000076943 001__ 76943
000076943 005__ 20230914083230.0
000076943 0247_ $$2doi$$a10.3390/pharmaceutics11010003
000076943 0248_ $$2sideral$$a109752
000076943 037__ $$aART-2019-109752
000076943 041__ $$aeng
000076943 100__ $$aLerra, L.
000076943 245__ $$aGraphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
000076943 260__ $$c2019
000076943 5060_ $$aAccess copy available to the general public$$fUnrestricted
000076943 5203_ $$aWith the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
000076943 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000076943 590__ $$a4.421$$b2019
000076943 591__ $$aPHARMACOLOGY & PHARMACY$$b44 / 270 = 0.163$$c2019$$dQ1$$eT1
000076943 592__ $$a0.894$$b2019
000076943 593__ $$aPharmaceutical Science$$c2019$$dQ1
000076943 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000076943 700__ $$aFarfalla, A.
000076943 700__ $$0(orcid)0000-0002-5578-7635$$aSanz, B.$$uUniversidad de Zaragoza
000076943 700__ $$aCirillo, G.
000076943 700__ $$aVittorio, O.
000076943 700__ $$aVoli, F.
000076943 700__ $$aGrand, M.L.
000076943 700__ $$aCurcio, M.
000076943 700__ $$aNicoletta, F.P.
000076943 700__ $$aDubrovska, A.
000076943 700__ $$aHampel, S.
000076943 700__ $$aIemma, F.
000076943 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000076943 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000076943 773__ $$g11, 1 (2019), 3 [17 pp]$$pPharmaceutics$$tPharmaceutics$$x1999-4923
000076943 8564_ $$s1117296$$uhttps://zaguan.unizar.es/record/76943/files/texto_completo.pdf$$yVersión publicada
000076943 8564_ $$s11326$$uhttps://zaguan.unizar.es/record/76943/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000076943 909CO $$ooai:zaguan.unizar.es:76943$$particulos$$pdriver
000076943 951__ $$a2023-09-13-10:44:03
000076943 980__ $$aARTICLE