0)t — =0t — 1) de forma que el término que oscila rapidamente (e*(“+«0)t)

es aun mas despreciable..
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1.0~

Py

0.8 A '
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Modelo en resonancia(é = 0)

mmmm Modelo fuera de resonancia(é = 2)

mmmm Modelo muy lejos de resonancia(é = 10)
mmm Simulacién en resonancia(é =0)
mmm Simulacién fuera de resonancia(6 = 2)
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Figura 2.7: Oscilaciones de Rabi dentro de la aproximacion RWA (A = 1, w = 300)

1.0 A

0.8 A

Modelo en resonancia(é = 0)

mmmm Modelo fuera de resonancia(é = 2)
mmm Modelo muy lejos de resonancia(é = 10)
mmm Simulacién en resonancia(é = 0)

B Simulacién fuera de resonancia(é = 2)

0.6 A

|c2]?

mmm Simulaciéon muy lejos de resonancia(é = 10)
0.4

0.2

12.5 15.0

]_7l.5 20I.0
Figura 2.8: Oscilaciones de Rabi fuera de RWA (X = 3, w = 300)
2.2.2.

Puertas de 2 qubits

La implementacién de puertas de orden superior se basa de igual forma, en las oscilaciones
de Rabi para producir cambios en los qubits. En concreto, en este apartado explicaré la imple-
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mentacion de la puerta CNOT, no obstante, toda puerta de 2 qubits se puede implementar de la
misma forma. Una puerta de 2 qubits, como es evidente, requiere a diferencia del caso anterior
dos qubits y ademés requerira de la existencia de una interaccién entre ambos. Es por esto que

el Hamiltoniano que describa dicho sistema, tendra la siguiente forma:
Hogupit = o) + e0® + JoMo? (2.12)

Donde los dos primeros términos hacen referencia a los qubit, y el tercero a la interaccion entre
estos. Si se calculan los autovalores del Hamiltoniano, se puede realizar el diagrama de niveles

energéticos de la figura [2.9| y encontrar las distintas transiciones entre niveles.

€|11>:6+1+J

€|00) =—1l—e+J

Figura 2.9: Niveles de energfa y transiciones del Hamiltoniano Hagypit

Ahora se trata de estimular las transiciones deseadas mediante un driving. En este caso, la
transiciéon que permite implementar la puerta CNOT es la senalada en la imagen (la tabla
de actuaciéon de la puerta CNOT estaba en la imagen . Para ello se realiza un drive con
una frecuencia resonante, analogamente a como se mostrd en las secciéon [2.2.1] para estimular
unicamente esta transicion:

A=2e+2J (2.13)

La matriz que representa este cambio de estado |10) a |11) y viceversa es o,. Asi que el drive
seran oscilaciones de Rabi de la forma:

Hyive ~ 04 cos At (2.14)

Con esto se ha obtenido una explicaciéon de como obtener una puerta de 2 qubits, en concreto
una CNOT. Esto permite concluir diciendo que las puertas de 1 qubit, suponen un sistema de
dos niveles donde se realiza un drive entre los mismos, mientras que, para la puerta CNOT, se
tiene un modelo de Ising driveado.
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IBM Quantum experience

3.1. ;Qué es IBM Quantum Experience?

Quantum experience es un proyecto sacado al publico por IBM. Gracias a este proyecto
investigadores de todo el mundo pueden hacer uso de los prototipos de ordenadores cuanticos
desarrollados por la empresa. Esto supone que los usuarios podemos formar parte de esta gran
revolucioén cientifica y tecnologica mientras que, IBM puede poner a prueba sus ordenadores en un
proceso de mejora y desarrollo. Quantum experience no es solo esto, es también una carrera por
desarrollar e implementar las ideas responsables de una posible nueva era cientifica y tecnologica.

3.2. Dentro de la Quantum Experience

Para poder acceder a este proyecto es necesario crear una cuenta en la quantum experience.
Existen distintas herramientas para poder acceder a los ordenadores, pero la principal es el
“composer”, una interfaz grafica que muestra las distintas maquinas con las que se pueden trabajar
y datos realmente interesantes como la estructura de los qubits, el error asociado a cada qubit y
la temperatura de refrigeracion.

Desde el composer se puede acceder al simulador y a los ordenadores. Aparte del composer
también existe un foro que resulta crucial dentro del proyecto al estar este basado en la coope-
racion de investigadores de todo el mundo a través de la nube.

Junto al foro también es destacable una pagina de noticias que informa de los distintos avances
y que ademas recopila una gran cantidad de fotos donde se ensefia la estructura fisica de los or-
denadores, manuales para los investigadores que no conocemos temas avanzados o métodos para
implementar experiementos, y para los que se inician en el terreno de la mecanica cuéntica, asi
como videos grabados por el equipo de IBM explicando el funcionamiento interno y mas detalles
sobre los experimentos.

Toda cuenta tiene dentro del composer acceso al simulador, un servidor donde el c6digo es ejecu-
tado en un ordenador clésico para obtener unos datos tedricos correctos que sirvan para comparar

posteriormente.

17
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v IBM Q5.1 fbmgal [AETIVEIUSERS||  AVAILABLE ON QISIIT

Q2 Q3
Frequency {eHs) : 31 535 841
T1 (ps) 4500 26.50
2 () 13 20 5170 2000 2550

Gate error (107 103 7 163 129
Readout error (1077 - £.30 5.20

oz 0
MultiQubit gata arror (10-%) s 391
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Q2

Frequency (GHz) 5.02
T1 (=) 48.40
T2 )

Gate error (109
Readout errer (107%)

MultiQubit gate error (10-7)

Figura 3.1: Ordenadores de 5 qubits y datos de interés en la interfaz del composer

Existen varios modelos de funcionamiento de un ordenador cuéntico, sin embargo, los proto-
tipos por los que se esta apostando actualmente son principalmente dos, ordenadores de trampa
de iones y de superconductores. Los ordenadores de la Quantum Experience estan basados en
una tecnologia de superconductores y tienen una topologia llamada star-shaped, esto significa
que su conectividad esta limitada a primeros vecinos . En la figura he representado este tipo
de conectividad, en contraste, con una topologia de conectividad total.

Fully connected Star-sharped
(conexién total) configuracion en estrella

Figura 3.2: A la derecha, la topologia en estrella de los ordenadores de IBM que he utilizado,
4 puertas CNOT conectan 4 de los qubits a un qubit central.A la izquierda una topologia de

conectividad total
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3.3. Un sistema para usar mecanica cuantica en un ordenador

;,Como hacer que un ordenador entienda un algoritmo cuantico?, la respuesta es que se re-
quiere incorporar una serie de herramientas para poder crear y compilar cédigo v que este sea
ejecutado en un ordenador cuantico real. Es por esto que se ha desarrollado el “Quantum Infor-
mation Software kit” también llamado QISKkit, el cual incorpora las herramientas necesarias para
poder generar coédigos usando la herramienta Jupyter y el lenguaje Python. Una de las grandes
novedades de este kit es la incorporacién de un sub-lenguaje de programaciéon completamente
nuevo, que permite explicar usando python, las especificaciones que se requieren para trabajar
con un ordenador cuantico, como por ejemplo asignar las operaciones a los distintos qubits.

a[0] o

an] =

al2] i

1l
2
3
4
S0
[
7
k3

q[3]

a4l o

L)

Figura 3.3: Simulaciéon de un circuito cuantico en la interfaz grafica del composer y codigo del

circuito.

Mediante este sub-lenguaje y el uso de QISkit se puede hacer correr algoritmos en el simulador
y en los ordenadores cuanticos de IBM, que es al fin y al cabo, el ntucleo central de todo este
proyecto. Para esto, toda cuenta tiene asignadas unas unidades llamadas tokens que funcionan
como una moneda para poder realizar ejecuciones en los ordenadores reales. Cada ejecucion cuesta
una cantidad concreta de tokens que se recuperan cuando la ejecucién ha finalizado y se entregan
los resultados, de forma que esto simplemente limita la cantidad de ejecuciones simultaneas que
se realizan. Los ordenadores que he utilizado son ordenadores de 5 qubits, aunque durante este
trimestre IBM ha abierto al publico la posibilidad de utilizar un ordenador de 16 qubits.
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Capitulo 4

Resultados obtenidos de un ordenador

cuantico

4.1. Estudio de la decoherencia

Uno de los objetivos mas interesantes que ha tenido el uso de un ordenador cuéntico real en
este trabajo ha sido la comprobacion del fendmeno de decoherencia. Recordando la seccion
el fenémeno de decoherencia se manifiesta como una reducciéon exponencial de los términos de
fuera de la diagonal de la matriz densidad del sistema.

La matriz de un estado superposiciéon, como el obtenido por aplicaciéon de una puerta Hada-

al? *
p= (|7| |Zf!2> 45

Al aplicar una puerta Hadamard sobre el estado |0) para realizar superposicion, se obtiene que

mard, tiene la siguiente forma:

tedricamente la matriz viene dada por los siguientes valores:

1/2 1/2

P= (1?2 1?2) (42)
El proceso de decoherencia consistira entonces, en que los elementos no diagonales obtenidos seran
inferiores al calculo teérico. No obstante, las medidas que se obtienen al ejecutar un algoritmo son
unicamente los valores diagonales. Es por esto que es necesario crear un algoritmo que permita
obtener los valores no diagonales mediante un sistema de ecuaciones. Para esto he ejecutado dos
algoritmos sencillos que permiten obtener un sistema de 2 ecuaciones, para calcular los valores
deseados, a partir de las medidas tomadas del ordenador. Estos algoritmos se pueden ver en la
figura y consisten en:

= Un Circuito de un qubit con dos puertas Hadamard

= Un Circuito de un qubit con dos puertas Hadamard y con la aplicacién de una puerta S
entre ambas.

21
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Figura 4.1: Algoritmos disenados para obtener las partes real e imaginaria de la decoherencia

mediante un sistema de dos ecuaciones

Se puede comprobar que la aplicacion de estas puertas (cuya representacion se encontraba

en la secci6n2.1.3] figura [2.2.1)) sobre la matriz del sistema inicial (4.1, da lugar a matrices,
cuyos elementos diagonales son suma de todos los elementos de la matriz inicial, de forma que, la

diagonal de la matriz obtenida al aplicar las puertas de uno de los algoritmos, es una ecuacién en
funcion de las incégnitas v y y*. Para obtener una ecuaciéon mas, hago uso del segundo algoritmo,
de forma que se tiene un sistema de 2 ecuaciones con dos incégnitas. Esto me permite obtener la
parte real y la parte imaginaria de « contando asi, con los elementos matriciales que no conocia
de la matriz densidad . Los resultados vienen expresados en la figura

Probabilidad

1
0,9
0,8 0,508
0,7
0,6
0,5
04
0,3
0,2

0,1

0

0)

Figura 4.2: Elementos de la matriz densidad del estado superpuesto, medidos en un ordenador
cuantico real

Como se puede observar, los elementos de la matriz densidad del sistema no se corresponden
con los calculados tedricamente en . De hecho, se observa que mientras los valores diagonales
son los esperados, los valores de fuera de la diagonal son muy inferiores a los calculados. Esto
es debido a que a lo largo del proceso de ejecucién la interacciéon con el medio los hace tender a
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cero exponencialmente con el tiempo. De esta forma, el disefio de dos algoritmos cuanticos y la

toma de medidas en el ordenador ha permitido observar la perdida de fidelidad por decoherencia,

ilustrando este proceso.

4.2. Implementacién y simulacién de un puerta Toffoli

En esta seccién quiero mostrar los resultados obtenidos de la aplicaciéon de una puerta Toffoli,

esto ademas me va a permitir ilustrar con datos reales otra de las principales fuentes de error, el

uso de un ntmero de puertas elevado. La puerta Toffoli es una puerta de 3 qubits que aplica en los

dos primeros una operacion de control y en el tercero una puerta X.En la figura[4.3| pueden verse

sus principales caracteristicas, entre ellas los dos tinicos estados que no permanecen invariantes

bajo su actuacién.

Estado final

Toffoli Gate = CCNOT ? Eﬂﬂlei(l;;cial

111)

N T11)

110)

=
—
=
=
=

0 0 0

o o
o o
=
=
=

0 0 0
00 0
000

[ Y e i
oo
oo o=
[ T e o
o =
= o
=

=
Sy
=
=
=

01 0

Figura 4.3: Simbolo, actuacién y representaciéon matricial de la puerta Toffoli

En la quantum experience, cualquier circuito ha de ser implementado a partir de puertas

de 1 y 2 qubits, de forma que para poder estudiar esta puerta he tenido que implementarla

con el algoritmo de la figura el cual puede encontrarse en . La imagen corresponde a la

implementacién del algoritmo en el ordenador cuantico, para ello he comenzado con dos puertas

X para generar un estado inicial |110).

qlo] 10) —

q[1] o) — 4 \ 4

q[3] o)

q[4] )

co’

Figura 4.4: Construccion de la puerta Toffoli a partir de puertas de 1 y 2 qubit

El funcionamiento de este sistema de puertas es complejo, en primer lugar las puertas Hada-

mard crean una superposicion de estados. Sobre esta superposicion actiian las puertas Ty 7T que

anaden desfases a los estados, siendo las puertas CNOT las encargadas de seleccionar que estados
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reciben desfase w/4,—m/4 o no reciben desfase, de forma que al final los estados pueden quedar
con desfase +7/2 o con desfase nulo. Los estados que no reciben fase permanecen invariantes,
los demas pierden su caracter imaginario con la aplicacion de la puerta S. (Los detalles de las
puertas se encontraban en la secciéon en la figura

Es decir el mecanismo funciona debido a la generacién de estados superpuestos, cuyas compo-
nentes se van seleccionando mediante las puertas CNOT y los desfases hasta dejar finalmente
invariantes a 6 estados y cambiando a dos de ellos.

Resulta entonces interesante tomar un estado |110) y comprobar que se transforma en un es-
tado |111) bajo actuaciéon de la puerta Toffoli. También resulta de interés, aplicar dos puertas
Toffoli secuencialmente para comprobar que se recupera el estado inicial. Dado que el proceso
de decoherencia introduce un error aleatorio, he ejecutado 10 veces cada algoritmo, para hacer
estadistica. Los resultados obtenidos pueden verse en los histogramas [1.5][4.6]

g

Probabilidad (%)

10 3

|000) |(J()1} |mn} |011) |1fm) |101 |1m) |111
Estados finales

Figura 4.5: Distribucion de estados obtenida de la aplicacion de una puerta Toffoli

45
35

25
20
15
10

11

seialallll
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[ BN |

Figura 4.6: Distribucién de estados obtenida de la aplicaciéon de dos puertas Toffoli
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Como puede verse, los resultados se alejan de lo esperado en gran medida, las transformaciones
solo tienen lugar correctamente el 57% y el 49% de las veces respectivamente. En su lugar,
se llevan a cabo otras transformaciones que no deberian darse, de forma que el resultado final
convierte nuestro estado inicial, en una mezcla de todos los estados posibles. Esto es comprensible
al tratarse de unos prototipos de una tecnologia en desarrollo, pero el principal motivo es el uso de
18 puertas. Como he comentado anteriormente, el uso de muchas puertas es una fuente de error
importante, existen ordenadores que alcanzan una gran fidelidad al implementar una puerta, no
obstante, cuando se implementan algoritmos de unas pocas puertas el error es inmenso. Esto me
permite concluir con que el nimero de puertas utilizado es realmente significativo en cuanto al

error generado.

4.3. Conclusiones

» Como se muestra en la metodologia aplicada en el estudio de la decoherencia (seccion ,
la construccién de ordenadores cuénticos, y la apertura de su uso al publico mediante IBM
Quantum Experience, es un gran avance para la computaciéon cuantica, tratdndose de una
herramienta que permite avanzar en el desarrollo de esta tecnologia y facilitar el estudio
de los procesos de error que son el principal problema de su implementacion.

» Las fidelidades que proporcionan los ordenadores de IBM Quantum Experience, son todavia

muy limitadas, debido a que son prototipos de una tecnologia que todavia esta en desarrollo.

= El nimero de qubits y la cantidad de puertas que se pueden implementar manteniendo el

error en un rango razonable es reducida.

= Kl proceso de decoherencia supone una fuente de error considerable, y el avance de esta

tecnologia depende de desarrollar mecanismos de correccién del mismo.
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Apéndice

Oscilaciones de Rabi

Dado el Hamiltoniano
Ao,
H=Hy+H = 7—1—2)\008 (wt)oy (1)

La evolucién de una funcién de onda de la forma , mediante la ecuaciéon de Schrédinger, da

lugar, sacando la fase e"2t/2" g la ecuacion

_[a®)
V= (@(ﬂ) ®

o d ¢y (t)etAt/2h ~A/2 —2\hicos (wt)\ [ c1(t)eidt/2h 3
1N — . = )
dt \ co(t)eiA/2h —2\h cos (wt) A/2 e (1) et/ 20

Tomando hwg = A se obtienen el siguiente sistema de ecuaciones diferenciales:

% _ i)\(ei(w—wo)t + e—i(w—l—wo)t)c2 (4)
d . )
g _ i)\(e—z(w—wo)t + e—l—z(w-{—wo)t)cl (5)

Se trata de un sistema de ecuaciones de segundo orden, lineales, homogéneas, de coeficientes
variables. En es punto, con el fin de simplificar las ecuaciones obtenidas hago uso de la aproxi-
macion RWA, de forma que asumiendo A < wy § = w — A = 0 podemos despreciar los términos

que oscilan muy rapido y reducir las ecuaciones a un sistema de coeficientes constantes :

dCl

g = i)\eiﬁtCQ (6)
d .
% = ide Pt¢y (7)

He obtenido las soluciones de este sistema para las condiciones de contorno ¢;(0) =1, c2(0) = 0,
que corresponden a comenzar con un espin hacia arriba, dichas soluciones son las correspondientes

a @D, donde anteriormente he definido la frecuencia de Rabi como
Q = (02 4 41212 (8)
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- Qa0 .
_ i6t/2 b G
c1(t) = e""%(cos 5 ~igsing ) 9)
5079 20A . Ot
Cg(t) = e—zét/?% sin 7 (10)

Quiero hacer énfasis en que estas soluciones no son exactas sino que son soluciones aproximadas
mediante la aproximacion RWA. Més detalles sobre este desarrollo pueden ser consultados en |3]

Codigo de phyton

#Inicializo variables
Psi0=basis (2,0)

tlist linspace (0, 20, 100)

Lam=1 #Amplitud Lambda

delta=10

Omega=sqrt (deltaxdelta+4+«Lam*Lam) # Frecuencia de Rabi

om=300 # Frecuencia

Delta=om—delta

Omegares=2x*Lam #Frecuencia de Rabi en resonancia

Omegap=sqrt (2*2+4*Lam=Lam) #Frecuencia de Rabi para delta=2
#Defino el Hamiltoniano (la dependencia con el tiempo tiene
una sintaxis especial)

HO=Deltaxsigmaz () /2;
H1 =sigmax ()

def H1 coeff(t,arg):
return 2xLamxcos (omxt)

h t = [HO,[H1, H1 coeff]]

# Defino una matriz tal que su valor esperado sea |c2|"2
modQuadC2=sigmax () * sigmap ()

#Realizo la evoluci ’on temporal y calculo el valor esperado de modQuadC2 (delt
medata=mesolve (h_t, Psi0, tlist , [],modQuadC2)

#Defino el mismo Hamiltoniano pero bajo condici ’on de resonancia
HO—omx*sigmaz () /2;
H1 =sigmax ()
def H1 coeff(t,arg):
return 2xLamxcos (omxt)

[HO, [HI, H1 coeff]]

h res
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#Calculo el valor de modQuadC2 en resonancia
meres—=mesolve (h_res, Psi0, tlist , [],modQuadC2)

#Defino el mismo Hamiltoniano pero con delta=2
HO=98%sigmaz () /2;
H1 =sigmax ()
def H1 coeff(t,arg):
return 2xLamxcos (100x*t)
h res = [HO,[HI, H1 coeff]]

#Calculo el valor de modQuadC2 con delta=2

minimo=mesolve (h res, Psi0, tlist , []|,modQuadC2)

# Genero las im’agenes
SAVE=1;
Imagen=2;
fig , ax = plt.subplots()

# Represento las soluciones de Rabi para resonancia, delta=2 y delta=10
ax.plot (tlist ,(2+Lam/Omegares)*(2xLam/Omegares)*sin (Omegaresx tlist /2)
xsin (Omegaresxtlist /2),”—y’, label="Modelo en resonancia
(" ’$\delta=0)3$’,linewidth=6);
ax.plot (tlist ,(2+Lam/Omega)«(2«Lam/Omega)*sin (Omegax tlist /2)
xsin (Omegax tlist /2),”—r’, label="Modelo fuera de resonancia
(" %\ delta=2)$’,linewidth=6);
ax.plot (tlist ,(2*Lam/Omegap)=(2*Lam/Omegap)*sin (Omegapx* t1ist /2)
xsin (Omegapxtlist /2),”—b’, label="Modelo muy lejos de resonancia
(" ’"$\delta=10)%",linewidth =6);

# Represento las evoluciones temporales para resonancia, delta=2 y delta=10

ax.plot (tlist ,meres.expect|[0],”——m’, label="Simulaci’on en resonancia
(" ’$\delta=0)$’,linewidth=6)

ax.plot (tlist ,minimo.expect|0],”’——g’, label="Simulaci’on

fuera de resonancia(" ’'$\delta=2)3’, linewidth=6)

ax.plot (tlist ,medata.expect|0],”——k’, label="Simulaci ’on

muy lejos de resonancia(" ’$\delta=10)$’,linewidth=6)

ax.set_xlabel(r’t’);
ax.set_ylabel(r’$[c_2|"28");
ax.set xlim (0,20);

ax.legend (loc=1);
plt.show(fig)
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