Projecting social contact matrices to different demographic structures

Arregui, S. (Universidad de Zaragoza) ; Aleta, A. (Universidad de Zaragoza) ; Sanz, J. ; Moreno, Y. (Universidad de Zaragoza)
Projecting social contact matrices to different demographic structures
Resumen: The modeling of large-scale communicable epidemics has greatly benefited in the last years from the increasing availability of highly detailed data. Particullarly, in order to achieve quantitative descriptions of the evolution of epidemics, contact networks and mixing patterns are key. These heterogeneous patterns depend on several factors such as location, socioeconomic conditions, time, and age. This last factor has been shown to encapsulate a large fraction of the observed inter-individual variation in contact patterns, an observation validated by different measurements of age-dependent contact matrices. Recently, several works have studied how to project those matrices to areas where empirical data are not available. However, the dependence of contact matrices on demographic structures and their time evolution has been largely neglected. In this work, we tackle the problem of how to transform an empirical contact matrix that has been obtained for a given demographic structure into a different contact matrix that is compatible with a different demography. The methodology discussed here allows to extrapolate a contact structure measured in a particular area to any other whose demographic structure is known, as well as to obtain the time evolution of contact matrices as a function of the demographic dynamics of the populations they refer to. To quantify the effect of considering time-dynamics of contact patterns on disease modeling, we implemented a Susceptible-Exposed-Infected-Recovered (SEIR) model on 16 different countries and regions and evaluated the impact of neglecting the temporal evolution of mixing patterns. Our results show that simulated disease incidence rates, both at the aggregated and age-specific levels, are significantly dependent on contact structures variation driven by demographic evolution. The present work opens the path to eliminate technical biases from model-based impact evaluations of future epidemic threats and warns against the use of contact matrices to model diseases without correcting for demographic evolution or geographic variations.
Idioma: Inglés
DOI: 10.1371/journal.pcbi.1006638
Año: 2018
Publicado en: PLoS computational biology 14, 12 (2018), e1006638
ISSN: 1553-7358

Factor impacto SCIMAGO: 2.949 - Cellular and Molecular Neuroscience (Q1) - Computational Theory and Mathematics (Q1) - Ecology (Q1) - Molecular Biology (Q1) - Genetics (Q1) - Modeling and Simulation (Q1) - Ecology, Evolution, Behavior and Systematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2020-01-17-21:54:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-01-25, última modificación el 2020-01-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)