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0.1. Introducción

Este trabajo está realizado dentro del marco de la mecánica cuántica, y supone una base
para introducirse en el mundo de la computación. Un ordenador cuántico presenta una serie de
propiedades como el paralelismo, que pueden ser cruciales para abordar desde una nueva pers-
pectiva problemas que resultan irresolubles, dejando a un lado las limitaciones de la tecnología
clásica. La criptografía cuántica es una de las aplicaciones de mayor interés, que daría lugar a
comunicaciones completamente seguras donde cualquier espía sería detectado como consecuencia
directa del teorema de no clonado. La construcción de un ordenador cuántico es el principal reto
dentro de la computación cuántica, importantes empresas como IBM y Google han entrado a
participar en el desarrollo de ordenadores que sigan las leyes de la mecánica cuántica, y que sean
capaces de utilizar fenómenos como la superposición y el entrelazamiento. Todo esto ha concluido
en la creación de IBM Quantum Experience, un proyecto realizado por la empresa IBM, donde
prototipos de ordenadores cuánticos han sido abiertos al público, hecho que es en sí mismo, el
eje central de este trabajo. Una de las ideas que busca transmitir IBM es la necesidad de crear
un compromiso entre la mejora de la fidelidad y del número de qubits. Existen diversos factores
que mejorar en el desarrollo de un ordenador cuántico, pero sin duda el mayor reto es mantener
la calidad en sistemas de orden mayor y por lo tanto, construir ordenadores con una mayor can-
tidad de qubits, ya que al fin y al cabo, está es una condición necesaria para poder implementar
cualquier algoritmo útil. No obstante la mejora de la fidelidad es fundamental para obtener unos
resultados correctos de estos algoritmos, existen diversos tipos de error, principalmente tres: el
error correspondiente a los estados, el error debido a las puertas y el error en la medida. El intento
de mejorar todas estas fuentes de error esta siendo llevado a cabo desde muy distintos ámbitos
de la física, tanto teórica como experimental. Por este mismo motivo, una parte importante de
este trabajo consiste en entender los procesos que hay detrás de la aparición del error y obtener
resultados de ordenadores cuánticos reales que los ilustren.

0.2. Objetivos

Comprender los principios básicos de la computación cuántica

Aprender qué es la computación cuántica, sus objetivos y sus limitaciones.

Entender qué son puertas lógicas cuánticas y su implementación.

Aprender a realizar simulaciones en un ordenador cuántico real.

Uso de algoritmos cuánticos para obtener conclusiones sobre las capacidades de un orde-
nador cuántico real.
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0.3. Desarrollo del trabajo

La memoria esta estructurada en cuatro capítulos. En el primero hago una explicación de
conceptos de mecánica cuántica básicos, en concreto, introduzco el operador densidad,y los fe-
nómenos de superposición y entrelazamiento. Para concluir explico el proceso de decoherencia
y presento un modelo para ilustrarlo. En el segundo capítulo, comienzo con una introducción
a la computación cuántica, presento conceptos básicos como el qubit y las principales puertas
lógicas y finalmente hago una explicación de las oscilaciones de Rabi y de como tiene lugar la
implementación de las puertas lógicas cuánticas. En el tercer capítulo presento IBM Quantum
experience y los ordenadores con los que he trabajado. Por último en el cuarto capítulo, acabo
con los objetivos del trabajo haciendo una presentación de los resultados obtenidos en los orde-
nadores cuánticos reales,en concreto, el estudio de la decoherencia mediante el desarrollo de un
algoritmo sencillo y el análisis de los resultados obtenidos en la implementación de un algoritmo
de implementación de la puerta Toffoli.



Capítulo 1

Conceptos de mecánica cuántica

1.1. Formalismo de la Matriz Densidad

1.1.1. Introducción del operador densidad

Comienzo este trabajo presentando una herramienta que me ha resultado esencial a la hora
de trabajar con estados cuánticos, el operador densidad. Hasta este momento, siempre había
trabajado conociendo por completo el estado de las partículas, utilizando funciones de onda per-
fectamente definidas. En este marco, contaba únicamente con la incertidumbre de la medida,
propia de la mecánica cuántica, donde el valor obtenido en la medición de un observable es pro-
babilístico. Sin embargo, durante este trabajo me ha resultado necesario aprender a incorporar,
la incertidumbre debida a la información incompleta sobre la función de onda que describe el
estado de las partículas.
De esta manera, una partícula puede encontrarse en una mezcla estadística de estados Ψk, cada
uno con una determinada probabilidad pk, y en cada estado, la medida de un observable nos
puede dar un valor distinto con una determinada probabilidad. Es así como a la incertidumbre
de la medida se le añade la incertidumbre de no tener un estado perfectamente definido. A partir
de ahora, haré una distinción entre los estados perfectamente definidos, llamados puros, y los no
puros, también llamados estados mixtos o estados mezcla.
Para lidiar con este nuevo problema, se introduce el operador densidad ρ, el cual se puede definir
fácilmente para estados puros a partir de la definición de valor medio. Haciendo uso del álgebra
básica de la mecánica cuántica el valor medio de un operador se puede expresar en una base a
través de las coordenadas:

|Ψ(t)〉 =
∑
n

cn(t)|un〉 (1.1)

〈A〉(t) = 〈Ψ(t)|A|Ψ(t)〉 =
∑
n,p

c∗n(t)cp(t)〈un|A|up〉 =
∑
n,p

c∗n(t)cp(t)Anp (1.2)

Podemos expresar estas coordenadas teniendo en cuenta que los coeficientes no son más que la
proyección de los estados sobre la base:

c∗n(t)cp(t) = 〈Ψ(t)|un〉〈up|Ψ(t)〉 = 〈up|Ψ(t)〉〈Ψ(t)|un〉 (1.3)

3
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De donde podemos extraer la definición del operador densidad:

ρ(t) = |Ψ(t)〉〈Ψ(t)| (1.4)

Y su expresión matricial:
ρpn = 〈up|ρ(t)|un〉 = c∗n(t)cp(t) (1.5)

En el caso mixto, la expresión del operador debe incluir las distintas funciones de onda que
describen el estado y sus respectivas probabilidades, por lo que su expresión es:

ρ(t) =
∑
k

pkρk (1.6)

Donde ρk es |Ψk(t)〉〈Ψk(t)|, como se mostraba en la ecuación (1.4)

Propiedades generales del operador densidad

Enuncio aquí las propiedades principales del operador densidad para el caso de estados puros,
que como mostraré después, son análogas a las del caso mixto exceptuando que en este último,
el operador no será un proyector.
En primer lugar, el operador densidad es un operador hermítico, cumpliéndose:

ρ(t) = ρ†(t) (1.7)

Cuya matriz es definida positiva:
ρ(t) > 0 (1.8)

Además, es el mismo para estados que difieren únicamente en un factor de fase constante:

|Ψ(t)〉, eiθ|Ψ(t)〉 −→ ρ(t) (1.9)

Nos permite obtener el valor medio de un operador, desarrollando la ecuación (1.2):

〈A〉(t) =
∑
n,p

〈up|ρ(t)|un〉〈un|A|up〉 =
∑
p

〈up|ρ(t)A|up〉 (1.10)

De donde podemos identificar la propiedad siguiente:

〈A〉(t) = Tr[ρ(t)A] (1.11)

Por último existe una propiedad importante relacionada con la traza de este operador:

Tr[ρ(t)] = 1 (1.12)

Esta se puede deducir fácilmente para el caso puro analizando la condición de conservación de
la probabilidad: ∑

n

|cn(t)|2 = 1 =
∑
n

ρnn(t) = Tr[ρ(t)] (1.13)
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Para el caso mixto, no hay más que observar que:

Tr[ρ(t)] =
∑

k

pkTr[ρk(t)] = 1 (1.14)

Donde se ha tenido en cuenta que la traza de ρk es 1 y que la suma de las probabilidades pk es
1.

Propiedades no generales

Todas las propiedades antes mostradas son comunes para el caso puro y mixto, no obstante,
el caso puro es un caso particular en el que el operador densidad es un proyector, como se puede
observar en la expresión 1.4. Esto significa que un estado puro cumple la propiedad:

ρ2 = ρ (1.15)

Y por tanto que
Tr[ρ2] = Tr[ρ] = 1 (1.16)

Además de que su espectro de autovalores estará formado por λ = 1 y λ = 0.
Todo esto no es válido en estados que no son puros, en los cuales ρ2 6= ρ. De hecho, para estos
podemos deducir otra propiedad. Como la traza de ρ es 1, sus elementos de la diagonal serán
menores que uno, excepto en el caso puro que tendrá ceros y un 1 (proyector). Los valores de la
diagonal de ρ2 serán entonces números menores que 1 elevados al cuadrado, excepto en el especial
caso del estado puro, que serán de nuevo ceros y un 1. Este razonamiento concluye entonces,
en que la traza será siempre menor o igual que 1, donde este último caso, corresponde al de un
estado puro (caso particular de los estados mezcla), es por esto que a la traza de ρ2 se le llama
pureza.

Tr[ρ2] ≤ 1 (1.17)

1.1.2. Traza parcial: Descripción separada de una parte de un sistema físico

Suponemos dos sistemas, ε(1) y ε(2), cuyas bases son |un(1)〉 y |vp(2)〉 respectivamente. Ambos
sistemas, son subsistemas del espacio total ε = ε(1) ⊗ ε(2). Dentro de estas consideraciones,
habrá una matriz densidad para el espacio ε, que contenga la información de ambos subsistemas.
La traza parcial, permite obtener la matriz densidad de estos subsistemas y trabajar con ellos
aisladamente, sin tener en cuenta toda la información contenida en el sistema total. De esta forma
se pueden obtener los elementos de matriz de ρ(1), que es la matriz densidad correspondiente al
subsistema 1, simplemente contrayendo los indices del sistema 2, en la expresión del operador
densidad del sistema total:

〈un(1)|ρ(1)|un′(1)〉 =
∑
p

〈un(1)|〈vp(2)|ρ|un′(1)〉|vp(2)〉 =

= 〈un(1)|ρ(1)|un′(1)〉
∑
p

〈up(2)|ρ(2)|up(2)〉 (1.18)
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Donde ρ es el operador densidad del sistema total y donde se reconoce la suma como la traza
sobre el sistema 2:

ρ(1) = Tr2[ρ] (1.19)

análogamente podemos obtener:
ρ(2) = Tr1[ρ] (1.20)

Aquí queda manifiesta la propiedad antes mencionada de obtener la información de un subsistema
a partir del sistema total. Podemos trasladar esta propiedad al cálculo de valores medios de
observables:
Un operador A(1) que actúa en el espacio ε(1) puede extenderse a un operador Ã(1) = A(1)⊗I(2)

que actúa en ε. Si tenemos entonces un operador del espacio total como Ã(1), que solo actúa en
un subespacio, podemos obtener su valor medio a través de la traza parcial:

〈Ã(1)〉 = Tr(ρ(1)A(1)) (1.21)

1.2. Entrelazamiento y mezcla.

En este apartado introduzco los conceptos de superposición y entrelazamiento, que son las
principales propiedades en las que se basa la computación cuántica. Por otro lado, pretendo
introducir la relación entre entrelazamiento y pérdida de pureza; Estudiaré más adelante este
punto con un modelo sencillo, para ilustrar como este proceso de perdida de pureza es el principal
problema a la hora de desarrollar un ordenador cuántico.
Generar superposición consiste en crear un estado que es combinación lineal de otros. Por ejemplo,
en un sistema de dos niveles podría obtenerse la siguiente superposición:

|Ψ〉 =
1√
2
|0〉+

1√
2
|1〉 (1.22)

Como explicaré más adelante, la superposición permite generalizar la unidad básica de un orde-
nador, el bit, que puede tomar valores 0 y 1, al qubit, que contiene a todos los estados que sean
combinación lineal de estos dos.
El entralazamiento es un fenómeno que involucra a varios qubits. Estos pueden entrelazarse dan-
do lugar a un nuevo estado, que se caracteriza por no poder escribirse como producto tensorial
de los estados anteriores. Por ejemplo, en un sistema de dos qubits se podría obtener un estado
con la siguiente forma:

|Ψ〉 =
1√
2
|0A〉|0B〉+

1√
2
|1A〉|1B〉 (1.23)

El entrelazamiento tiene algunas consecuencias muy interesantes, en primer lugar un estado
entrelazado tiene la propiedad de que si realizamos una medida sobre un qubit, la medida sobre
el otro qubit queda completamente determinada. Por ejemplo, en el caso descrito en (1.23), al
medir A, el valor de B queda completamente determinado, de forma que si se obtiene |0〉, el valor
de B es |0〉y si se obtiene |1〉, el valor de B es |1〉.

Otra característica interesante es que una matriz densidad de dos estados que están entrelaza-
dos, nos dará tras realizar una traza parcial, estados mixtos, independientemente de que fueran
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puros antes de entrelazarse. En el ejemplo (1.23), dos estados puros (|0〉, |1〉) se entrelazaban
dando lugar a un estado final, la traza parcial de este estado nos devolverá una matriz de un es-
tado mixto. En la siguiente tabla hago un resumen de los distintos comportamientos de la pureza:

Sistema total subsistema (traza parcial)
Sistema de estados producto Estados puros
Sistema de dos estados mixtos Estados mixtos
Sistema de dos estados puros que se entrelazan Estados se vuelven mixtos

Además, el estado del ejemplo (1.23), es un estado maximamente entrelazado y por lo tanto,
al realizar la traza parcial se obtendrá una representación proporcional a la matriz identidad.

1.3. Decoherencia

1.3.1. Marco del problema

La interacción con el exterior, da lugar a procesos de decoherencia mediante los cuales, los
estados cuánticos se transforman en estados mezcla, transformando al sistema en un sistema
clásico. Este es el gran problema que tienen los ordenadores cuánticos en la actualidad,deben
mantenerse en un medio que los vuelve cada vez más clásicos. Trataré de ilustrar este proceso
de decoherencia usando un modelo sencillo, que nos permitirá además, comprender porqué no
observamos con frecuencia fenómenos cuánticos en la naturaleza macroscopica.

1.3.2. Modelo de Phase Damping Channel

Supongamos una partícula que puede encontrarse inicialmente en dos estados, x0 y −x0. La
partícula no está completamente aislada, ya que el aislamiento nunca es perfecto, e interactúa
con los fotones que le llegan. Por sencillez del modelo, suponemos también que la interacción
tiene lugar unicamente con un fotón y que la masa de la partícula es lo suficientemente grande
como para no variar su posición al interactuar con él.
De esta forma, tenemos un sistema donde un fotón puede interactuar con la partícula con una
probabilidad P , acabando en un estado que llamaré |1〉 o no interactuar acabando en un estado
|0〉. La función de onda que describe el proceso será la siguiente:

|Ψx0〉 =
√
P |x0〉|1〉+

√
1− P |x0〉|0〉 (1.24)

Análogamente si la partćula comienza en la posición −x0, el fotón llegará a un estado |0〉 en
caso de no interacción. No obstante, si se produce interacción , el estado del fotón después de la
interacción no será |1〉, será un estado distinto debido a las distintas condiciones iniciales, llamaré
a este estado final |2〉.
Teniendo en cuenta esto, la función de onda representativa del proceso será:

|Ψ−x0〉 =
√
P | − x0〉|2〉+

√
1− P | − x0〉|0〉 (1.25)
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Si el experimento comienza con la parícula en x0, se tendrá la primera función de ondas, si
inicialmente la partícula esta en −x0, se tendrá la segunda, de igual forma, si el sistema comienza
en una superposición de ambos estados, la función de ondas que describirá el proceso será una
superposición de las funciones de ondas anteriores:

|Ψinicial〉 =
1√
2

(|x0〉+ | − x0〉)|0〉 (1.26)

Cuya evolución temporal dará lugar a la siguiente función de onda:

|Ψfinal〉 =
1√
2

(
√
P (|x0〉|1〉+ | − x0〉|2〉) +

√
1− P (| − x0〉+ |x0〉)|0〉) (1.27)

Este estado no puede escribirse como producto tensorial de sus estados iniciales, es un estado
entrelazado, como se explicó en la sección 1.2. Ahora bien, ya que solo estamos interesados en la
partícula, la medida de interés, es la realizada sobre el espacio de la partícula, no sobre el espacio
total. La traza parcial nos permite obtener la información que buscamos, sin embargo, como he
comentado en una parte previa de esta memoria, la traza parcial de la matriz densidad de un
estado entrelazado, tiene como resultado una matriz densidad de un estado mixto. Analizo con
más detalle este punto, nuestro estado inicialmente era un estado puro, pero al interaccionar con
el fotón se ha hecho mixto. El estado inicial de la partícula era una superposición:

|Ψpartcula〉 = α|x0〉+ β| − x0〉 (1.28)

ρpartcula =

(
|α|2 αβ∗

βα∗ |β|2

)
(1.29)

El sistema será también una superposición de estados:

|Ψsistema〉 =
√
P (α|x0〉|1〉+ β| − x0〉|2〉) +

√
1− P (β| − x0〉+ α|x0〉)|0〉 (1.30)

con su correspondiente matriz 4x4:

ρsistema = |Ψsistema〉〈Ψsistema| (1.31)

Al realizar la traza parcial sobre el subespacio del fotón se obtiene la siguiente matriz densidad
de la partícula:

ρpartcula =

(
|α|2 αβ∗(1− P )

βα∗(1− P ) |β|2

)
(1.32)

Como se puede apreciar, los elementos de la diagonal no han variado al no variar la energía de
la partícula como hemos supuesto al comienzo, no obstante los términos de fuera de la diagonal
se han hecho más pequeños. Iterando, para un scattering con n fotones se obtiene:

ρn =

(
|α|2 αβ∗(1− P )n

βα∗(1− P )n |β|2

)
(1.33)

Es de interés estudiar el término que aparece debido a la interacción con los fotones, (1 − P )n.
P es la probabilidad de interacción, podemos expresar P en función de los pasos de tiempo
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mediante una constante Γ, por otro lado n es el número de interacciones y también puede ser
discretizado en función del tiempo n = t/∆t pudiendo reescribir el factor de interacción de la
suiguente manera :

(1− P )n = (1− Γ∆t)t/∆t (1.34)

Haciendo infinitesimal el tiempo entre interacciones ∆t→ 0 obtenemos:

(1− P )n = e−Γt (1.35)

Donde la exponencial se obtiene resolviendo el límite con la regla de l’hôpital:

ĺım
∆t→0

(1− Γt)t/∆t = 1∞ (1.36)

ĺım
∆t→0

ln(1− Γt)t/∆t = ĺım
∆t→0

−tΓ
1− Γ∆t

1
= ĺım

∆t→0

−Γt

1− Γ∆t
= −Γt (1.37)

y por tanto:
ĺım

∆t→0
(1− Γ∆t)t/∆t = e−Γt (1.38)

Con este resultado podemos expresar la matriz densidad (1.33) en función del tiempo:

ρpartcula =

(
|α|2 αβ∗e−Γt

βα∗e−Γt |β|2

)
(1.39)

De esta expresión se pueden sacar dos conclusiones fundamentales:

Los elementos de fuera de la diagonal tienden a 0 exponencialmente con el tiempo

Los elementos de la diagonal no varían

El primer punto es realmente el objetivo de este desarrollo, el hecho de que los elementos de fuera
de la diagonal se anulen exponencialmente con el tiempo significa, según lo que he explicado con
anterioridad, que el estado de la partícula se hace mixto con el tiempo, y por lo tanto el sistema
se vuelve clásico, perdiendo las propiedades de superposición inicial.
Queda entonces ilustrado el gran problema que afronta la construcción de un ordenador cuántico.
Deseamos crear maquinas que generen superposición y entrelazamiento, pero estos sistemas no
pueden existir completamente aislados del entorno, y la interacción con el mismo les hace perder
las propiedades por las que fueron construidos.
Sobre el segundo punto, simplemente quiero comentar que es consecuencia directa de que el
modelo aquí presentado no considera que la partícula varía su energía o estado durante el proceso
de interacción con el fotón. Existe un modelo más elaborado que no presentaré aquí, por motivos
de espacio y por no alargar excesivamente esta ilustración, que considera que la interacción con el
fotón puede dar lugar a procesos de emisión o absorción, excitando o desexcitando a la partícula.
En este modelo, llamado Amplitude Damping Channel, la energía de la partícula varía, variando
por tanto su estado y en consecuencia se puede observar como los elementos diagonales de la
matriz densidad de la partícula sí varían. La variación de los estados de la partícula medida como
consecuencia de las interacciones supone otra fuente de ruido.



Capítulo 2

Computación cuántica

2.1. Introducción a la computación cuántica

2.1.1. ¿Por qué un ordenador cuántico?

Un ordenador cuántico es una máquina que funciona según las leyes de la Mecánica Cuántica
y que por tanto, es capaz de aprovechar propiedades intrínsecamente cuánticas como el entrela-
zamiento y la superposición.
Un ordenador cuyo funcionamiento se basara en las propiedades anteriores, presentaría un alto
grado de paralelismo, esto es, sería capaz de llevar a cabo múltiples tareas de forma simultánea,
a diferencia de los ordenadores clásicos, cuyo funcionamiento es secuencial. Esto podría suponer
una reducción abismal en el tiempo de cálculo y resolución de problemas, como se ha confir-
mado en los algoritmos de Grover y Shor. En 2001 se dió un salto importante en el campo de
la computación cuántica cuando el algoritmo de Shor fue implementado y comprobado en la
primera máquina cuántica, un ordenador de 7 qubits de IBM. En la figura 2.1, puede verse una
comparación entre el algoritmo de Shor y un método clásico extraída de [1].

Figura 2.1: Reducción a tiempo polinómico del problema de factorización, mediante el algoritmo
de Shor, y comparación con algoritmo clásico más optimizado.

9
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Sistemas de encriptación como RSA, basan su seguridad en la necesidad de tiempo de computo
del orden de millones de años para su resolución. El algorítmo de Shor, hasta entonces, un método
puramente teórico, permitía convertir este tiempo exponencial en polinómico, haciendo posible
la desencriptación. Este es un ejemplo realmente visual de hasta donde puede llegar la propiedad
de paralelismo y en general, las capacidades de esta nueva tecnología.

2.1.2. Concepto de qubit

El qubit es la cuantización del bit. Un ordenador clásico, trabaja con una unidad básica, el
bit, que puede tomar los valores 1, 0. Un ordenador cuántico sin embargo, utiliza como unidad
fundamental el qubit, un objeto matemático que puede encontrarse en dos posibles estados, |0〉
y |1〉 y también en cualquier combinación lineal de los mismos, es decir, puede existir en un
continuo de estados entre |0〉 y |1〉:

|Ψ〉 = α|0〉+ β|1〉 (2.1)

La condición |α|2 + |β|2 = 1 nos permite reescribir la expresión anterior de la forma siguiente:

|Ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2.2)

ϕ y θ describen un punto en la esfera unitaria que se puede ver en la imagen 2.2. Esta esfera
recibe el nombre de esfera de Bloch y nos proporciona una forma visual de entender los estados
de un qubit. También permite describir en ella las operaciones realizadas mediante las puertas
de las que hablaré más adelante.

Figura 2.2: Representación de un qubit en la Esfera de Bloch
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2.1.3. Puertas Cuánticas

Siguiendo con la analogía clásica, un ordenador realiza operaciones mediante el uso de puertas
lógicas mientras que un ordenador cuántico realiza operaciones a través de puertas cuánticas.
Estas puertas cuánticas deben poder implementarse y por tanto, no puede contradecir las leyes de
la física. La evolución temporal de un estado viene descrita en mecánica cuántica por el postulado
de evolución, que dicta que para cualquier evolución de un sistema, existe un operador U que
transforma el sistema de la forma:

|Ψfinal〉 = U |Ψinicial〉 (2.3)

El operador evolución es un operador unitario, por tanto, las puertas deben ser unitarias. Otra
ley física a tener en cuenta, es la restricción dada por el teorema de no clonado, una restricción
que impide obtener y utilizar copias de un estado y nos recuerda que trabajamos en un problema
físico y no en buscar una mera transformación matemática que nos lleve de un estado a otro.
Las puertas pueden actuar simulateneamente en uno o más qubits, siendo en realidad, operadores
en un espacio de Hilbert teniendo una representación matricial. La imagen 2.3 muestra un ejemplo
de los diagramas habituales de la computación cuántica donde aparecen los distintos qubits en
su estado inicial. Las líneas simbolizan el paso del tiempo y sobre ellas están las puertas, que
rigen la evolución temporal de los qubits hasta que finalmente son medidos.

Figura 2.3: Diagrama en un ordenador de 5 qubits (IBM)

Una propiedad importante a mencionar es que el conjunto de puertas de 1 qubit y la puerta
CNOT de dos qubits, forman un conjunto universal, esto es, que cualquier operación unitaria
posible puede ser expresada aproximadamente con una secuencia finita de puertas del conjunto.

A continuación, en las imágenes 2.4 2.5 hago un breve compendio de las puertas que han
sido utilizadas en este trabajo . Nótese que todas ellas son unitarias cumpliéndose que MM † =

M †M = I.
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Puertas de 1 qubit

Figura 2.4: Símbolo, actuación y representación matricial de las puertas de 1 qubit

Una importante puerta de 2 qubits: Puerta CNOT

La puerta CNOT posee un primer qubit de control que regula la aplicación de una puerta X
en el segundo qubit.

Figura 2.5: Símbolo, actuación y representación matricial de la puerta CNOT
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2.2. Implementación física de puertas: Oscilaciones de Rabi

2.2.1. Puertas de 1 qubit

En este apartado busco explicar como se construyen los componentes fundamentales que
describen las operaciones realizadas sobre los qubits, las puertas. Existen diferentes formas de
implementar físicamente un qubit, una de ellas consiste en usar espines. Los espines tienen
transiciones energéticas que pueden ser estimuladas con un campo, de forma que esta actuación
de los campos daría lugar a las puertas. Es en este proceso de estimulación de transiciones donde
entran en juego las oscilaciones de Rabi, generando las puertas.
Un Hamiltoniano independiente del tiempo muy habitual es el siguiente:

H0 =
∆σz

2
(2.4)

Se trata de un Hamiltoniano constante, que representa un sistema de dos niveles de diferencia
de energías ∆.

Figura 2.6: Niveles de energía del Hamiltoniano

A este Hamiltoniano se le puede añadir un término dependiente del tiempo :

H = H0 +H1 =
∆σz

2
+ 2λ cos(ωt)σx (2.5)

Este término es lo que se conoce como un drive, una estimulación con un campo variable con el
tiempo, que produce las llamadas oscilaciones de Rabi. Controlando estas oscilaciones podemos
generar superposiciones de estados |0〉 y |1〉, y por tanto implementar puertas de 1 qubit. Como
se muestra en el apéndice, la evolución temporal dada por la ecuación de Schrödinguer en el
caso particular de las condiciones iniciales indicadas en (2.7), para una función de ondas de la
forma de (2.6)permite llegar a las ecuaciones (2.8)(2.9), que no son soluciones exactas, sino que
se obtienen al aplicar la aproximación RWA que desprecia los términos exponenciales que oscilan
muy rápidamente.

|Ψ〉 = c1(t)|0〉+ c2(t)|1〉 (2.6)

c1(0) = 1 c2(0) = 0 (2.7)
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|c1(t)|2 =
δ2

Ω2
+ (

2λ

Ω
)2 cos2 Ωt

2
(2.8)

|c2(t)|2 = (
2λ

Ω
)2 sin2 Ωt

2
(2.9)

Que en resonancia, δ = 0, se simplifican llegando a (2.10)(2.11):

|c1(t)|2 = cos2 Ωt

2
(2.10)

|c2(t)|2 = sin2 Ωt

2
(2.11)

Para los valores t = 0,
2π

Ω
la probabilidad de estar en el estado |0〉 es 1, estos valores determi-

nan un ciclo, por otro lado la probabilidad del estado |1〉 es 1 para t =
π

Ω
. Es decir, driveando

correctamente, se puede generar superposición entre el estado |0〉 y el estado |1〉 y por lo tanto
implementar puertas . Por ejemplo, un drive a lo largo de un intervalo completo mantiene el
qubit invariante, si se toman valores dentro de este intervalo podemos generar superposición, en
concreto para t =

π

2Ω
los coeficientes son iguales y se tiene una puerta Hadamard. Un pulso

de t =
π

Ω
invierte el qubit (esto es llamado pulso π), lo que permite implementar un puerta X.

Las oscilaciones de Rabi solo producen cambios de coeficientes reales, para generar el resto de
puertas de la figura 2.4 ,que introduzcen una fase imaginaria es necesario drivear con términos
que incorporen σy en el coseno de la expresión (2.6), así se pueden generar puertas como la puerta
Y, o la puerta de fase. Genericamente este término puede escribirse como un sumatorio sobre
σx,σy y σz ya que las tres sigmas de Pauli son los generadores de rotaciónes en SU(2) y pueden
generar cualquier rotación en las esfera de Bloch.
He realizado la evolución de un estado |0〉 mediante el Hamiltoniano indicado en (2.5), utilizando
python y la herramienta qutip, este resultado ha sido comparado con la ecuación (2.9) y efecti-
vamente se comprueba que la evolución de un qubit sigue el comportamiento de las ecuaciones
obtenidas y por tanto estas permiten explicar la evolución temporal de un qubit. Los resultados se
presentan en la gráfica 2.7, donde se observan las oscilaciones de Rabi completas para frecuencia
resonante, y como conforme se alejan de la resonancia van reduciendose hasta anularse y producir

un cambio nulo en el qubit. Los datos vienen expresados en unidades de f =
2π

ω
= 1. Por otro

lado, es interesante comprobar la validez de las soluciones aproximadas (2.8)(2.9) en la figura 2.8
puede observarse como si se aumenta la amplitud y se ignora la condición de la aproximación
RWA, las ecuaciones (que han sido obtenidas en el apéndice utilizando esta aproximación para
poder resolver las ecuaciones diferenciales que nos deja la ecuación de Schrödinger) dejan de
funcionar. También se puede observar como esto es mucho más notorio fuera de resonancia, ya
que en resonancia una de las dos exponenciales que no se desprecian, tiene contribución máxima
y no oscila, (e−i(ω−ω0)t = e−i(0)t = 1), de forma que el término que oscila rapidamente (ei(ω+ω0)t)
es aún más despreciable..
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Figura 2.7: Oscilaciones de Rabi dentro de la aproximación RWA (λ = 1, ω = 300)

Figura 2.8: Oscilaciones de Rabi fuera de RWA(λ = 3, ω = 300)

2.2.2. Puertas de 2 qubits

La implementación de puertas de orden superior se basa de igual forma, en las oscilaciones
de Rabi para producir cambios en los qubits. En concreto, en este apartado explicaré la imple-
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mentación de la puerta CNOT, no obstante, toda puerta de 2 qubits se puede implementar de la
misma forma. Una puerta de 2 qubits, como es evidente, requiere a diferencia del caso anterior
dos qubits y además requerirá de la existencía de una interacción entre ambos. Es por esto que
el Hamiltoniano que describa dicho sistema, tendrá la siguiente forma:

H2qubit = σ(1)
z + εσ(2)

z + Jσ(1)
z σ(2)

z (2.12)

Donde los dos primeros términos hacen referencia a los qubit, y el tercero a la interacción entre
estos. Si se calculan los autovalores del Hamiltoniano, se puede realizar el diagrama de niveles
energéticos de la figura 2.9 y encontrar las distintas transiciones entre niveles.

Figura 2.9: Niveles de energía y transiciones del Hamiltoniano H2qubit

Ahora se trata de estimular las transiciones deseadas mediante un driving. En este caso, la
transición que permite implementar la puerta CNOT es la señalada en la imagen 2.9 (la tabla
de actuación de la puerta CNOT estaba en la imagen 2.5). Para ello se realiza un drive con
una frecuencia resonante, análogamente a como se mostró en las sección 2.2.1, para estimular
unicamente esta transición:

∆ = 2ε+ 2J (2.13)

La matriz que representa este cambio de estado |10〉 a |11〉 y viceversa es σx. Así que el drive
serán oscilaciones de Rabi de la forma:

Hdrive ∼ σx cos ∆t (2.14)

Con esto se ha obtenido una explicación de como obtener una puerta de 2 qubits, en concreto
una CNOT. Esto permite concluir diciendo que las puertas de 1 qubit, suponen un sistema de
dos niveles donde se realiza un drive entre los mismos, mientras que, para la puerta CNOT, se
tiene un modelo de Ising driveado.



Capítulo 3

IBM Quantum experience

3.1. ¿Qué es IBM Quantum Experience?

Quantum experience es un proyecto sacado al público por IBM. Gracias a este proyecto
investigadores de todo el mundo pueden hacer uso de los prototipos de ordenadores cuánticos
desarrollados por la empresa. Esto supone que los usuarios podemos formar parte de esta gran
revolución científica y tecnológica mientras que, IBM puede poner a prueba sus ordenadores en un
proceso de mejora y desarrollo. Quantum experience no es solo esto, es también una carrera por
desarrollar e implementar las ideas responsables de una posible nueva era científica y tecnológica.

3.2. Dentro de la Quantum Experience

Para poder acceder a este proyecto es necesario crear una cuenta en la quantum experience.
Existen distintas herramientas para poder acceder a los ordenadores, pero la principal es el
“composer”, una interfaz gráfica que muestra las distintas máquinas con las que se pueden trabajar
y datos realmente interesantes como la estructura de los qubits, el error asociado a cada qubit y
la temperatura de refrigeración.

Desde el composer se puede acceder al simulador y a los ordenadores. Aparte del composer
también existe un foro que resulta crucial dentro del proyecto al estar este basado en la coope-
ración de investigadores de todo el mundo a través de la nube.
Junto al foro también es destacable una página de noticias que informa de los distintos avances
y que además recopila una gran cantidad de fotos donde se enseña la estructura física de los or-
denadores, manuales para los investigadores que no conocemos temas avanzados o métodos para
implementar experiementos, y para los que se inician en el terreno de la mecánica cuántica, así
como vídeos grabados por el equipo de IBM explicando el funcionamiento interno y más detalles
sobre los experimentos.
Toda cuenta tiene dentro del composer acceso al simulador, un servidor donde el código es ejecu-
tado en un ordenador clásico para obtener unos datos teóricos correctos que sirvan para comparar
posteriormente.

17
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Figura 3.1: Ordenadores de 5 qubits y datos de interés en la interfaz del composer

Existen varios modelos de funcionamiento de un ordenador cuántico, sin embargo, los proto-
tipos por los que se está apostando actualmente son principalmente dos, ordenadores de trampa
de iones y de superconductores. Los ordenadores de la Quantum Experience están basados en
una tecnología de superconductores y tienen una topología llamada star-shaped, esto significa
que su conectividad está limitada a primeros vecinos . En la figura 3.2 he representado este tipo
de conectividad, en contraste, con una topología de conectividad total.

Figura 3.2: A la derecha, la topología en estrella de los ordenadores de IBM que he utilizado,
4 puertas CNOT conectan 4 de los qubits a un qubit central.A la izquierda una topología de
conectividad total
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3.3. Un sistema para usar mecánica cuántica en un ordenador

¿Cómo hacer que un ordenador entienda un algoritmo cuántico?, la respuesta es que se re-
quiere incorporar una serie de herramientas para poder crear y compilar código y que este sea
ejecutado en un ordenador cuántico real. Es por esto que se ha desarrollado el “Quantum Infor-
mation Software kit” también llamado QISkit, el cual incorpora las herramientas necesarias para
poder generar códigos usando la herramienta Jupyter y el lenguaje Python. Una de las grandes
novedades de este kit es la incorporación de un sub-lenguaje de programación completamente
nuevo, que permite explicar usando python, las especificaciones que se requieren para trabajar
con un ordenador cuántico, como por ejemplo asignar las operaciones a los distintos qubits.

Figura 3.3: Simulación de un circuito cuántico en la interfaz gráfica del composer y código del
circuito.

Mediante este sub-lenguaje y el uso de QISkit se puede hacer correr algoritmos en el simulador
y en los ordenadores cuánticos de IBM, que es al fin y al cabo, el núcleo central de todo este
proyecto. Para esto, toda cuenta tiene asignadas unas unidades llamadas tokens que funcionan
como una moneda para poder realizar ejecuciones en los ordenadores reales. Cada ejecución cuesta
una cantidad concreta de tokens que se recuperan cuando la ejecución ha finalizado y se entregan
los resultados, de forma que esto simplemente limita la cantidad de ejecuciones simultáneas que
se realizan. Los ordenadores que he utilizado son ordenadores de 5 qubits, aunque durante este
trimestre IBM ha abierto al público la posibilidad de utilizar un ordenador de 16 qubits.



20 CAPÍTULO 3. IBM QUANTUM EXPERIENCE



Capítulo 4

Resultados obtenidos de un ordenador
cuántico

4.1. Estudio de la decoherencia

Uno de los objetivos más interesantes que ha tenido el uso de un ordenador cuántico real en
este trabajo ha sido la comprobación del fenómeno de decoherencia. Recordando la sección 1.3,
el fenómeno de decoherencia se manifiesta como una reducción exponencial de los términos de
fuera de la diagonal de la matriz densidad del sistema.

La matriz de un estado superposición, como el obtenido por aplicación de una puerta Hada-
mard, tiene la siguiente forma:

ρ =

(
|α|2 γ∗
γ |β|2

)
(4.1)

Al aplicar una puerta Hadamard sobre el estado |0〉 para realizar superposición, se obtiene que
teóricamente la matriz viene dada por los siguientes valores:

ρ =

(
1/2 1/2

1/2 1/2

)
(4.2)

El proceso de decoherencia consistirá entonces, en que los elementos no diagonales obtenidos serán
inferiores al calculo teórico. No obstante, las medidas que se obtienen al ejecutar un algoritmo son
únicamente los valores diagonales. Es por esto que es necesario crear un algoritmo que permita
obtener los valores no diagonales mediante un sistema de ecuaciones. Para esto he ejecutado dos
algoritmos sencillos que permiten obtener un sistema de 2 ecuaciones, para calcular los valores
deseados, a partir de las medidas tomadas del ordenador. Estos algoritmos se pueden ver en la
figura 4.1 y consisten en:

Un Circuito de un qubit con dos puertas Hadamard

Un Circuito de un qubit con dos puertas Hadamard y con la aplicación de una puerta S
entre ambas.

21
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Figura 4.1: Algoritmos diseñados para obtener las partes real e imaginaria de la decoherencia
mediante un sistema de dos ecuaciones

Se puede comprobar que la aplicación de estas puertas (cuya representación se encontraba
en la sección2.1.3, figura 2.2.1) sobre la matriz del sistema inicial (4.1), da lugar a matrices,
cuyos elementos diagonales son suma de todos los elementos de la matriz inicial, de forma que, la
diagonal de la matriz obtenida al aplicar las puertas de uno de los algoritmos, es una ecuación en
función de las incógnitas γ y γ∗. Para obtener una ecuación más, hago uso del segundo algoritmo,
de forma que se tiene un sistema de 2 ecuaciones con dos incógnitas. Esto me permite obtener la
parte real y la parte imaginaria de γ contando así, con los elementos matriciales que no conocía
de la matriz densidad (4.1). Los resultados vienen expresados en la figura 4.2.

Figura 4.2: Elementos de la matriz densidad del estado superpuesto, medidos en un ordenador
cuántico real

Como se puede observar, los elementos de la matriz densidad del sistema no se corresponden
con los calculados teóricamente en (4.1). De hecho, se observa que mientras los valores diagonales
son los esperados, los valores de fuera de la diagonal son muy inferiores a los calculados. Esto
es debido a que a lo largo del proceso de ejecución la interacción con el medio los hace tender a
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cero exponencialmente con el tiempo. De esta forma, el diseño de dos algoritmos cuánticos y la
toma de medidas en el ordenador ha permitido observar la perdida de fidelidad por decoherencia,
ilustrando este proceso.

4.2. Implementación y simulación de un puerta Toffoli

En esta sección quiero mostrar los resultados obtenidos de la aplicación de una puerta Toffoli,
esto además me va a permitir ilustrar con datos reales otra de las principales fuentes de error, el
uso de un número de puertas elevado. La puerta Toffoli es una puerta de 3 qubits que aplica en los
dos primeros una operación de control y en el tercero una puerta X.En la figura 4.3 pueden verse
sus principales características, entre ellas los dos únicos estados que no permanecen invariantes
bajo su actuación.

Figura 4.3: Símbolo, actuación y representación matricial de la puerta Toffoli

En la quantum experience, cualquier circuito ha de ser implementado a partir de puertas
de 1 y 2 qubits, de forma que para poder estudiar esta puerta he tenido que implementarla
con el algoritmo de la figura 4.4, el cual puede encontrarse en [2]. La imagen corresponde a la
implementación del algoritmo en el ordenador cuántico, para ello he comenzado con dos puertas
X para generar un estado inicial |110〉.

Figura 4.4: Construcción de la puerta Toffoli a partir de puertas de 1 y 2 qubit

El funcionamiento de este sistema de puertas es complejo, en primer lugar las puertas Hada-
mard crean una superposición de estados. Sobre esta superposición actúan las puertas T y T † que
añaden desfases a los estados, siendo las puertas CNOT las encargadas de seleccionar que estados
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reciben desfase π/4,−π/4 o no reciben desfase, de forma que al final los estados pueden quedar
con desfase ±π/2 o con desfase nulo. Los estados que no reciben fase permanecen invariantes,
los demás pierden su caracter imaginario con la aplicación de la puerta S. (Los detalles de las
puertas se encontraban en la sección 2.1.3 en la figura 2.4)
Es decir el mecanismo funciona debido a la generación de estados superpuestos, cuyas compo-
nentes se van seleccionando mediante las puertas CNOT y los desfases hasta dejar finalmente
invariantes a 6 estados y cambiando a dos de ellos.
Resulta entonces interesante tomar un estado |110〉 y comprobar que se transforma en un es-
tado |111〉 bajo actuación de la puerta Toffoli. También resulta de interés, aplicar dos puertas
Toffoli secuencialmente para comprobar que se recupera el estado inicial. Dado que el proceso
de decoherencia introduce un error aleatorio, he ejecutado 10 veces cada algoritmo, para hacer
estadística. Los resultados obtenidos pueden verse en los histogramas 4.5 4.6

Figura 4.5: Distribución de estados obtenida de la aplicación de una puerta Toffoli

Figura 4.6: Distribución de estados obtenida de la aplicación de dos puertas Toffoli
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Como puede verse, los resultados se alejan de lo esperado en gran medida, las transformaciones
solo tienen lugar correctamente el 57% y el 49% de las veces respectivamente. En su lugar,
se llevan a cabo otras transformaciones que no deberían darse, de forma que el resultado final
convierte nuestro estado inicial, en una mezcla de todos los estados posibles. Esto es comprensible
al tratarse de unos prototipos de una tecnología en desarrollo, pero el principal motivo es el uso de
18 puertas. Como he comentado anteriormente, el uso de muchas puertas es una fuente de error
importante, existen ordenadores que alcanzan una gran fidelidad al implementar una puerta, no
obstante, cuando se implementan algoritmos de unas pocas puertas el error es inmenso. Esto me
permite concluir con que el número de puertas utilizado es realmente significativo en cuanto al
error generado.

4.3. Conclusiones

Como se muestra en la metodología aplicada en el estudio de la decoherencia (sección 4.1),
la construcción de ordenadores cuánticos, y la apertura de su uso al público mediante IBM
Quantum Experience, es un gran avance para la computación cuántica, tratándose de una
herramienta que permite avanzar en el desarrollo de esta tecnología y facilitar el estudio
de los procesos de error que son el principal problema de su implementación.

Las fidelidades que proporcionan los ordenadores de IBM Quantum Experience, son todavía
muy limitadas, debido a que son prototipos de una tecnología que todavía esta en desarrollo.

El número de qubits y la cantidad de puertas que se pueden implementar manteniendo el
error en un rango razonable es reducida.

El proceso de decoherencia supone una fuente de error considerable, y el avance de esta
tecnología depende de desarrollar mecanismos de corrección del mismo.
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Apéndice

Oscilaciones de Rabi

Dado el Hamiltoniano (1)

H = H0 +H1 =
∆σz

2
+ 2λ cos (ωt)σx (1)

La evolución de una función de onda de la forma (2), mediante la ecuación de Schrödinger, da
lugar, sacando la fase ei∆t/2h̄ a la ecuación (3)

Ψ =

(
c1(t)

c2(t)

)
(2)

ih̄
d

dt

(
c1(t)ei∆t/2h̄

c2(t)e−i∆t/2h̄

)
=

(
−∆/2 −2λh̄ cos (ωt)

−2λh̄ cos (ωt) ∆/2

)(
c1(t)ei∆t/2h̄

c2(t)e−i∆t/2h̄

)
(3)

Tomando h̄ω0 = ∆ se obtienen el siguiente sistema de ecuaciones diferenciales:

dc1

dt
= iλ(ei(ω−ω0)t + e−i(ω+ω0)t)c2 (4)

dc2

dt
= iλ(e−i(ω−ω0)t + e+i(ω+ω0)t)c1 (5)

Se trata de un sistema de ecuaciones de segundo orden, lineales, homogéneas, de coeficientes
variables. En es punto, con el fin de simplificar las ecuaciones obtenidas hago uso de la aproxi-
mación RWA, de forma que asumiendo λ� ω y δ = ω−∆ = 0 podemos despreciar los términos
que oscilan muy rápido y reducir las ecuaciones a un sistema de coeficientes constantes (7):

dc1

dt
= iλeiδtc2 (6)

dc2

dt
= iλe−iδtc1 (7)

He obtenido las soluciones de este sistema para las condiciones de contorno c1(0) = 1, c2(0) = 0,
que corresponden a comenzar con un espín hacia arriba, dichas soluciones son las correspondientes
a (9)(10), donde anteriormente he definido la frecuencia de Rabi como (8)

Ω = (δ2 + 4λ2)1/2 (8)
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c1(t) = eiδt/2(cos
Ωt

2
− i δ

Ω
sin

Ωt

2
) (9)

c2(t) = e−iδt/2
2iλ

Ω
sin

Ωt

2
(10)

Quiero hacer énfasis en que estas soluciones no son exactas sino que son soluciones aproximadas
mediante la aproximación RWA. Más detalles sobre este desarrollo pueden ser consultados en [3]

Código de phyton

#I n i c i a l i z o v a r i a b l e s
Psi0=ba s i s ( 2 , 0 )
t l i s t = l i n s p a c e (0 , 20 , 100)
Lam=1 #Amplitud Lambda
de l t a=10
Omega=sq r t ( de l t a ∗ de l t a+4∗Lam∗Lam) # Frecuenc ia de Rabi
om=300 # Frecuenc ia
Delta=om−de l t a
Omegares=2∗Lam #Frecuenc ia de Rabi en re sonanc ia
Omegap=sq r t (2∗2+4∗Lam∗Lam) #Frecuenc ia de Rabi para de l t a=2

#Defino e l Hamiltoniano ( l a dependencia con e l tiempo t i e n e
una s i n t a x i s e s p e c i a l )

H0=Delta ∗ sigmaz ( ) / 2 ;
H1 =sigmax ( )
de f H1_coeff ( t , arg ) :
r e turn 2∗Lam∗ cos (om∗ t )
h_t = [H0 , [ H1 , H1_coeff ] ]

# Def ino una matr iz t a l que su va l o r esperado sea | c2 |^2
modQuadC2=sigmax ( )∗ sigmap ( )

#Rea l i zo l a evo luc i ’ on temporal y c a l c u l o e l va l o r esperado de modQuadC2 ( de l t a =10)
medata=mesolve (h_t , Psi0 , t l i s t , [ ] , modQuadC2)

#Defino e l mismo Hamiltoniano pero bajo cond ic i ’ on de re sonanc ia
H0=om∗ sigmaz ( ) / 2 ;
H1 =sigmax ( )
de f H1_coeff ( t , arg ) :
r e turn 2∗Lam∗ cos (om∗ t )
h_res = [H0 , [ H1 , H1_coeff ] ]
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#Calculo e l va l o r de modQuadC2 en re sonanc ia
meres=mesolve ( h_res , Psi0 , t l i s t , [ ] , modQuadC2)

#Defino e l mismo Hamiltoniano pero con de l t a=2
H0=98∗sigmaz ( ) / 2 ;
H1 =sigmax ( )
de f H1_coeff ( t , arg ) :
r e turn 2∗Lam∗ cos (100∗ t )
h_res = [H0 , [ H1 , H1_coeff ] ]

#Calculo e l va l o r de modQuadC2 con de l t a=2
minimo=mesolve ( h_res , Psi0 , t l i s t , [ ] , modQuadC2)

# Genero l a s im ’ agenes
SAVE=1;
Imagen=2;
f i g , ax = p l t . subp lo t s ( )

# Represento l a s s o l u c i o n e s de Rabi para resonanc ia , d e l t a=2 y de l t a=10
ax . p l o t ( t l i s t , ( 2∗Lam/Omegares )∗ (2∗Lam/Omegares )∗ s i n (Omegares∗ t l i s t /2)
∗ s i n (Omegares∗ t l i s t /2) , ’−y ’ , l a b e l="Modelo en re sonanc ia
(" ’ $\ de l t a=0)$ ’ , l i n ew id th =6);
ax . p l o t ( t l i s t , ( 2∗Lam/Omega)∗ (2∗Lam/Omega)∗ s i n (Omega∗ t l i s t /2)
∗ s i n (Omega∗ t l i s t /2) , ’− r ’ , l a b e l="Modelo fue ra de re sonanc ia
(" ’ $\ de l t a=2)$ ’ , l i n ew id th =6);
ax . p l o t ( t l i s t , ( 2∗Lam/Omegap)∗ (2∗Lam/Omegap)∗ s i n (Omegap∗ t l i s t /2)
∗ s i n (Omegap∗ t l i s t /2) , ’−b ’ , l a b e l="Modelo muy l e j o s de r e sonanc ia
(" ’ $\ de l t a =10)$ ’ , l i n ew id th =6);

# Represento l a s evo lu c i one s tempora les para resonanc ia , d e l t a=2 y de l t a=10
ax . p l o t ( t l i s t , meres . expect [0] , ’−−m’ , l a b e l="Simulaci ’ on en re sonanc ia
(" ’ $\ de l t a=0)$ ’ , l i n ew id th=6)
ax . p l o t ( t l i s t , minimo . expect [0] , ’−−g ’ , l a b e l="Simulaci ’ on
fue ra de re sonanc ia (" ’ $\ de l t a=2)$ ’ , l i n ew id th=6)
ax . p l o t ( t l i s t , medata . expect [0] , ’−−k ’ , l a b e l="Simulaci ’ on
muy l e j o s de r e sonanc ia (" ’ $\ de l t a =10)$ ’ , l i n ew id th=6)

ax . s e t_x labe l ( r ’ t ’ ) ;
ax . s e t_y labe l ( r ’ $ | c_2|^2$ ’ ) ;
ax . set_xlim ( 0 , 2 0 ) ;
ax . l egend ( l o c =1);
p l t . show ( f i g )
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