000076939 001__ 76939
000076939 005__ 20200716101447.0
000076939 0247_ $$2doi$$a10.1088/1361-6404/aae8b5
000076939 0248_ $$2sideral$$a109733
000076939 037__ $$aART-2019-109733
000076939 041__ $$aeng
000076939 100__ $$0(orcid)0000-0001-7275-9321$$aGómez, J.B.$$uUniversidad de Zaragoza
000076939 245__ $$aParabolic curves in a Helmholtz solution for a bowed string
000076939 260__ $$c2019
000076939 5060_ $$aAccess copy available to the general public$$fUnrestricted
000076939 5203_ $$aIf one is not familiar with the physics of the violin, it is not easy to guess, even for an experimental physicist, that the so-called Helmholtz motion can be obtained as a solution to the one-dimensional wave equation for the motion of a bowed violin string. It is worth visualising this aspect from a graphical perspective without recourse to ordinary Fourier analysis, as has customarily been done. We show in this paper how to obtain the shape of the Helmholtz trajectory, that is, two mirror-symmetric parabolas, in the ideal case of no losses from internal dissipation and no viscous drag from the air and the non-rigid end supports. We also show that the velocity profile of the Helmholtz motion is also a solution of the one-dimensional wave equation. Finally, we again derive the parabolic shape of the Helmholtz trajectory by applying the principle of energy conservation to a violin string.
000076939 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000076939 590__ $$a0.756$$b2019
000076939 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b69 / 85 = 0.812$$c2019$$dQ4$$eT3
000076939 591__ $$aEDUCATION, SCIENTIFIC DISCIPLINES$$b36 / 41 = 0.878$$c2019$$dQ4$$eT3
000076939 592__ $$a0.437$$b2019
000076939 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ2
000076939 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000076939 700__ $$aBrun, J.L.
000076939 7102_ $$12000$$2685$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Petrología y Geoquímica
000076939 773__ $$g40, 1 (2019), 015802 [13 pp]$$pEur. j. phys.$$tEUROPEAN JOURNAL OF PHYSICS$$x0143-0807
000076939 8564_ $$s800728$$uhttps://zaguan.unizar.es/record/76939/files/texto_completo.pdf$$yVersión publicada
000076939 8564_ $$s63131$$uhttps://zaguan.unizar.es/record/76939/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000076939 909CO $$ooai:zaguan.unizar.es:76939$$particulos$$pdriver
000076939 951__ $$a2020-07-16-09:04:11
000076939 980__ $$aARTICLE