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Abstract	

The Negative Binomial Distribution is presented as the waiting time distribution of a cyclic 

Markov model. This cycle simulates the seismic cycle in a fault. As an example, this model, that 

can describe recurrences with aperiodicities between 0 and 0.5, is used to fit the Parkfield, 

California, earthquake series in the San Andreas Fault. The performance of the model in the 

forecasting is expressed in terms of error diagrams and compared with other recurrence models 

from literature. 

Key words: negative binomial distribution; renewal process; seismic cycle; earthquake forecasting 

1. Introduction	

The elastic-rebound model is the canonical “macroscopic” theory of great earthquakes (REID, 

1910, SCHOLZ, 2002). It states that a great earthquake will occur where large elastic strains have 

accumulated in the crust. The earthquake itself will relieve most of the strain which will then 

accumulate slowly again by a steady input of tectonic stress until the elastic strain becomes 

sufficiently large for another earthquake to ensue. The duration of this earthquake cycle (the 

time between two consecutive large earthquakes) is the ratio of the strain released during an 

earthquake to the rate of input of tectonic strain by plate motion. 

Because the Earth's crust is heterogeneous and faults are not isolated from each other, the 

earthquake cycle of a specific fault is not periodic. So, although the elastic-rebound model is in 

essence a deterministic theory, its application to a heterogeneous and interacting crust implies 

its translation into a probabilistic framework. 

The variability of the duration of a cycle (either real earthquakes on a fault or synthetic 

earthquakes in a model) can be appropriately defined in the context of a probability density 

function (pdf) by means of the coefficient of variation, , the ratio of the standard deviation  to 

the mean  of the pdf: 



 

3 
 

 


 


 . (1) 

In the seismological literature the coefficient of variation is also known as the aperiodicity, 

a very descriptive name when applied to the duration of the earthquake cycle:  = 0 gives 

perfectly periodic cycles, 0 <  < 1 quasiperiodic cycles, and  > 1 clustering of events. The 

case  = 1 is particularly important because the exponential distribution has this property, and 

the exponential distribution is the pdf of an earthquake cycle where large earthquakes occur in 

time following a Poisson distribution (i.e, they are random in time). In actual seismic faults the 

aperiodicity of the earthquake series is always less than one (SYKES AND MENKE, 2006, 

ELLSWORTH et al, 1999, ABAIMOV et al, 2007). 

RIKITAKE (1974) was the first to formally introduce a probabilistic description of the 

occurrence times of specific earthquakes. He treated earthquake recurrence as a renewal 

process, in which the times between successive events (in this case the large earthquakes in a 

specific fault) are assumed to be independent and independently distributed random variables.  

Since then several authors have proposed probabilistic versions of the elastic-rebound model 

in the shape of a plethora of probability distribution functions (pdfs) for the duration of the 

earthquake cycle: exponential (UTSU, 1984; SORNETTE and KNOPOFF, 1997; MATTHEWS et al., 

2002), Weibull (UTSU, 1984; SORNETTE and KNOPOFF, 1997; MATTHEWS et al., 2002; 

FERRÁES, 2003; GÓMEZ and PACHECO, 2004; ABAIMOV et al., 2007, 2008; GOLZ et al., 2009), 

log-normal (UTSU, 1984; SORNETTE and KNOPOFF, 1997; MATTHEWS et al., 2002; GÓMEZ and 

PACHECO, 2004; FERRÁES, 2005; ABAIMOV et al., 2007, 2008), gamma (UTSU, 1984, 

MATTHEWS et al., 2002; GÓMEZ and PACHECO, 2004; FERRÁES, 2005), power-law (SORNETTE 

and KNOPOFF, 1997), Brownian passage time (MATTHEWS et al., 2002; WGCEP, 2003; 

MICHAEL, 2005; ABAIMOV et al., 2007; ZÖLLER et al., 2008), among others. However, due to 

the scarcity of registered large earthquakes in a specific fault (usually 4 to 10 earthquakes), the 

statistics upon which the selection of a specific pdf is based are poor. This means that different 

pdfs can fit the empirical distribution function.  

Most of the probability distributions have been used solely for their statistical properties, 
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with no relationships with the physics of the underlying process (elastic rebound theory). 

However, a subset of them has a physical rationale and from this point of view can be 

considered as better motivated. One example is the Brownian passage time distribution (BPT; 

MATTHEWS et al., 2002) where the seismic cycle in a fault is modelled by the time evolution of 

the so-called Brownian relaxation oscillator. 

Also, the majority of the probability distributions used in the context of earthquake 

recurrence are continuous. However, in the last ten years several discrete probability 

distributions that are the outcome of cellular automata models have been proposed (VÁZQUEZ-

PRADA et al., 2002; GONZÁLEZ et al., 2005; TEJEDOR et al., 2009). These discrete, cellular 

automata-based probability distributions share with the BPT distribution their physical 

motivation, as the models behind these discrete probability distributions try to reproduce in a 

few cellular automata rules the physics of a seismic fault under the elastic rebound assumption. 

The aim of this paper is to present a discrete probability distribution, the negative binomial 

distribution (NBD) for the recurrence of large earthquakes. The study of one-way Markov 

cycles was presented in TEJEDOR et al. (2012), together with two of its limits, the so-called box 

model and the NBD. Here we focus on the NBD for its particular importance: the NBD seems to 

be the unique distribution that derives from the dynamics of a cellular automaton and 

simultaneously appears in general textbooks in probability and statistics. In Section 2 the NBD 

and its first moments are introduced. Section 3 recalls that the NBD is a special case of a 

waiting time distribution for a one-way Markov cycle, as deduced in TEJEDOR et al. (2012); 

Section 4 then uses this distribution as a renewal model for large earthquakes, using the 

earthquake series of the Parkfield segment of the San Andreas Fault as an example. The quality 

of the fit of the NBD to the empirical distribution function of the Parkfield series is compared to 

other renewal models used in the literature. Section 5 assesses the forecasting capabilities of the 

NBD by means of a reference prediction strategy and error diagrams. Finally, in Section 6 the 

most important conclusions drawn from the paper are stated. The computation of the asymptotic 

limit of the hazard rate for the NBD is detailed in the Appendix. 
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2. The	Negative	Binomial	Distribution	

As there are some different modalities of defining the NBD, we will specify now the form used 

in this paper. 

A negative binomial experiment is a statistical experiment that has the following properties: 

The experiment consists of n repeated trials. Each trial can result in just two outcomes, a success 

or a failure. The probability of success, denoted by 1a (a < 1), is the same on every trial. In 

consequence, the probability of failure is a. The trials are independent. And the experiment 

continues until N successes are observed. N is specified in advance. 

The negative binomial random variable is the number n of repeated trials to produce N 

successes in a negative binomial experiment. The probability distribution of the negative 

binomial random variable is called a NBD. Its form is: 

      ,
11 1

   
N n N

N a
nP n a a N   (2) 

The mean, variance, and coefficient of variation – or aperiodicity- of this distribution are: 

 
1

 

N

a
 , (3) 

 
 

2
2

1
 



Na

a
,  (4) 

and 

 


  


a

N
  (5) 

respectively. 

3. The	NBD	as	the	waiting	time	distribution	in	an	specific	

Markov	cycle	model	

Let suppose a Markov chain with N sites forming a closed loop which is gone over clockwise. 

See Figure 8 for illustration. The N sites are ordered by the index i, i=0,1,..,N1,N. As a genuine 
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cellular automaton, time increases in discrete steps. At the beginning of each cycle our system 

occupies the first position, i=0. In the first time step it makes a trial to pass to site i=1. The 

probability of success is (1a0) and that of failure a0. Typically, after some trials the system will 

occupy site 1. Now all is identical to the first case except that the probability of passing from 

site 1 to site 2 is (1a1).Then is the turn of sites 2, 3, ..., N1. 

 

Figure 1. Scheme of a one-way Markov cycle with N=6. The probability of staying in state i is ai and the 

probability of jumping from state i to state i+1 is (1ai). Jumping from one state to the next means that 

the fault has accumulated more strain energy. The wavy line between states 6 and 0 indicates that at the 

end of the cycle all the stored energy is released. 

When site N is occupied, the cycle ends. The system automatically passes to site 0 and a 

new cycle starts. Figure 9 shows an example of this process of slow filling and abrupt emptying 

for eleven consecutive cycles for a system with N = 6 and (1ai) = 1/N = 1/6, for all states i.   

 

Figure 2. Occupation (number of occupied sites) of an N=6 system as a function of time for eleven 

consecutive cycles. Note the repetitive pattern but the lack of perfect periodicity. 
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The travelling in successive discrete steps around the cycle can be interpreted as a process 

of gradual increase of strain in fault and thus this Markov cycle represents the seismic cycle in a 

fault. Site 0 represents the state with no strain and site N represents the state of maximum strain 

which is automatically released to pass to site 0. This sudden release of strain simulates the 

occurrence of a characteristic earthquake in the fault. Thus in this model a decrease in the strain, 

such as could take place in a random walk type model, is forbidden.  This model is illustrated in 

Figure 8 and materialized in the following Markov matrix: 

 
3 3

0 0

1

5 5

4

1

2

4

2

1 0 0 0 0
0 1 0 0 0
0 0 0 0[ ] 0 0 0 1 0
0 0 0 0 1

1 0 0 0 0

1

 
 
 

  
 
 





a a
a a

aM a a
a a

a

a

a

  (6) 

Note that the number of parameters in this discrete model is N+1: the length of the cycle, N, 

plus the value of the N parameters ai. Using standard techniques of Markov chains (TEJEDOR et 

al, 2012) one can obtain, in a closed form, the distribution function of the cycle lengths in this 

model: 

  
 

11 1

1
00

( ) 0

,  ( ) 1 , 1, ,
 




 

 
 
      
 
 








nN N
i

N i N
ii

i j
j i

a
P n a n N N

a a
  (7) 

It is clear that until time step n = N the probability of completing a cycle is null. In 

seismology this is called a stress-shadow.. 

A property of this general model is that no matter what the value of its parameters are, the 

aperiodicity is lower than 1. 

When the N parameters ai are equal, 

 1 2 ..    Na a a a   (8) 

Eq. (7) becomes Eq. (2). That is, if Eq. (8) is fulfilled a NBD is the waiting time distribution of 

the Markov cycle.  

After this hypothesis, the pdf has only two parameters N and a. This bi-parametric freedom 

can be used for fitting purposes, including of course the seismic cycles. In this paper, however, 
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we  will step forward with an additional simplification by relating them in the form: 

 
1

1 a
N

    (9) 

After this new hypothesis, there is only one free parameter and each cycle of the model can 

be intuitively associated with the ordered filling of a box with N positions. The new simplified 

NBD is 

    1 1 1 , , 1,1

N n N

N

N nP n n N NNN N

              
  (10) 

In the next section, we will see that N = 6 is the most appropriate size of the model to fit the 

recurrence of earthquakes in the Parkfield, California, section of the San Andreas Fault. For this 

case the pdf in Eq. (10) is simply: 

  
6 6

6

11 5
, 6,7,

56 6

n n
P n n

           
     

  (11) 

And the values of its mean ad aperiodicity are: 

 6 636 and 0.373      (12) 

Figure 10 plots the NBD written in Eq. (11). To remark the discrete nature of the probability 

distribution only points for integer time steps have been drawn, with no line connecting them.  

 

Figure 3. Probability density function of the NBD for the case N = 6, (1a) = 1/6. 
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4. Applications	of	the	NBD	in	seismicity	and	earthquake	

forecasting:	the	Parkfield	series	

Including the latest event, the Parkfield series (BAKUN and LINDH, 1985; BAKUN, 1988; 

MICHAEL and JONES, 1998) consists of seven Mw  6 mainshocks, which occurred on January 9, 

1857; February 2, 1881; March 3, 1901; March 10, 1922; June 8, 1934; June 28, 1966 and 

September 28, 2004. In consequence, the duration (in years) of the six observed inter-event 

times are: 24.07, 20.08, 21.02, 12.25, 32.05 and 38.25. The mean value Pk, the sample standard 

deviation  Pk (the square root of the bias-corrected sample variance), and the aperiodicity α Pk of 

this six-data series are: 

 Pk Pk Pk24.62 yr; 9.25 yr; 0.3759        (13) 

Now, we will proceed to fit these data using the simplified NBD written in Eq (11). Its 

aperiodicity is given by 

 NBD 2

1N

N


    (14) 

As we want a distribution with the same aperiodicity (and mean) as the Parkfield series, taking 

αPk from Eq. (13) and substituting it in Eq. (14), we have N = 5.8. But because N is a discrete 

quantity, we use the nearest integer, N = 6. 

However, for fitting the data, it is necessary to assign a definite number of years to the non-

dimensional time step of the model. This second parameter will be called τ. From Eqs. (3)and 

(9) we have that for the NBD  = N2 = 36 time steps. This mean cycle length (in non-

dimensional time steps) should be equal to the mean recurrence time of the Parkfield series, Pk 

= 24.62 years, so that  = 0.68 years per time step of the model. In Figure 11 we have plotted the 

empirical distribution function of the Parkfield series (gray step-like line) and the fit to the 

cumulative NBD with N = 6 (black continuous line), together with 5 other (cumulative) 

distribution functions used as renewal models in the literature: Weibull, gamma, log-normal, 

BPT and Minimalist Model (MM; VAZQUEZ-PRADA et al., 2002). It is quite obvious from the 
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figure that the performance of all six models is good and very similar, including the NBD. 

Indeed, the residuals for the NBD evaluated at the midpoints of the horizontal segments of the 

empirical distribution function are the lowest of the six tested models.   

 

Figure 4. Fit of the NBD model (black continuous line) to the Parkfield series (gray step-like line) and 

comparison with other statistical models used in the literature. 

The NBD (and any of the other models shown in Figure 11) can be used to estimate the 

time-dependent probability of having an earthquake as a function of the time elapsed since the 

last earthquake in the series (September 28, 2004). This estimation can be carried out with the 

hazard rate function, 

 ,
,

,

( )
( )

( )

N a
N a

N ai n

P n

P i
h n 






  (15) 

For discrete distributions like the NBD, the hazard rate is the probability for an earthquake 

to occur at time step n on the condition that it has not occurred until time step n1. However, in 

the seismological literature is customary to express the likelihood of a future earthquake using 

the yearly conditional probability of earthquake occurrence, P(n|t = 1 year), instead of the 

hazard rate. This function gives the probability of having an earthquake during the next year 

provided it has not occurred before: 
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 , ,
,

,

( ) ( )
( | 1 year)

1 ( 1)
N a N a

N a
N a

S n t S n
P n t

S n

  
  

 
  (16) 

where , ,) ( )(
n

N a N an N
n P nS


   is the cumulative distribution function. The yearly conditional 

probability function for the Parkfield series is illustrated in Figure 12. Again, as in Figure 11, 

the NBD and five other models are compared. The present yearly probability of earthquake 

occurrence is 0.004, i.e., there is a 0.4% probability of having an earthquake in the following 12 

months. Obviously this probability is low because the earthquake cycle is in its early stages. 

When the cycle is at its average duration, 24.62 years, the yearly probability of earthquake 

occurrence will be 6%. 

Both the hazard rate and the yearly conditional probability functions for the NBD reach a 

constant value for large times. Inserting Eq. (2)) into Eq. (15) one obtains that, for long times, 

 ,lim ( ) 1N a
n

h n a


    (17) 

The derivation of this equation can be found in the Appendix. If Eq. (9) is used instead (i.e., 

the one-parameter simplification of the NBD), the asymptotic limit of the hazard function is 

equal to 1/N. 

 

Figure 5. Yearly conditional probability for the Parkfield series as predicted by the Negative Binomial 

model compared to other statistical models used in the literature. 
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5. Error	diagrams	for	the	Parkfield	example	

A hint of the predictability of the large relaxations in this type of model is given by the 

aperiodicity of their time series. The aperiodicity, as stated in Section 1, is a quantitative 

measure of the lack of regularity of a time series. As the aperiodicity of this model is always 

less than 1, the occurrence of the large events is a quasi-periodic phenomenon. A robust way to 

assess the predictability of a time series is by trying to forecast its events by declaring alarms at 

particular times. 

The aim is to declare alarms before all the events in order not to miss any, but to declare 

them just before each event in order to minimize the total alarm time. Many strategies can be 

devised to declare the alarms but there is a reference strategy to which all others can be 

compared (NEWMAN and TURCOTTE, 1992; VÁZQUEZ-PRADA et al., 2002; KEILIS-BOROK and 

SOLOVIEV, 2003). This strategy consists of waiting a fixed time after each event (waiting time 

w), setting then the alarm, and maintaining it until the occurrence of the next event (Figure 13). 

If the following event in the time series occurs before the alarm is raised, it is counted as a 

prediction error; if the following event in the time series occurs after the alarm is raised, it is 

counted as a prediction success and the alarm is then cancelled. 

 

 

Figure 6. Reference strategy for the assessment of the predictability of a time series. Red bars are the 

earthquakes to be forecasted (five in the example). An S (success) above a red bar means that the 

earthquake has been successfully predicted, whereas an E (error) means that the earthquake has not been 

predicted. The blue strips stand for the time with the alarm on before each earthquake.  

The events that are to be predicted (large earthquakes) are the vertical red bars numbered 
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correlatively. An alarm (vertical black lines with rounded top) is set a fixed time interval after 

each event (waiting time) and the prediction is labelled error (E) or success (S) depending on 

whether the alarm was off or on when the event occurred, respectively. The fraction of errors is 

the number of events not predicted (one in the example, the second event) divided by the total 

number of events (five events), i.e., fe = 0.2; and the fraction of alarm time is the total alarm 

time (blue sections of the time line: 29 time units) divided by the total duration of the time series 

(86 time units), i.e., fa = 0.34 in the example shown in the figure. 

The fraction of errors fe (number of missed events divided by the total number of events) 

and the fraction of alarm time fa (total alarm time divided by the total duration of the time 

series) can be computed as a function of the above mentioned waiting time w, and the purpose is 

to find the optimum waiting time. This optimum waiting time depends on the relative 

importance that failing to predict an event has compared to keeping the alarm on. An objective 

function, called loss function, L, can be defined that incorporates this trade-off in each particular 

case. Here we will use the simplest of them, L = fe + fa, where failure to predict an event and a 

longer alarm time are equally penalized. 

Thus, the aim is to find the waiting time w = w* that minimizes L(w). This minimum value 

is denoted by L*  L(w*). And the best way to graphically display this is by means of an error 

diagram, where the fraction of alarm time fa runs along the horizontal axis and the fraction of 

errors fe runs along the vertical axis. Error diagrams were introduced in earthquake forecasting 

by MOLCHAN (1997) who contributed with rigorous mathematical analysis to the optimization 

of the earthquake prediction strategies. 

A good strategy of forecasting must produce both small fe and fa, because both the prediction 

failures and the alarms are costly. A random guessing strategy (randomly turning the alarm on 

and off) will yield L=1, a result which can be easily understood. The alarm will be on, 

randomly, during a certain fraction of time, fa. Thus, there will be a probability equal to fa for it 

being on when an earthquake eventually occurs (and a probability of 1− fa for it being off). The 

result is that fe =1− fa. As a trivial special case, if the alarm is always on (fa=1), then all the 

earthquakes are “forecasted” (fe=0). Conversely, all the earthquakes are failures to predict if the 
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alarm is always off. The random guessing strategy is considered as a baseline, so a forecasting 

procedure makes sense only if it gives fa + fe < 1. 

Both functions, fa and fe, together with the loss funtion L = fe + fa are plotted in Figure 14a for 

the case N = 6, while Figure 14b plots the error diagram for the same data. For each value of N, 

L(w) has a minimum at a specific value of w, w*(N). As can be seen in Figure 14, w*(6) = 22, 

for which 

 ( *) 0.403, ( *) 0.147, ( *) 0.550a ef w f w L w     (18) 

Figure 7. (a) Fraction of error fe, fraction of alarm, fa and loss function L as a function of the time after 

the last earthquake for a NBD model with N = 6. (b) Error diagram for the prediction strategy shown in 

(a). The minimum value of the loss function is L* = 0.55 for w* = 22. 

For the Parkfield sequence, w* corresponds to 

w* = 15.0 yr.  

If the distribution derived from the NBD model correctly describes the recurrence of large 

earthquakes at Parkfield, an alarm connected 15 years after the last earthquake (beginning of the 

cycle) and disconnected just after the occurrence of each shock would yield the results given in 

Eq. (18). Note that this time is approximately  equal to the difference between the mean and the 

standard deviation. This is reasonable because w*=15 yr would capture most of the probability 

curve, as can be seen in Fig. 3. 
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6. Conclusions	

We have introduced the NBD as a renewal model to describe the recurrence of large 

earthquakes in faults. 

As a test ground of application, we have used the Parkfield series. The yearly conditional 

probability and other functions as predicted by the NBD are compared to other statistical models 

used in the literature, and a simple forecasting strategy has been evaluated using error diagrams. 

Our results show that the NBD is competitive against other models but general conclusions 

cannot be drawn because of the smallness of the sample.   

The NBD seems to be the unique discrete distribution coming from a cellular automaton whose 

properties can be found in textbooks of probability and statistics. 

In this paper we have reduced one parameter of the distribution by relating the probability of 

advancing in the Markov process to the total number of steps in the cyclic chain. With this 

simplification, this model can be intuitively understood as the progressive ordered filling of a 

finite box. 

Appendix	A:	Asymptotic	behavior	of	the	hazard	rate	function	

 

Recall that the N-step Markov-cycle distribution, Eq. (7), collapses to a negative binomial 

distribution when all transition probabilities are equal, 1 2 ..    Na a a a : 

        
 ,

1 1 .. 11
1

1 1 !

N
N n N n

N a

n n n Na
P n a a a

N a N
                

.  ( .19) 

Using the definition of hazard rate for a discrete distribution, Eq. (15) we can write  
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P n a n n N
h n

i i NP i a i i N a
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   
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   
  

      
  

  
.  ( .19) 

To proceed further,  we make the following change of variable: 

 i n m  .  ( .19) 
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With this change of variable the hazard rate of the general, two-parameter NBD, Eq. ( .19), can 
be written as 

 1
,

0

1 1
1 1

m
N a

m

m m
h a

n n N






              
 .  ( .19) 

In the long-time limit, i.e., when n tends to infinity, we have 

  1
,

0 0

1
lim 1 1 1 . 1

1
m m

N a
n

m m

h a a
a

 



 

      
   . ( .19) 

So, in the general, two-parameter NBD the asymptotic limit of the hazard rate is: 

 ,lim 1N a
n

h a


  .  ( .19) 
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