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Abstract

Background: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects
responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and
domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European
Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for
disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an
average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control
programs within Europe.

Methods: We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing
entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and
Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and
environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the
monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are
useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an
uncertain status that need active entomological surveillance to determine whether or not vectors are present.

Results: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution
in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean
AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the
Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to
temperature and precipitation for all three groups.
(Continued on next page)
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Conclusions: The duration periods with low or null adult activity can be derived from the associated monthly
distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of
ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as
likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly
entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.

Keywords: Culicoides, Random Forest, Machine Learning, Europe, Monthly distribution, Spatial distribution, Presence-
absence data, Targeted surveillance

Background
Culicoides (Diptera: Ceratopogonidae) biting midges are
small blood-sucking insects responsible for the transmis-
sion of viruses causing the European outbreaks of blue-
tongue (BT) and Schmallenberg diseases in wild and
domestic ruminant livestock [1, 2], and for African horse
sickness in equids [1, 3]. BTV historically made sporadic in-
cursions into some countries of the Mediterranean Basin
(Portugal, Spain, the Greek islands close to Turkey and
Cyprus) but from 1998 onwards the situation worsened
when five other serotypes spread within France (Corsica),
Italy, Greece and countries in the Balkans region [4]. BT
was never reported in northern Europe until August 2006,
when an unprecedented bluetongue virus (BTV) serotype 8
outbreak started in the border region of Germany, Belgium
and the Netherlands and, over the next two years, it spread
further over central and northern Europe [5–8]. This epi-
demic had a significant economic impact within the Euro-
pean Union, as a consequence of the restriction of animal
movements and the large amount of financial resources
invested in vaccination campaigns and vector surveillance
programs [9–11]. In northern Europe, the Afro-Asian vec-
tor Culicoides imicola Kieffer is absent and therefore, the
vector species incriminated in the transmission of BTV
were the Palaearctic species belonging to the Obsoletus en-
semble Culicoides obsoletus (Meigen)/Culicoides scoticus
Downes & Kettle [12, 13], Culicoides chiopterus (Meigen)
[14, 15] and Culicoides dewulfi Goetghebuer [16].
Many factors contribute to the transmission of

vector-borne diseases, including the presence of infected
hosts, competent vectors and suitable environmental tem-
peratures for the pathogen to replicate inside the vector
[17]. In the absence of ongoing entomological surveillance,
a temporal map of the potential distribution of the vectors
is key for health authorities to quickly delimitate possible
areas and time periods of risk for disease transmission in
the case of an outbreak of a known or emerging
vector-borne disease [18–20]. The spatial distribution and
phenology of vectors can be predicted from climate and
environmental variables such as temperature, precipitation
and land cover [18]. Temporal occurrence data (the pres-
ence or absence of a species at a specific time) in
non-sampled areas or periods can be modelled using

statistical techniques. This methodology is used to gener-
ate species distribution maps depicting the probability of
the species being present at a given time [21], thus identi-
fying areas with low or null adult activity and therefore,
periods during which animal movements are safe.
Since the start of the BT outbreaks, European author-

ities have established a series of regulations for BT sur-
veillance including vector monitoring to analyse the
seasonal fluctuation of the vector populations and deter-
mine the seasonal vector-free periods (SVFP) for differ-
ent regions [22, 23]. The EU defines SVFP by using a
threshold on the abundance of female specimens, con-
sidering the parity stage of the Culicoides caught in the
traps. This approach has been used to estimate the SVPF
in Scotland for species of the Obsoletus group [24]. The
authors estimated phenological events for each species
such as the start and end of the SVFP. Brugger et al.
[23] estimated vector-free periods in Austria using an
approach based on the European Commission definition
but without considering parity stage of female speci-
mens. In the present study, we identified months where
adult activity is null or very low, based on the monthly
mean abundance for each farm, without considering the
parity of the specimens collected as previously proposed
by the EU legislation. Our definition of adult activity is
different but comparable to the vector-free season de-
fined by this legislation and, therefore, we keep the term
“vector-free” season or period to refer to a period of the
year with neglectable adult activity.
The SVFP during the winter was not ubiquitous across

all European countries. Austria [23], Switzerland [25] and
Sweden [26] reported the existence of a SVFP, while other
countries such as Germany, France, Belgium and the
Netherlands reported that a SVFP might not exist in these
countries [16, 27–29]. Imposing restrictions of animal
movement in areas where the vector is not present has a
negative economic impact as the restriction is unneces-
sary. On the other hand, allowing animal movement in
areas where the vector is present poses a risk of spreading
infections to new areas, if environmental conditions are
suitable for the virus to develop inside the vector. Being
able to define vector-free areas and periods is not only
useful for BT management, but also for emerging
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Culicoides-borne diseases in the future. For instance,
Schmallenberg virus appeared suddenly in 2011 in
Germany, and spread throughout 29 European countries
[30], causing economic losses for sheep and cattle farmers
[31]. In addition, the spread of African horse sickness has
previously been reported in horses in Spain in 1966 and
Spain and Portugal from 1987 to 1990 [32]. Knowing the
geographical distribution of vectors allows veterinary au-
thorities to focus control measurements in those areas at
a specific time of year.
In this study, we used entomological data of C. imicola,

Obsoletus ensemble and Pulicaris ensemble collected from
nine European countries over a seven-year period. This en-
tomological dataset was used previously to analyse the tem-
poral fluctuation at different latitude bands for Europe, to
analyse the start of the season at the geographical NUTS
level and to interpolate the observed Culicoides abundance
spatially [32]. In this work, we use the machine learning al-
gorithm “Random Forest” (RF) to model the average
monthly presence/absence observed and predict the prob-
ability of presence of C. imicola, Obsoletus ensemble and
Pulicaris ensemble in unsampled areas, using climatic and
environmental variables as predictors. The aim of this work
was to predict areas and months likely to be free of biting
midges or likely to have vectors as well as areas of uncertain
status that need to be targeted for entomological surveil-
lance in case of an outbreak. The resulting maps represent
the first spatial distribution model for a transect comprising
nine European countries from southern Spain to northern
Sweden. The maps are useful tools as inputs for decision
making by veterinary authorities to detect areas with adult
activity and use this information to focus financial re-
sources for active entomological surveillance programs.

Methods
Culicoides data
We used entomological data collected in farms from
Spain, France, Germany, Switzerland, Austria, Denmark,
Sweden, Norway and Poland between 2007 and 2013 as
part of national surveillance programs or research pro-
jects [33]. For each trap site, observations consisted of
the number of C. imicola, Obsoletus ensemble [C. obso-
letus, C. scoticus, Culicoides montanus Shakirzjanova,
Culicoides chiopterus (Meigen) and C. dewulfi] and Puli-
caris ensemble [Culicoides pulicaris (Linnaeus) and Culi-
coides punctatus (Meigen)]. Culicoides biting midges
were sampled from a total of 904 livestock farms com-
prising 31,429 trap collections. Onderstepoort traps were
used for sampling biting midges, except for Germany
(Biogents Sentinel traps) and in Spain (mini CDC traps).
For these two countries, we multiplied the number of
Culicoides for each observation by a conversion factor to
make the number of specimens comparable between the
different trapping methods. Details of both the sample

protocols and the conversion factors used have been
published previously [33].
For C. imicola and each of the Culicoides ensembles,

we split the observation data set into 12 subsets accord-
ing to month of the year. For each 12 monthly dataset,
we calculated the average abundance on each farm for
each year sampled. This resulted in 12 datasets with
farms containing one monthly average abundance per
year sampled. Then, we classified each monthly average
each year into Presence or Absence according to the
average abundance of the vector. Based on the European
Union regulation [22] for the definition of the SVFP, in
which an abundance threshold of biting midges is pro-
posed to define Presence or Absence, we considered
each monthly average for each year as Presence when it
was above or equal to an abundance threshold of five
midges for the Obsoletus and Pulicaris ensembles, and
one specimen for C. imicola. Even though the European
Union definition of Presence is based on the catch of
five parous specimens per observation, we here consid-
ered the number of midges without differentiating fe-
males into their gonotrophic stage because this
information was missing for some of the countries. This
will result in a more conservative definition of SVFP.
Our approach also differed from the approach used by
the EU commission as for each farm we only classified
the monthly average each year into Presence or Absence,
and not each of the individual observations (when there
were several observations per month).
We constructed preliminary Random Forest (RF)

models using occurrence data from January and February.
The data collected in this period did not include any farms
from northern Scandinavia. The resulting models pre-
dicted the occurrence of biting midges in January and
February in this region (data not shown). However, earlier
studies have reported an absence of biting midges in the
Scandinavian peninsula during winter [26, 34]. Therefore,
it was useful to provide pseudo-absence points to the
models in order to increase their accuracy for predicting
absences in the area. For January and February, we created
11 random pseudo-absence points above 60 degrees lati-
tude in the highlands in Norway, central and northern
Sweden and Finland and were added by hand using Arc-
Map 10.1 (ESRI, Redlands, CA, USA) (Fig. 1).

Predictor variables
We used raster files (images) of 112 environmental and
climatic variables, land cover and livestock density, each
with a 1 km2 spatial resolution.
The environmental predictors included Mid-infrared

(MIR), daytime Land Surface Temperature (dLST), night-
time Land Surface Temperature (nLST), Enhanced Vege-
tation Index (EVI) and Normalized Difference Vegetation
Index (NDVI) as predictor variables. Each variable was
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derived from a MODIS temporal series from 2001 to
2012, and subjected to Temporal Fourier Analysis (FTA)
[35]. For each environmental variable, the resulting prod-
ucts of FTA were the 14 images described in Table 1. This
dataset was originally created by the TALA research group
at the Department of Zoology at Oxford University, and
was provided through the EDENext project [36].
We also included WORLDCLIM altitude data (digital ele-

vation model) and bioclimatic variables as climatic predictors
for Culicoides distribution. BIOCLIM images were obtained
from the WORLDCLIM database [37, 38] (Table 2).
We used a Corine Land Cover (CLC) map with 250 m

pixel resolution to extract information on 16 relevant
land cover classes (Table 2). For each class, we created a
binary image with pixel values of 1 and 0 according the
presence or absence of the class. Due to the higher
spatial resolution of the CLC map compared to the other
predictors, we resampled each of the binary class images
to a resolution of 1 km2. This was done by overlaying a
grid with cells of 1 km2 resolution. To each of these
cells, we assigned the sum of all pixels with a value of 1
within them. Each 1 km2 cell of the grid was made up of
16 (4 × 4) pixels of the original CLC map. This resulted
in new images for each land cover class with a pixel
resolution of 1 km2, representing the frequency of each
of the 16 different classes found in every 1 km2 area
(pixel) on a scale of 0–16. CLC map was obtained from
the European Environment Agency website [39].
We obtained livestock density data for cattle, goats,

sheep, small ruminants and chickens from the Food and
Agriculture Organization repository “GeoNetwork”. This

dataset consisted of a series of raster files with informa-
tion regarding livestock density at a global scale (“The
gridded livestock of the world”) [40].

Modelling the probability of presence
Combining our Culicoides data with the predictors, we
explored modelling approaches using VECMAP© soft-
ware, v.2.0.16350.2473. For the final modelling of each
month and each species, we used the Random Forest
(RF) machine learning technique [41, 42] in R v.3.4.2
[43] (packages caret [44] and randomForest [45]) to
model the probability of presence (PP) in the nine Euro-
pean countries using the Presence/Absence observations
calculated at each farm. For each month we obtained a
map showing the PP at the same resolution as the pre-
dictors (1 km2). The RF algorithm consists of an ensem-
ble of decision trees used to predict the probability of
class membership where the response variable is cat-
egorical (e.g. classification into presence and absence).
An advantage of RF is the model’s capability of detecting
nonlinear relationships between the response and the
predictor variables [46] and that RF can handle a large
number of predictor variables [46]. In addition, RF can
produce a list of the most important predictors and scale
them from 0–100 according to their importance as cal-
culated by permuting each predictor and measuring the
prediction error after the permutation [44].
The number of farms sampled varied from month to

month. As expected, during summer more farms were
sampled compared to winter, as in many countries of
northern Europe entomological surveillance is not

Fig. 1 Eleven pseudo-absence points added to Norway, Sweden and Finland for January and February
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carried out during the cold winter months. For each
monthly dataset, we used a stratified random split to
divide the data into two subsets: one included 70% of
the farms containing at least one year classified as pres-
ence together with the farms with only absence obser-
vations (training set). The second subset contained the
remaining 30% of the farms as a test set to evaluate
model performance [42, 47, 48]. We conducted a strati-
fied random split based on farm ID in order to avoid
having observations belonging to the same farm in both
the training and the evaluation datasets (Table 3).
The number of Culicoides caught per farm highly var-

ied between the different years. In this work, we consid-
ered each farm’s monthly classification into Presence or
Absence for each year and included them in the training
set as independent observations. Therefore, a farm might
contain Presence and Absence observations from differ-
ent years depending on the variation in mean monthly
abundance between the different years.
The monthly Presence/Absence data were highly im-

balanced, meaning that it contained a high proportion of
one of the classes (Presence or Absence), i.e. the major-
ity class. We investigated and compared five different
balancing methods (no balancing, down-sampling, over-
sampling, ROSE [49], SMOTE [50], Tomek [50]) to cope
with the imbalance and to improve model performance.
We ran cross-validation (CV) for each balancing method
10 times with different random seeds and the best
method was chosen according to highest AUC (data not
shown). The balancing method chosen to balance the
training set was oversampling, which entails duplicating
the observations for the minority class in order to reach

the same number of observations as the majority class
[42]. We used the balanced training set of each month
to train the RF model, and used the test sets to calculate
the receiver operating characteristics (ROC) curve [42,
51, 52] and the area under this curve (AUC). We used
the AUC as a measurement of model performance. AUC
values close to 0.5 indicate that the model is not able to
classify new samples better than random, values between
0.7 and 0.8 indicate acceptable model performance,
values from 0.8 to 0.9 indicate excellent performance
and values above 0.9 are considered outstanding [53].
For each month, we performed 5-fold CV to optimize
the model parameter “mtry” (i.e. number of predictors
used at each split). The “ntrees” parameter (number of
trees of the forest) was set to 1000 trees in all cases.
For C. imicola, after the test set was created, we

removed all the observations from farms not belong-
ing to Spain or France, as the vector was not found
in the seven remaining countries [33]. This reduced
the large amount of Absence observations in the test
set, which have an influence in the distribution of
the classes.

Classification
Classification of predicted probabilities into Presence/Ab-
sence classes can be determined using a predetermined
threshold (in ecology studies, normally the default is a PP
of 0.5 [54]). Here, we were interested in defining a
data-dependent threshold, as a predefined threshold of 0.5
might not be optimal [54]. The monthly PP maps obtained
from our RF models were classified into three categories.
We calculated a lower and upper threshold and all areas
with a PP below the lower threshold were considered to be
in the Absence class, while the areas with a PP above the
upper threshold were classified as Presence areas. Regions
with a PP between the two thresholds could not be classi-
fied as either Absence or Presence class, and were therefore
classified as an Uncertain status category that may be tar-
geted for active vector surveillance. The Absence and Pres-
ence classes refer here to the occurrence of adult activity
and not to the ecological establishment of the vector, as in
the classical species distribution modelling.
Lower and upper thresholds were calculated using the

density function for the PP predicted by the model for each
test set class (true presence/absence). To define the two
thresholds for each month, we derived two gain functions
Gpresence, Gabsence for 100 possible thresholds from 0 to 1,
based on the area under the density function for Presence
and Absence, respectively. We calculated Gpresence as the
probability of a true presence and subtracted the probability
of a misclassified presence multiplied by a parameter δ,
which indicates the cost of a misclassified presence relative
to a true presence. Similarly, we calculated Gabsence as the
probability of a corrected classified absence (true absence)

Table 1 Products of Temporal Fourier Analysis obtained from a
single variable

Fourier component Description

A0 Fourier mean for the entire time series

A1 Amplitude of annual cycle

A2 Amplitude of bi-annual cycle

A3 Amplitude of tri-annual cycle

P1 Phase of annual cycle

P2 Phase of bi-annual cycle

P3 Phase of tri-annual cycle

DA Proportion of total variance due to all three cycles

D1 Proportion of total variance due to annual cycle

D2 Proportion of total variance due to bi-annual cycle

D3 Proportion of total variance due to tri-annual cycle

MN Minimum value

MX Maximum value

VR Total variance

Each product corresponds to a raster image (1 km2 resolution) derived from a
single environmental variable (for instance, NDVI)
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Table 2 MODIS Fourier-transformed, BIOCLIM and Corine Land Cover predictors used to model the probability of Culicoides
presence

Source Code Description

MODIS (Fourier transformed) 2001–2012 MIR Mid-infrared

dLST Daytime land surface temperature

nLST Nighttime land surface temperature

NDVI Normalized difference vegetation index

EVI Enhanced vegetation index

BIOCLIM 1960–1990 BIO 1 Annual mean temperature

BIO 2 Mean diurnal range: mean of monthly (max. temp - min. temp)

BIO 3 Isothermality (BIO2/BIO7) (×100)

BIO 4 Temperature seasonality (standard deviation × 100)

BIO 5 Maximum temperature of warmest month

BIO 6 Minimum temperature of coldest month

BIO 7 Temperature annual range (BIO5-BIO6)

BIO 8 Mean temperature of wettest quarter

BIO 9 Mean temperature of driest quarter

BIO 10 Mean temperature of warmest quarter

BIO 11 Mean temperature of coldest quarter

BIO 12 Annual precipitation

BIO 13 Precipitation of wettest month

BIO 14 Precipitation of driest month

BIO 15 Precipitation seasonality (coefficient of variation)

BIO 16 Precipitation of wettest quarter

BIO 17 Precipitation of driest quarter

BIO 18 Precipitation of warmest quarter

BIO 19 Precipitation of coldest quarter

Altitude Digital elevation model (DEM)

Corine Land Covera CLC 12 Non-irrigated arable land

CLC 13 Permanently irrigated land

CLC 15–17 Vineyards, fruit trees and berry plantations, olive groves

CLC 18 Pastures

CLC 19 Annual crops associated with permanent crops

CLC 20 Complex cultivation patterns

CLC 21 Land principally occupied by agriculture with significant areas
of natural vegetation

CLC 22 Agro-forestry areas

CLC 23 Broad-leaved forest

CLC 24 Coniferous forest

CLC 25 Mixed forest

CLC 26 Natural grasslands

CLC 29 Transitional woodland-shrub

CLC 35 Inland marshes

CLC 40 Water courses

CLC 41 Water bodies
aCLC plus the number refers to the CORINE land cover class used for modelling
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and subtracted the probability of misclassified absence
multiplied by parameter γ, which indicates the cost of a
misclassified absence relative to a true absence. Setting δ =
2, for example, means that the cost of a false positive classi-
fication is twice the gain of a true positive classification.
The gain value can be considered in terms of timely initi-
ation of countermeasures and a lower probability of an epi-
demic and trade restrictions, while the loss value would be
the cost to the farm and society of incorrectly applied coun-
termeasures. Similarly, for the interpretation of γ, the gain
of a true negative classification and the loss from a false
negative classification can be likened to being declared free
from disease, with the cost to both farmer and society of a
subsequent discovery of the disease. Similar considerations
can be used to relate δ and γ to each other. If, for example,
we set δ = ρ * γ in Eq. 1, the cost of misclassifying a pres-
ence is ρ times the cost of misclassifying an absence. We
assign δ = 2 * γ in order to assign twice the importance to
the Presence misclassifications compared to Absence mis-
classifications and we set γ = 2 to still give some import-
ance to the Absences misclassifications.
The equations for Gpresence, Gabsence were:

Gpresence qð Þ ¼
Z 1

q
Presence xð Þ dx−δ

�
Z 1

q
Absence xð Þ dx ð1Þ

Gabsence qð Þ ¼
Z q

0
Absence xð Þ dx−γ

�
Z q

0
Presence xð Þ dx ð2Þ

where q represents the possible threshold value between
0 to 1, and where δ and γ are loss parameters.

To calculate the lower threshold, we used Eq. 1 to find
the optimal upper threshold when assuming a loss par-
ameter of δ = 4 by optimizing the gain Gpresence. Simi-
larly, Eq. 2 was used to find the optimal lower threshold,
assuming a loss parameter γ = 2. The upper and lower
thresholds depend on the predictive power of the model,
being more separated when the overlapping between
classes is large. If the model performance is good, the
overlapping between classes will be less and the two
thresholds will be closer together.
In order to evaluate the sensitivity of the thresholds to

the distribution of different test sets, we divided each
monthly test set into ten equally sized folds (10 subsets)
and calculated the density functions using nine out of the
ten folds. This procedure was repeated for all the different
folds (10 times), excluding a different fold each time, and
plotted the new lower and upper thresholds together in
the same graph. We applied this 10-fold cross-validation
scheme to compare the threshold calculated with different
subsets of the test set versus the thresholds calculated
using all the observations of the test set.
We classified the monthly probability maps into the

three classes: “Absence”, “Uncertain” and “Presence”
using the thresholds calculated from all the observations
of the test set.

Results
Obsoletus ensemble
The 12 models were shown to perform well for the
Obsoletus ensemble, with an AUC ranging from 0.76 in
June and December to 0.91 in November (mean AUC =
0.84) (Fig. 2).
The majority class shifted from Absence in

December-March, to Presence in April-November, and
the models generally had good predictive power when
predicting the majority class. However, the models

Table 3 Total number of farms sampled each month and number of farms in the training and test sets

Month Total no. of sampled farms Training set (70%) Test set (30%)

January 444 310 134

February 457 319 138

March 473 331 142

April 522 364 158

May 527 368 159

June 518 362 156

July 581 406 175

August 636 445 191

September 620 433 187

October 522 365 157

November 500 349 151

December 448 313 135

All observations belonging to a single farm were included in either the training or test set, but never in both
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performed less well when predicting the minority class.
For January and February, the model predicted the Pres-
ence class relatively poorly, with a relatively flat density
function (Fig. 3). The additional thresholds calculated
using 10-fold CV were similar to the main threshold, in-
dicating that the distribution of classes in the test set
were robust when subtracting 10% of the data. The
lower thresholds showed more variation compared to
the variation of the upper thresholds (Fig. 3).
Classifications did not result in clearly delineated geo-

graphical zones for the three classes (Presence, Absence
and Uncertain), although spatial patterns were observed
(Fig. 4). In January, the Obsoletus ensemble was predicted

present in areas within the western part of France, northern
coast of Spain and in scattered areas of Germany, and it
was predicted absent from northern and central Scandi-
navia, eastern France and parts of Germany. The Uncertain
class area was present in southern Scandinavia, eastern
Germany and Poland. In February the Presence area in
western France and the northern coast of Spain appeared
clearly segregated while more dispersed patches appeared
in Germany and Poland. The Uncertain class area was re-
duced to patches in Germany, Poland and a small portion
of southern Sweden. During March, the Presence area ex-
tended further west into France, while the Absence area
was clearly concentrated in the eastern part of Europe and

Fig. 2 Predicted monthly probability of presence of Obsoletus ensemble. Monthly model performance is shown as the AUC value
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Scandinavia. The Uncertain area was a more coherent
intermediate region between these two areas, found in east-
ern France, Belgium and the Netherlands. In April, the
Presence class expanded from western France occupying
most of France while the eastern part of the study area and
Scandinavia remained in the Uncertain area. From May on-
wards, the general pattern showed the Obsoletus ensemble
to be widely distributed in France, Germany, Austria,
Switzerland, Poland and southern Scandinavia. The Ab-
sence class areas were located in southern Spain during this
period. In November, Scandinavia was classified as an Ab-
sence class area together with Spain (except the northern
coast of Spain, that was included in Presence area). Finally,
in December the Presence class was clustered in western
France and some patches in northern Germany while the
remaining areas, with exception of southern Spain, ap-
peared classified as Uncertain areas, including the Scandi-
navian peninsula (Fig. 4).

Pulicaris ensemble
The RF models performed less well in predicting the PP
for the Pulicaris ensemble. The mean AUC was 0.81,
ranging from 0.69 in April to 0.92 in December (Fig. 5).
For January, the test set contained only three Presence ob-

servations from a single farm and the density function and
thresholds could not be calculated. Therefore, the PP map
could not be classified into the three classes. For February,
the PP predicted for the observed Presences were com-
pletely included within the range of the PP predicted for the
Absence class, meaning that the model was incapable of

distinguishing the Presence class. Nevertheless, because
both density functions were computed, the lower and upper
thresholds were still calculated. The distribution of pre-
dicted Presence and Absence areas for the Pulicaris ensem-
ble test set contained larger overlapping areas between both
distributions than for the Obsoletus ensemble, resulting in
poorer predictive power for distinguishing between the clas-
ses. For the months of April, May and June, the distribution
of both classes overlapped so much that the lower threshold
was calculated as close to 0 to avoid false negative classifica-
tions (Fig. 6). For the Pulicaris ensemble, the additional
thresholds calculated using 10-fold CV, were similar to the
main threshold for all the months, meaning that the distri-
bution of classes in the test set were robust when subtract-
ing 10% of the data. Both lower and upper thresholds
seemed to be robust for the different test sets (Fig. 6).
Due to the lack of Presence observations in January, we

could not define thresholds for classifying the PP map. In
February, because PP of the observed Presence observa-
tions were completely included in the range of the PP of
the Absence class, we decided not to classify the map as
the model was incapable of distinguishing the Presence
class and would lead to an incorrect interpretation of the
classification. In March, the Pulicaris ensemble was pre-
dicted to be present on the west coast of France, northern
coast of Spain and in central and northern Scandinavia,
while the Absence class was distributed in eastern France,
Germany and Poland. The Uncertain area was located be-
tween the Presence and Absence class. During April, May
and June, the model was able to predict the Presence class

Fig. 3 Obsoletus ensemble: monthly distribution of Presence and Absence classes of the test set samples as a function of their predicted
probability of presence. Dashed lines show the additional thresholds calculated from 10-fold CV
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but it was incapable of distinguishing the Absence class,
resulting in classification only for the Presence and Uncer-
tain class. From July to October, the Presence class ex-
tended towards the eastern part of the study area while
the Uncertain class occupied northern Scandinavia. Dur-
ing September, the Uncertain class was additionally found
in France. In November, the Presence areas were located
mostly in Germany and some patches in France while
Scandinavia was classified into the Uncertain class. The
Absence class was predicted in Denmark and southern
Spain. During December, the Absence class was localized
in Spain, France and northern Scandinavia while the Pres-
ence class remained in some patches in Germany (Fig. 7).

Culicoides imicola
The RF models for C. imicola had a very high accuracy
for distinguishing the Presence and Absence classes. The
models had a mean AUC of 0.95, ranging from 0.92 in
January to 0.97 in August (Fig. 8).
The RF models predicted the C. imicola Absence class

very well. Absence constituted the majority class for all
months as the species was only found in Spain and south-
ern France. The Presence class was less well predicted, as
reflected in a flatter distribution. Nevertheless, the model
was able to distinguish both classes, resulting in a narrow
area of uncertainty between the lower and upper thresh-
olds (Fig. 9). The additional thresholds calculated using

Fig. 4 Classification of the predicted probability of presence of Obsoletus ensemble into Absence, Presence and Uncertain areas at a 1
km2 resolution
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10-fold CV, were similar to the main threshold, indicating
that the distribution of classes in the test set were robust
when subtracting 10% of the data. The upper thresholds
showed more variation compared to the variation in the
lower thresholds. Particularly April, July and November
seemed to have upper thresholds sensitive to the class dis-
tribution of the test set (Fig. 9).
Compared to the models for the Obsoletus ensemble,

the models for C. imicola resulted in a clearer geo-
graphical division into three separate coherent zones.
Culicoides imicola was found to be present in January
and February in some areas in southern Spain, the Bale-
aric Islands and Corsica. Uncertain areas were identified

in central Spain, while the Absence regions were located
in northern Spain and most of France with the excep-
tion of the southern coast. From March onwards, the
Presence region extended northwards, occupying the
southern and central regions of Spain until October,
when it retracted back to the southern coast of Spain
during late autumn. On Corsica, the Presence areas
were located around the coast, with the vector being ab-
sent inland. The Uncertain area was always clearly lo-
cated between the Presence and Absence areas and was
generally small due to the high accuracy of the model in
distinguishing between Presence and Absence classes
(Fig. 10).

Fig. 5 Predicted monthly probability of presence of Pulicaris ensemble. Monthly model performance is shown as the AUC value
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Important predictors
The most important predictors driving the distribution
of the Obsoletus ensemble, Pulicaris ensemble and C.
imicola were related to temperature and precipitation
for most months (dLST_MN, nLST_A0, nLST_MX, BIO
10, BIO 18, BIO 5). EVI- and NDVI-derived variables
were the most important for some months and for some
of the taxa, but with lesser importance compared to
temperature and precipitation. Corine land cover classes
were not selected as important variables and only one
class (CLC 12: non irrigated arable land) was selected
for Pulicaris during August. A similar situation occurred
for the animal density variables, in which the only vari-
able appearing in the top 5 most important variables was
sheep density for the Pulicaris ensemble. Altitude was
selected as an important variable only for the Obsoletus
and Pulicaris ensembles, for the month of December
(Additional file 1).

Discussion
This study was based on the most extensive Culicoides
dataset created to date. For these prediction maps, we
used 31,429 Culicoides trap catches from nine European
countries from 2007 to 2013 [33]. The objectives of this
work were to predict the monthly probability of Culi-
coides presence and to demarcate regions of Europe into
three presence classes, each for C. imicola and the
Obsoletus and Pulicaris ensembles. We also identified
areas and periods when the model was not able to pre-
dict with reasonable certainty. In these areas, targeted

entomological surveillance programs implemented by
the CVO’s of European Union member states are needed
to clarify the present entomological status in case of an
outbreak. The maps presented here can be used to de-
termine vector-free areas (Absence areas) and areas
where the vector can be found. The Absence and Pres-
ence areas were delimitated to minimize misclassifica-
tion errors, making these classes more accurate in terms
of the occurrence of Culicoides.
The models generated for the Obsoletus ensemble per-

formed well for all months, and we were able to detect a
spatial pattern in the three classes. However, the Absence
and Presence classes were not completely separated by the
model, and some geographical areas with Uncertain status
were found among the Presence or Absence areas. For
some of the months, our RF models were not able to clearly
distinguish the minority class from the majority class,
resulting in the threshold from the gain function being
moved to the extremes to avoid misclassifications. This, in
turn, resulted in a large Uncertain area that should poten-
tially be targeted for costly entomological surveillance. This
was the case for the Obsoletus ensemble during August,
when the vector was indeed present in most of Europe but
where our models classified the status as Uncertain in many
smaller areas. For instance, in December the model pre-
dicted a large Uncertain status area that occupied most of
the Scandinavia peninsula while the cold winter conditions
make it unlikely that specimens will be found in northern
Scandinavia. The Uncertain status areas should be inter-
preted with care and expert knowledge must be considered

Fig. 6 Pulicaris ensemble: monthly distribution of Presence and Absence classes of the test set samples as a function of their predicted
probability of presence. Dashed lines show the additional thresholds calculated from 10-fold CV
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when making decisions regarding implementation of sur-
veillance programs. The maps presented here are merely
intended as tools and inputs to decision makers for
long-term planning and in case of outbreaks in areas with-
out ongoing entomological surveillance. The presented
maps are based on a given gain function, but the gain func-
tion should reflect the severity of the vector borne diseases
with an increasing emphasis on sensitivity as the severity of
a disease increases.
In our models, the most important variables for the Obso-

letus ensemble were the minimum daytime land surface
temperature in January and February, and temperature- and
precipitation-related variables (BIO 5 and BIO 14)

throughout the rest of the year. Our results are in agreement
with the findings of Calvete et al. [55] and Ducheyne et al.
[56] who stated that temperature-related variables were the
most important for the Obsoletus group distribution in
Spain. Additionally, Purse et al [57] found that temperature
had an effect in the occurrence of C. obsoletus in Italy. The
Obsoletus ensemble are Palaearctic species requiring rela-
tively low temperatures and humid climates for optimal de-
velopment and survival [58, 59]. Temperature plays an
important role in Culicoides ecology as it determines the
seasonal fluctuation of the vector populations [60, 61], while
humidity has been reported to create the optimal conditions
for C. obsoletus breeding sites (e.g. dung heaps) [62].

Fig. 7 Classification of the predicted probability of presence of Pulicaris ensemble into Absence, Presence and Uncertain areas at a 1
km2 resolution
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To date, maps showing the PP and distribution of the
Obsoletus ensemble for the entire Europe are scarce and
incomplete. EFSA developed a website displaying distri-
bution maps of Culicoides spp. On this site, a map of C.
obsoletus/C. scoticus shows the distribution of this spe-
cies [63] but the map is lacking information from some
countries in Europe. At country level, some studies pre-
dicted the probability of Obsoletus group presence based
on entomological data collected [56, 64–66]. Therefore,
there is a need for predictions on a continental scale
summarizing historical surveillance data to allow CVO’s
of EU Member States to make rapid decisions in case of
a future outbreak, as it would provide them with

information on which areas and which time periods are
likely to be vulnerable, which are likely to be safe and
where the resources for surveillance should be allocated.
The RF models for the Pulicaris ensemble had poorer

predictive power compared to Obsoletus ensemble and
C. imicola. The abundance of the Pulicaris ensemble was
ten-fold less than the abundance of the Obsoletus en-
semble [33]. This lead to a lower number of Presence
farms and, therefore, when the data were split into train-
ing and test sets, only a few Presence points were
present in the test set. This resulted into heavily imbal-
anced monthly datasets e.g. February only included three
farms with Presence observations in the test set. It is not

Fig. 8 Predicted monthly probability of presence of C. imicola. Monthly model performance is shown as the AUC value
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recommended to assess model performance based only
on a couple of observations from a certain class because
it might lead to results with high variability. Culicoides
pulicaris (sensu stricto) has been implicated in BTV
transmission [67], but the Pulicaris ensemble species is
not thought to have played a significant role in the 2006
BT outbreak in northern Europe [16]. Nevertheless, spe-
cies of this ensemble might play a role in future out-
breaks of emerging infections.
The model performance for C. imicola was highly ac-

curate, with high AUC values for all months, indicating
that this species has particular environmental require-
ments that can be detected through satellite imagery.
This is likely to be related to hot and dry summers with
low seasonal variation [64]: characteristic of the Mediter-
ranean basin. The three classes were clearly distinguish-
able in the maps, and Presence and Uncertain areas
could be delimited to the Iberian Peninsula. Culicoides
imicola maps can be used directly to allocate resources
for surveillance programs or to determine appropriate
animal movement restrictions.
In our models, the most important explanatory variables

for classification of areas for the Presence/Absence affect-
ing C. imicola distribution were related to temperature
and precipitation. We found that during winter, the mean
temperature of the coldest quarter was the variable driving
the presence of C. imicola, while variables related to pre-
cipitation were the most predominant drivers during the
warmer months. This is in accordance with the results of
previous studies [56, 64, 68].

The distribution of C. imicola has previously been
modelled at continental level using classical statistical
models fitted to data collected from single European
countries [57, 64, 69]. In our maps, C. imicola appeared
to be present all year round, as it can be found on the
southern coast of Spain during January and February.
This agrees with previous analyses of the start of the
vector season in Europe, where C. imicola was found to
be present during the winter months in southern Spain
and central and southern Portugal [65]. The predicted
probability of presence shown in our maps are in agree-
ment to the distribution models made for Spain by
Ducheyne et al. [56], Calvete et al. [55] and Peters et al.
[70], and for France, where the Presence areas for the
species are mainly located in the coastal regions of Cor-
sica and VAR department [15].
In our study, we used Culicoides data aggregated into

groups, namely the Obsoletus and Pulicaris ensembles. Ag-
gregating species into a single group, or ensemble, might
represent a challenge for ecological modelling, as the differ-
ent species might require different environmental condi-
tions and phenology differ between them. This has been
studied by Searle et al. [24], who estimated the start and
end date of the vector season and length of the vector-free
period for four species of the Obsoletus ensemble. They ob-
served that there were differences in phenology among the
species. The lower model performance obtained for Obso-
letus and Pulicaris ensembles compared to C. imicola may
reflect that different species within each ensemble have dif-
ferent phenology and different environmental drivers. It

Fig. 9 Culicoides imicola: monthly distribution of Presence and Absence classes of the test set samples as a function of their predicted probability
of presence. Dashed lines show the additional thresholds calculated from 10-fold CV
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would therefore be useful to identify Culicoides specimens
to the species level. Molecular techniques, such as
high-throughput real-time RT-PCR assays, can be used in a
fast way for species identification. More accurate results
could be expected if modelling is carried out on individual
species data.
In practice, maps based on the classifications made

for each 1 km2 pixel might be difficult to use for de-
cision making, as it becomes challenging to define
classes for larger areas in which pixels from different
classes are found. For practical use, predicted pixel
values may therefore be summarized by area, such as
at NUTS level (nomenclature of territorial units for

statistics) defined by Eurostat (2013). This would fa-
cilitate the implementation of control and surveillance
programs by European veterinary authorities.
Random Forest is a machine learning technique that

has previously been used for ecological species model-
ling [19, 56, 70–75]. This technique has been proven to
perform better compared to other applications of clas-
sical statistical methods such as Non-Linear Discrimin-
ant Analysis and Generalized Ginear Models [19, 71],
as well as Linear Discriminant Analysis, logistic regres-
sion [70, 74] and Additive Logistic Regression [75]. In
this work, the monthly predicted probability of Culi-
coides presence had medium-high accuracy, but it is

Fig. 10 Classification of the predicted probability of presence of C. imicola into Absence, Presence and Uncertain areas at a 1 km2 resolution
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important to keep in mind that there might be other
variables that cannot be captured by satellite imagery
and that may have an influence on the occurrence of
these species on a local scale, such as soil conditions
(affecting breeding sites) and farming practices. Never-
theless, for some months, our models performed
slightly better than other RF models used for predicting
the occurrence of biting midges and mosquitoes [70,
71]. This highlights the challenges faced in predicting
the occurrence of insect vectors using remote sensing
data, as vectors are highly influenced by local microen-
vironments [76] and these data are difficult to obtain
from satellite images without high spatial resolution.

Conclusions
We present here maps as a risk assessment tool that
can be used in the future to predict potential risk
areas and risk seasons for Culicoides-borne disease
outbreaks. They are particularly useful for European
veterinary authorities, who can classify both areas
likely to have vectors and likely to be vector-free in
advance and during a sudden outbreak in areas with-
out active entomological surveillance. Predicting
areas of uncertain status allows focusing costly active
entomological surveillance to limited areas. The de-
veloped gain functions used to delimit the areas for
targeted active surveillance can easily be adjusted to
new diseases where the cost of concluding false
presence or false absence may be different than sug-
gested here.

Additional file

Additional file 1: Table S1. The top five of the most important
variables by species group for each month. The variable importance
is scaled from 0 to 100. Within each month (columns), the most
important variable has a value of 100. (XLSX 67 kb)
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