000076959 001__ 76959 000076959 005__ 20200221144228.0 000076959 0247_ $$2doi$$a10.1364/AO.55.009688 000076959 0248_ $$2sideral$$a97465 000076959 037__ $$aART-2016-97465 000076959 041__ $$aeng 000076959 100__ $$0(orcid)0000-0002-3698-6719$$aFerreira, C.$$uUniversidad de Zaragoza 000076959 245__ $$aOrthogonal basis for the optical transfer function 000076959 260__ $$c2016 000076959 5060_ $$aAccess copy available to the general public$$fUnrestricted 000076959 5203_ $$aWe propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 = OTFperfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed. 000076959 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MTM2014-52859-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2014-58303-P 000076959 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000076959 590__ $$a1.65$$b2016 000076959 591__ $$aOPTICS$$b50 / 92 = 0.543$$c2016$$dQ3$$eT2 000076959 592__ $$a0.694$$b2016 000076959 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1 000076959 593__ $$aEngineering (miscellaneous)$$c2016$$dQ1 000076959 593__ $$aAtomic and Molecular Physics, and Optics$$c2016$$dQ2 000076959 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000076959 700__ $$aLópez, J.L. 000076959 700__ $$0(orcid)0000-0002-1328-1716$$aNavarro, R. 000076959 700__ $$aSinusa, E.P. 000076959 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000076959 773__ $$g55, 34 (2016), 9688-9694$$pAppl. opt. (2004)$$tAPPLIED OPTICS$$x1559-128X 000076959 8564_ $$s1279943$$uhttps://zaguan.unizar.es/record/76959/files/texto_completo.pdf$$yPostprint 000076959 8564_ $$s8427$$uhttps://zaguan.unizar.es/record/76959/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000076959 909CO $$ooai:zaguan.unizar.es:76959$$particulos$$pdriver 000076959 951__ $$a2020-02-21-13:18:25 000076959 980__ $$aARTICLE