000076966 001__ 76966
000076966 005__ 20200117221625.0
000076966 0247_ $$2doi$$a10.1073/pnas.1811115115
000076966 0248_ $$2sideral$$a109853
000076966 037__ $$aART-2018-109853
000076966 041__ $$aeng
000076966 100__ $$aLiu, Q.H.
000076966 245__ $$aMeasurability of the epidemic reproduction number in data-driven contact networks
000076966 260__ $$c2018
000076966 5060_ $$aAccess copy available to the general public$$fUnrestricted
000076966 5203_ $$aThe basic reproduction number is one of the conceptual cornerstones of mathematical epidemiology. Its classical definition as the number of secondary cases generated by a typical infected individual in a fully susceptible population finds a clear analytical expression in homogeneous and stratified mixing models. Along with the generation time (the interval between primary and secondary cases), the reproduction number allows for the characterization of the dynamics of an epidemic. A clear-cut theoretical picture, however, is hardly found in real data. Here, we infer from highly detailed sociodemographic data two multiplex contact networks representative of a subset of the Italian and Dutch populations. We then simulate an infection transmission process on these networks accounting for the natural history of influenza and calibrated on empirical epidemiological data. We explicitly measure the reproduction number and generation time, recording all individual-level transmission events. We find that the classical concept of the basic reproduction number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This departure from the classical theoretical picture is not due to behavioral changes and other exogenous epidemiological determinants. Rather, it can be simply explained by the (clustered) contact structure of the population. Finally, we provide evidence that methodologies aimed at estimating the instantaneous reproduction number can operationally be used to characterize the correct epidemic dynamics from incidence data.
000076966 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
000076966 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000076966 590__ $$a9.58$$b2018
000076966 591__ $$aMULTIDISCIPLINARY SCIENCES$$b7 / 69 = 0.101$$c2018$$dQ1$$eT1
000076966 592__ $$a5.601$$b2018
000076966 593__ $$aMultidisciplinary$$c2018$$dQ1
000076966 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000076966 700__ $$aAjelli, M.
000076966 700__ $$0(orcid)0000-0002-1192-8707$$aAleta, A.$$uUniversidad de Zaragoza
000076966 700__ $$aMerler, S.
000076966 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Y.$$uUniversidad de Zaragoza
000076966 700__ $$aVespignani, A.
000076966 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000076966 773__ $$g115, 50 (2018), 12680-12685$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences$$x0027-8424
000076966 8564_ $$s1006786$$uhttps://zaguan.unizar.es/record/76966/files/texto_completo.pdf$$yVersión publicada
000076966 8564_ $$s143334$$uhttps://zaguan.unizar.es/record/76966/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000076966 909CO $$ooai:zaguan.unizar.es:76966$$particulos$$pdriver
000076966 951__ $$a2020-01-17-21:56:08
000076966 980__ $$aARTICLE