000077026 001__ 77026
000077026 005__ 20230914083227.0
000077026 0247_ $$2doi$$a10.3390/ijms19113612
000077026 0248_ $$2sideral$$a109578
000077026 037__ $$aART-2018-109578
000077026 041__ $$aeng
000077026 100__ $$0(orcid)0000-0002-3947-5623$$aHerrera, S.
000077026 245__ $$aIdentification of self-incompatibility alleles by specific PCR analysis and S-RNase sequencing in apricot
000077026 260__ $$c2018
000077026 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077026 5203_ $$aSelf-incompatibility (SI) is one of the most efficient mechanisms to promote out-crossing in plants. However, SI could be a problem for fruit production. An example is apricot (Prunus armeniaca), in which, as in other species of the Rosaceae, SI is determined by an S-RNase-based-Gametophytic Self-Incompatibility (GSI) system. Incompatibility relationships between cultivars can be established by an S-allele genotyping PCR strategy. Until recently, most of the traditional European apricot cultivars were self-compatible but several breeding programs have introduced an increasing number of new cultivars whose pollination requirements are unknown. To fill this gap, we have identified the S-allele of 44 apricot genotypes, of which 43 are reported here for the first time. The identification of S-c in 15 genotypes suggests that those cultivars are self-compatible. In five genotypes, self-(in)compatibility was established by the observation of pollen tube growth in self-pollinated flowers, since PCR analysis could not allowed distinguishing between the S-c and S-8 alleles. Self-incompatible genotypes were assigned to their corresponding self-incompatibility groups. The knowledge of incompatibility relationships between apricot cultivars can be a highly valuable tool for the development of future breeding programs by selecting the appropriate parents and for efficient orchard design by planting self-compatible and inter-compatible cultivars.
000077026 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A12-17R$$9info:eu-repo/grantAgreement/ES/INIA/RFP2015-00015-00$$9info:eu-repo/grantAgreement/ES/INIA/RTA2014-00085-00$$9info:eu-repo/grantAgreement/ES/INIA/RTA2017-00003-00$$9info:eu-repo/grantAgreement/ES/MICINN/AGL2015-74071-JIN$$9info:eu-repo/grantAgreement/ES/MICINN/AGL2016-77267-R
000077026 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000077026 590__ $$a4.183$$b2018
000077026 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b45 / 172 = 0.262$$c2018$$dQ2$$eT1
000077026 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b77 / 294 = 0.262$$c2018$$dQ2$$eT1
000077026 592__ $$a1.312$$b2018
000077026 593__ $$aCatalysis$$c2018$$dQ1
000077026 593__ $$aComputer Science Applications$$c2018$$dQ1
000077026 593__ $$aInorganic Chemistry$$c2018$$dQ1
000077026 593__ $$aSpectroscopy$$c2018$$dQ1
000077026 593__ $$aMolecular Biology$$c2018$$dQ1
000077026 593__ $$aOrganic Chemistry$$c2018$$dQ1
000077026 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1
000077026 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000077026 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000077026 700__ $$0(orcid)0000-0002-8321-1764$$aRodrigo, J.
000077026 700__ $$aHormaza, J.I.
000077026 700__ $$aLora, J.
000077026 773__ $$g19, 11 (2018), 3612 [13 pp]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000077026 8564_ $$s496059$$uhttps://zaguan.unizar.es/record/77026/files/texto_completo.pdf$$yVersión publicada
000077026 8564_ $$s106406$$uhttps://zaguan.unizar.es/record/77026/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000077026 909CO $$ooai:zaguan.unizar.es:77026$$particulos$$pdriver
000077026 951__ $$a2023-09-13-10:43:17
000077026 980__ $$aARTICLE