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Abstract. After a short review of the classical Lie theorem, a finite-dimensional Lie algebra of
vector fields is considered and the most general conditions under which the integral curves of one
of the fields can be obtained by quadratures in a prescribed way are discussed, determining also
the number of quadratures needed to integrate the system. The theory is illustrated with exam-
ples, and an extension of the theorem where the Lie algebras are replaced by some distributions
is also presented.

1. Introduction: the meaning of integrability. Integrability is a topic that has been
receiving quite a lot of attention because this not clearly defined notion appears in many
branches of science, and in particular in physics. The exact meaning of integrability is
only well defined in each specific field and each one of the many possibilities of defining
in a precise way the concept of integrability has a theoretic interest. Loosely speaking
integrability refers to the possibility of finding the solutions of a given differential equation

2010 Mathematics Subject Classification: 37J35, 70H06.
Key words and phrases: integrable dynamical systems, integration by quadratures, solvable and
nilpotent Lie algebras.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc110-0-2 [25] c© Instytut Matematyczny PAN, 2016



26 J. F. CARIÑENA, F. FALCETO, J. GRABOWSKI AND M. F. RAÑADA

(or a system of differential equations), but one may also look for solutions of certain types,
for instance, polynomial or rational ones, or expressible in terms of elementary functions.
The existence of additional geometric structures allows us to introduce other concepts of
integrability, and so the notion of integrability is often identified as complete integrability
or Liouville integrability [A], but we can also consider generalised Liouville integrability
or even non-Hamiltonian integrability [MF]. For a recent description of other related
integrability approaches see e.g. [O, MCSL].

Once a definition of integrability is accepted, systems are classified into integrable
and non-integrable systems. Groups of equivalence transformations allow us to do a finer
classification, all systems in the same orbits having the same integrability properties.
Therefore if some integrable cases have been previously selected, we will have a related
family of integrable cases. So, even if the generic Riccati equation is not integrable by
quadratures, all Riccati equations related to inhomogeneous linear differential equations
are integrable by quadratures too, and this provides us integrability conditions for Riccati
equations [CL1, CLR, CR].

The knowledge of particular solutions can also be useful for transforming the original
system in simpler ones, and the prototypes of this situation are the so called Lie systems
admitting a superposition rule for expressing their general solutions in terms of a generic
set of a finite number of solutions [CGM1, CGM2, CGM3, CGR, CIMM, CL2, CR].
This is a report of a recent collaboration of Prof. Grabowski with the members of the
Department of Theoretical Physics of Zaragoza University [CFGR] on a different concept
of integrability, the most classical Lie concept of integrability by quadratures, i.e. all
solutions can be found by algebraic operations (including inversion of functions) and
computation of integrals of functions of one variable (called quadratures).

Our approach does not resort to the existence of additional compatible structures,
but simply uses modern tools of algebra and geometry. In order to avoid dependence
of a particular choice of coordinates we should consider the problem from a geometric
perspective, replacing the systems of differential equations by vector fields, a global con-
cept, in such a way that the integral curves of such vector fields are the solutions of a
system of differential equations in a coordinate system. The two main tools to be used
are finite-dimensional Lie algebras of vector fields, in particular solvable Lie algebras (see
e.g. [AKN]) or nilpotent Lie algebras [MK, G], and distributions spanned by vector fields.
The aim is to extend Lie classical results of integrability [AKN].

The paper is organised as follows: the fundamental notions on Lie integrabilty and
their relations with the standard Arnold–Liouville integrability are recalled in Section 2
and some concepts of cohomology needed to analyse the existence of solutions for a
system of first order differential equations are recalled in Section 3. The approach to
integrability recently proposed in [CFGR] is sketched in Section 4 and some interesting
algebraic properties are studied in Section 5. The approach is illustrated in Section 6
with the analysis, without any recourse to the symplectic structure, of a recent example
of a Holt-related potential that is not separable but is superintegrable with high order
first integrals, while the last sections are devoted to extending the previous results to the
more general situation in which, instead of having a Lie algebra, L, of vector fields, we
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have a vector space V such that its elements do not close a finite-dimensional real Lie
algebra, but rather generate a general integrable distribution of vector fields.

2. Integrability by quadratures. Given an autonomous system of first order differ-
ential equations,

ẋi = f i(x1, . . . , xN ), i = 1, . . . , N, (1)

we can consider changes of coordinates and then the system (1) becomes a new one.
This suggests that (1) can be geometrically interpreted in terms of a vector field Γ in a
N -dimensional manifold M whose local expression in the given coordinates is

Γ = f i(x1, . . . , xN ) ∂

∂xi
.

The integral curves of Γ are the solutions of the given system, and then to integrate
the system means to determine the general solution of the system. More specifically,
integrability by quadratures means that you can determine the solutions (i.e. the flow of Γ)
by means of a finite number of algebraic operations and quadratures of some functions.

There are two main techniques in the process of solving the system:

• Determination of constants of motion: Constants of motion provide us foliations
such that Γ is tangent to the leaves of the foliation, and reducing in this way the
problem to a family of lower-dimensional problems, one on each leaf.
• Search for symmetries of the vector field: The knowledge of infinitesimal one-
parameter groups of symmetries of the vector field (i.e. of the system of differential
equations), suggests us to use adapted local coordinates, the system decoupling
then into lower-dimensional subsystems.

More specifically, the knowledge of r functionally independent (i.e. such that
dF1 ∧ . . . ∧ dFr 6= 0) constants of motion, F1, . . . , Fr, allows us to reduce the problem
to that of a family of vector fields Γ̃c defined in the (N − r)-dimensional submanifolds
Mc given by the level sets of the vector function of rank r, (F1, . . . , Fr) : M → Rr. Of
course the best situation is when r = N − 1: the leaves are one-dimensional, giving us
the solutions to the problem, up to a reparametrisation.

There is another way of reducing the problem. Given an infinitesimal symmetry (i.e.
a vector field X such that [X,Γ] = 0), then, according to the Straightening out Theorem
[AM78, AM88, CP], in a neighbourhood of a point where X is different from zero we can
choose adapted coordinates, (y1, . . . , yN ), for which X is written as

X = ∂

∂yN
.

Then, the symmetry condition [X,Γ] = 0 implies that Γ has the form

Γ = f̄1(y1, . . . , yN−1) ∂

∂y1 + . . .+ f̄N−1(y1, . . . , yN−1) ∂

∂yN−1 + f̄N (y1, . . . , yN−1) ∂

∂yN
,
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and its integral curves are obtained by solving the system of differential equations
dyi

dt
= f̄ i(y1, . . . , yN−1), i = 1, . . . , N − 1,

dyN

dt
= f̄N (y1, . . . , yN−1).

We have reduced the problem to a subsystem involving only the first N − 1 equations,
and once this has been solved, the last equation is used to obtain the function yN (t) by
means of one more quadrature.

Note that the new coordinates, y1, . . . , yN−1, are such that Xy1 = · · · = XyN−1 = 0,
i.e. they are constants of the motion for X and therefore we cannot easily find such
coordinates in a general case.

Moreover, the information provided by two different symmetry vector fields cannot be
used simultaneously in the general case, because it is not possible to find local coordinates
(y1, . . . , yN ) such that

X1 = ∂

∂yN−1 , X2 = ∂

∂yN
,

unless [X1, X2] = 0.
In terms of adapted coordinates for the dynamical vector field Γ, i.e. Γ = ∂/∂yN , the

integration is immediate, the solution curves being given by

yk(t) = yk0 , k = 1, . . . , N − 1, yN (t) = yN (0) + t.

This proves that the concept of integrability by quadratures depends on the choice of
initial coordinates, because in these adapted coordinates the system is easily solved.

However, it will be proved that when Γ is part of a family of vector fields satisfy-
ing appropriate conditions, then it is integrable by quadratures for any choice of initial
coordinates.

Both the constants of motion and infinitesimal symmetries can be used simultaneously
if some compatibility conditions are satisfied. We can say that a system admitting r <
N − 1 functionally independent constants of motion, F1, . . . , Fr, is integrable when we
know furthermore s commuting infinitesimal symmetries X1, . . . , Xs, with r+s = N such
that

[Xa, Xb] = 0, a, b = 1, . . . , s, and XaFα = 0, ∀a = 1, . . . , s, α = 1, . . . r.

The constants of motion determine a s-dimensional foliation (with s = N − r) and
the former condition means that the restriction of the s vector fields Xa to the leaves are
tangent to such leaves.

Sometimes we have additional geometric structures that are compatible with the
dynamics. For instance, a symplectic structure ω on a 2n-dimensional manifold M . Such
a 2-form relates, by contraction, in a one-to-one way, vector fields and 1-forms. The vector
fields XF associated with exact 1-forms dF are said to be Hamiltonian vector fields. We
say that ω is compatible when the dynamical vector field itself is a Hamiltonian vector
field XH .

Particularly interesting is the Arnold–Liouville definition of (Abelian) complete inte-
grability (r = s = n, with N = 2n) [A, AKN, VVK1, L]. The vector fields are Xa = XFa
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and, for instance, F1 = H.
The regular Poisson bracket defined by ω (i.e. {F1, F2} = XF2F1), allows us to ex-

press the above tangency conditions as XFb
Fa = {Fa, Fb} = 0—i.e. the n functions

are constants of motion in involution and their corresponding Hamiltonian vector fields
commute.

Our aim is to study integrability in absence of additional compatible structures, the
main tool being properties of Lie algebras of vector fields containing the given vector
field, very much in the approach started by Lie.

The problem of integrability by quadratures depends on the determination by quadra-
tures of the necessary first integrals and on finding adapted coordinates, or, in other
words, in finding a sufficient number of invariant tensors.

The set XΓ(M) of strict infinitesimal symmetries of Γ ∈ X(M) is a linear space:

XΓ(M) = {X ∈ X(M) | [X,Γ] = 0}.

The flows of vector fields X ∈ XΓ(M) preserve the set of integral curves of Γ.
The set of vector fields generating flows preserving the set of integral curves of Γ up

to a reparametrisation is a real linear space containing XΓ(M) and will be denoted by

XΓ(M) = {X ∈ X(M) | [X,Γ] = fX Γ}, fX ∈ C∞(M).

The flows of vector fields in XΓ(M) preserve the one-dimensional distribution generated
by Γ. Moreover, for any function f ∈ C∞(M), XΓ(M) ⊂ XfΓ(M), i.e. XΓ(M) only
depends on the distribution generated by Γ and not on Γ itself.

One can check that XΓ(M) is a real Lie algebra and XΓ(M) is a Lie subalgebra of
XΓ(M). However, XΓ(M) is not an ideal in XΓ(M).

As indicated above, finding constants of motion for Γ is not an easy task, at least
in absence of a compatible symplectic structure. However, the explicit knowledge of first
integrals of a given dynamical system has proved to be of great importance in the study of
the qualitative properties of the system. The important point is that an appropriate set of
infinitesimal symmetries of Γ can also provide constants of motion. More specifically, let
{X1, . . . , Xd} be a set of d vector fields taking linearly independent values in every point
and which are infinitesimal symmetries of Γ. If they generate an involutive distribution,
i.e. there exist functions fij k such that [Xi, Xj ] = fij

kXk, then, for each triple of numbers
i, j, k the functions fij k are constants of the motion, i.e. Γ(fij k) = 0. In fact, the Jacobi
identity for the vector fields Γ, Xi, Xj , i.e.[

[Γ, Xi], Xj

]
+
[
[Xi, Xj ],Γ

]
+
[
[Xj ,Γ], Xi

]
= 0,

leads to [
[Xi, Xj ],Γ

]
= 0 =⇒ [fij kXk,Γ] = −Γ(fij k)Xk = 0.

Moreover, for any other index l, Xl(fij k) is also a constant of motion, because if Xl is a
symmetry of Γ, then LΓ

(
LXl

(fij k)
)

= LXl

(
LΓ(fij k)

)
= 0.

The constants of motion so obtained are not functionally independent but at least this
proves the usefulness of finding these families of vector fields when looking for constants
of motion. This points out the convenience of extending the theory from Lie algebras of
symmetries to involutive distributions, as we will do in the final part of the paper.
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3. Lie theorem of integrability by quadratures. The first important result is due
to Lie who established the following theorem:

Theorem 3.1. If n vector fields, X1,. . . , Xn, which are linearly independent at each point
of an open set U ⊂ Rn, generate a solvable Lie algebra and are such that [X1, Xi] = λiX1
with λi ∈ R, then the differential equation ẋ = X1(x) is solvable by quadratures in U .

We only prove the simplest case n = 2. The differential equation can be integrated if we
are able to find a first integral F (i.e. X1F = 0), such that dF 6= 0 in U . The straightening
out theorem [AM78, AM88, CP], says that such a function F locally exists. F implicitly
defines one variable, for instance x2, in terms of the other one by F (x1, φ(x1)) = k.

If X1 and X2 are such that [X1, X2] = λ2X1, and α0 is a 1-form, defined up to
multiplication by a function, such that i(X1)α0 = 0, as X2 is linearly independent of X1
at each point, i(X2)α0 6= 0, and we can see that the 1-form α = (i(X2)α0)−1α0 is such
that i(X1)α = 0 and satisfies, by construction, the condition i(X2)α = 1. Such 1-form α

is closed, because X1 and X2 generate X(R2) and

dα(X1, X2) = X1α(X2)−X2α(X1) + α([X1, X2]) = α([X1, X2]) = λ2α(X1) = 0.

Therefore, there exists, at least locally, a function F such that α = dF , and it is given by

F (x1, x2) =
∫
γ

α,

where γ is any curve with end at the point (x1, x2). This is the function we were looking
for, because dF = α and then

i(X1)α = 0⇐⇒ X1F = 0, i(X2)α = 1⇐⇒ X2F = 1.

We do not present here the proof for general n because it appears as a particular case
of the more general situation we consider later on. The result of this theorem has been
slightly generalized for adjoint-split solvable Lie algebras in [VVK2].

4. Recalling some basic concepts of cohomology. Let g be a Lie algebra and
a a g-module, or in other words, a is a linear space that is carrier space for a linear
representation Ψ of g, i.e. Ψ : g→ End a satisfies

Ψ(a)Ψ(b)−Ψ(b)Ψ(a) = Ψ([a, b]), ∀a, b ∈ g.

By a k-cochain we mean a k-linear alternating map α : g × . . . × g → a. If Ck(g, a)
denotes the linear space of k-cochains, for each k ∈ N we define δk : Ck(g, a)→ Ck+1(g, a)
by (see e.g. [CE] and [CI] and references therein)

(δkα)(a1, . . . , ak+1) =
k+1∑
i=1

(−1)i+1Ψ(ai)α(a1, . . . , âi, . . . , ak+1)

+
∑
i<j

(−1)i+jα([ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak+1),

where âi denotes, as usual, that the element ai ∈ g is omitted.
The linear maps δk can be shown to satisfy δk+1 ◦ δk = 0, and consequently the

linear operator δ on C(g, a) =
⊕∞

k=0 C
k(g, a) whose restriction to each Ck(g, a) is δk,
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satisfies δ2 = 0. We will then define

Bk(g, a) = {α ∈ Ck(g, a) | ∃β ∈ Ck−1(g, a) such that α = δβ} = Image δk−1,

Zk(g, a) = {α ∈ Ck(g, a) | δα = 0} = ker δk.

The elements of Zk(g, a) are called k-cocycles, and those of Bk(g, a) are called k-cobound-
aries. As δ is such that δ2 = 0, we see that Bk(g, a) ⊂ Zk(g, a). The k-th cohomology
group Hk(g, a) is

Hk(g, a) := Zk(g, a)
Bk(g, a) ,

and we will define B0(g, a) = 0, by convention.
We are interested in the case where g is a finite-dimensional Lie subalgebra of X(M),

a =
∧p(M), and we consider the action of g on a given by Ψ(X)ζ = LXζ. The case

p = 0 has been used, for instance, in the study of weakly invariant differential equations
as shown in [COW]. The cases p = 1, 2 are also interesting in mechanics [CI].

Coming back to the particular case p = 0, a =
∧0(M) = C∞(M), g = X(M), the

elements of Z1(g,
∧0(M)) are linear maps h : g→ C∞(M) satisfying

(δ1h)(X,Y ) = LXh(Y )− LY h(X)− h([X,Y ]) = 0, X, Y ∈ X(M),

and those of B1(g, C∞(M)) are linear maps h : g → C∞(M) for which ∃g ∈ C∞(M)
with

h(X) = LXg.

Lemma. Let {X1, . . . , Xn} be a set of n vector fields whose values are linearly independent
at each point of an n-dimensional manifold M . Then:

1) The necessary and sufficient condition for the system of equations for f ∈ C∞(M)

Xif = hi, hi ∈ C∞(M), i = 1, . . . , n,

to have a solution is that the 1-form α ∈
∧1(M) such that α(Xi) = hi be an exact

1-form.
2) If the previous n vector fields generate an n-dimensional real Lie algebra g (i.e.

there exist real numbers cij k such that [Xi, Xj ] = cij
kXk), then the necessary

condition for the system of equations to have a solution is that the R-linear function
h : g→ C∞(M) defined by h(Xi) = hi is a 1-cochain that is a 1-cocycle.

Proof. 1) For any pair of indices i, j, if Xif = hi and Xjf = hj , then, as ∃fij k ∈ C∞(M)
such that [Xi, Xj ] = fij

kXk,

Xi(Xjf)−Xj(Xif) = [Xi, Xj ]f = fij
kXkf =⇒ Xi(hj)−Xj(hi)− fij k hk = 0,

and as α(Xi) = hi, we infer that as

dα(Xi, Xj) = Xiα(Xj)−Xjα(Xi)− α([Xi, Xj ]) = Xi(hj)−Xj(hi)− fij k hk,

the 1-form α is closed. Consequently, a necessary condition for the existence of the solution
of the system is that α be closed.
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2) Consider a = C∞(M), g the n-dimensional real Lie algebra generated by the
vector fields Xi, and the cochain determined by the linear map h : g → C∞(M). Now
the necessary condition for the existence of the solution is written as:

Xi(hj)−Xj(hi)− cij k hk = (δ1h)(Xi, Xj) = 0.

This is just the 1-cocycle condition.

Most properties of differential equations are of a local character: closed forms are
locally exact and we can restrict ourselves to appropriate open subsets U of M , i.e. open
submanifolds, where the closed 1-form is exact. Then if α is closed, it is locally exact,
α = df in a certain open U , f ∈ C∞(U), and the solution of the system can be found by
one quadrature: the solution function f is given by the quadrature

f(x) =
∫
γx

α,

where γx is any path joining some reference point x0 ∈ U to x ∈ U .
We also remark that α is exact, α = df , if and only if α(Xi) = df(Xi) = Xif = hi,

i.e. h is a coboundary, h = δf .
In the particular case of the appearing functions hi being constant, the condition for

the existence of local solution reduces to α([X,Y ]) = 0 for each pair of elements X and Y
in g, i.e. α vanishes on the derived Lie algebra g′ = [g, g]. In particular, when g is Abelian,
there is not any condition.

5. A generalisation of Lie theory of integration. Consider a family of N vector
fields, X1, . . . , XN , defined on an N -dimensional manifold M and assume that they close
a Lie algebra L over the real numbers

[Xi, Xj ] = cij
kXk, i, j, k = 1, . . . , N,

and that, in addition, they span a basis of TxM at every point x ∈ M . We pick up an
element in the family, X1, the dynamical vector field. To emphasize its special role we
will often denote it by Γ ≡ X1.

Our goal is to obtain the integral curves Φt : M →M of Γ

(Γf)(Φt(x)) = d

dt
f(Φt(x)), ∀f ∈ C∞(x), x ∈M,

by using quadratures (operations of integration, elimination and partial differentiation).
The number of quadratures is given by the number of integrals of known functions de-
pending on a finite number of parameters, that are performed. Γ plays a distinguished
role, since it represents the dynamics to be integrated.

Our approach is concerned with the construction of a sequence of nested Lie sub-
algebras LΓ,k of the Lie algebra L, and it will be essential that Γ belongs to all these
subalgebras. This construction, for which more details can be found in [CFGR], will be
carried out in several steps.

The first one will be to reduce, by one quadrature, the original problem to a similar
one but with a Lie subalgebra LΓ,1 of the Lie algebra L (with Γ ∈ LΓ,1) whose elements
span at every point the tangent space of the leaves of a certain foliation.
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If iterating the procedure we end up with an Abelian Lie algebra, we can, with one
more quadrature, obtain the flow of the dynamical vector field.

We determine the foliation through a family of functions that are constant on the
leaves. We first consider the ideal in L,

LΓ,1 = 〈Γ〉+ [L,L], dimLΓ,1 = n1,

that, in order to make the notation simpler, we will assume to be generated by the first
n1 vector fields of the family (i.e. LΓ,1 = 〈Γ, X2, . . . , Xn1〉). This can always be achieved
by choosing appropriately the basis of L.

Now take ζ1 in the annihilator of LΓ,1, i.e. ζ1 is in the set L0
Γ,1 made up by the

elements of L∗ killing vectors of LΓ,1, and define the 1-form αζ1 on M by its action on
the vector fields in L:

αζ1(X) = ζ1(X), for X ∈ L.
As αζ1(X) is a constant function on M , for any vector field in L we have

dαζ1(X,Y ) = αζ1([X,Y ]) = ζ1([X,Y ]) = 0, for X,Y ∈ L, ζ1 ∈ L0
Γ,1.

Therefore the 1-form αζ1 is closed and by application of the result of the lemma the
system of partial differential equations

XiQζ1 = αζ1(Xi), i = 1, . . . , n, Qζ1 ∈ C∞(M),
has a unique (up to the addition of a constant) local solution which can be obtained
by one quadrature. Moreover, if we fix the same reference point x0 for any ζ1, then αζ1

depends linearly on ζ1 and, if γx is independent of ζ1, we see that the correspondence
L0

Γ,1 3 ζ1 7→ Qζ1 ∈ C∞(M)
defines an injective linear map.

The system expresses that the vector fields in LΓ,1 (including Γ) are tangent to

N
[Y1]
1 = {x | Qζ1(x) = ζ1(Y1), ζ1 ∈ L0

Γ,1} ⊂M

for any [Y1] ∈ L/LΓ,1. Locally, for an open neighbourhood U , the N [Y1]
1 ’s define a smooth

foliation of n1-dimensional leaves.
Now, we repeat the previous procedure by taking LΓ,1 as the Lie algebra, and any

leaf N [Y1]
1 as the manifold. The new subalgebra LΓ,2 ⊂ LΓ,1 is defined by

LΓ,2 = 〈Γ〉+ [LΓ,1, LΓ,1], dimLΓ,2 = n2,

and taking ζ2 ∈ L0
Γ,2 ⊂ L∗Γ,1 (the annihilator of LΓ,2), we arrive at a new system of partial

differential equations
XiQ

[Y1]
ζ2

= ζ2(Xi), i = 1, . . . , n1, Q
[Y1]
ζ2
∈ C∞(N [Y1]

1 ),

that can be solved with one quadrature and such Q[Y1]
ζ2

depends linearly on ζ2.
It will be useful to extend Q[Y1]

ζ2
to U . We first introduce the map

U 3 x 7→ [Y
x

1 ] ∈ LΓ,0/LΓ,1,

where x and [Y x

1 ] are related by the equation Qζ1(x) = ζ1(Y x

1 ), that correctly determines
the map. Now, we define Qζ2 ∈ C∞(U) by Qζ2(x) = Q

[Y
x

1 ]
ζ2

(x). Note that by construction
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x ∈ N
[Y

x

1 ]
1 and therefore the definition makes sense. The resulting function Qζ2(x) is

smooth provided the reference point of the lemma changes smoothly from leaf to leaf.
The construction is then iterated by defining

N
[Y1][Y2]
2 =

{
x | Qζ1(x) = ζ1(Y1), Qζ2(x) = ζ2(Y2), with ζ1 ∈ L0

Γ,1, ζ2 ∈ L0
Γ,2
}
⊂M,

for [Y1] ∈ LΓ,0/LΓ,1 and [Y2] ∈ LΓ,1/LΓ,2. Note that LΓ,2 generates at every point the
tangent space of N [Y1][Y2]

2 , therefore we can proceed as before.
The algorithm ends if after some steps, say k, the Lie algebra LΓ,k = 〈X1, . . . , Xnk

〉,
whose vector fields are tangent to the nk-dimensional leaf N [Y1],...,[Yk]

k , is Abelian. In this
moment the system of equations

XiQ
[Y1],...,[Yk]
ζk

= ζk(Xi), i = 1, . . . , nk−1, Q
[Y1],...,[Yk]
ζk

∈ C∞(N [Y1],...,[Yk]
k ),

can be solved locally by one more quadrature for any ζk ∈ L∗Γ,k.
Remark that, as the Lie algebra LΓ,k is Abelian, the integrability condition is always

satisfied and we can take ζk in the whole of L∗Γ,k instead of L0
Γ,k. Then, as before, we

extend the solutions to U and call them Qζk
.

With all these ingredients we can find the flow of Γ by performing only algebraic
operations. In fact, consider the formal direct sum

Ξ = L0
Γ,1 ⊕ L0

Γ,2 ⊕ · · · ⊕ L0
Γ,k ⊕ L∗Γ,k,

that, as one can check, has dimension n.
The linear maps L0

Γ,i 3 ζi 7→ Qζi
∈ C∞(U) can be extended to Ξ so that to any ξ ∈ Ξ

we assign a Qξ ∈ C∞(U). Now consider a basis

{ξ1, . . . , ξn} ⊂ Ξ.

The associated functions Qξj
, j = 1, . . . , n are independent and satisfy

ΓQξj (x) = ξj(Γ), j = 1, 2, . . . , n,

where it should be noticed that, as Γ ∈ LΓ,l for any l = 0, . . . , k, the right hand side is
well defined, and we see from here that in the coordinates given by the Qξj ’s the vector
field Γ has constant components and, then, it is trivially integrated

Qξj (Φt(x)) = Qξj (x) + ξj(Γ)t.

Now, with algebraic operations, one can derive the flow Φt(x). Altogether we have per-
formed k + 1 quadratures.

6. Algebraic properties. The previous procedure works if it reaches an end point (i.e.
if there is a smallest nonnegative integer k > 0 such that

LΓ,k = 〈Γ〉+ [LΓ,k−1, LΓ,k−1],

is an Abelian algebra). In that case we say that (M,L,Γ) is Lie integrable of order k+ 1.
The content of the previous section can, thus, be summarized in the following

Proposition 6.1. If (M,L,Γ) is Lie integrable of order r, then the integral curves of Γ
can be obtained by r quadratures.

We will discuss below some necessary and sufficient conditions for Lie integrability.
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Proposition 6.2. If (M,L,Γ) is Lie integrable then L is solvable.

Proof. Let L(i) be the elements of the derived series, L(i+1) = [L(i), L(i)], L(0) = L (note
that L(i) = L0,i). Then,

L(i) ⊂ LΓ,i,

and if the system is Lie integrable (i.e. LΓ,k is Abelian for some k), then L(k+1) = 0 and,
therefore, L is solvable.

Proposition 6.3. If L is solvable and A is an Abelian ideal of L, then (M,L,Γ) is Lie
integrable for any Γ ∈ A.

Proof. Since A is an ideal containing Γ, we can show that

A+ LΓ,i = A+ L(i).

We proceed again by induction: if the previous holds, then

A+ LΓ,i+1 = A+ [LΓ,i, LΓ,i] = A+ [A+ LΓ,i, A+ LΓ,i]
= A+ [A+ L(i), A+ L(i)] = A+ L(i+1).

Now L is solvable if some L(k) = 0 and therefore LΓ,k ⊂ A, i.e. it is Abelian and henceforth
the system is Lie integrable. Note that the particular case A = 〈Γ〉 corresponds to the
standard Lie theorem.

Nilpotent algebras of vector fields also play an interesting role in the integrability of
vector fields.

Proposition 6.4. If L is nilpotent, (M,L,Γ) is Lie integrable for any Γ ∈ L.

Proof. Let us consider the central series L(i+1) = [L,L(i)] with L(0) = L. Now, L nilpotent
means that there is a k such that L(k) = 0. It is easy to see, by induction, that LΓ,i ⊂
〈Γ〉+ L(i) and therefore LΓ,k = 〈Γ〉 is Abelian and the system is Lie integrable.

From the previous propositions, we can derive the following

Corollary 6.5. Let (M,L,Γ) be Lie integrable of order r. Then
(a) If rs is the minimum positive integer such that L(rs) = 0, then r ≥ rs.
(b) If L is nilpotent, rn is the smallest natural number such that L(rn) = 0, r ≤ rn.

7. An interesting example. We now analyse the particular case of a recently studied
superintegrable system [CCR], where we dealt with an example of a potential that is
not separable but is superintegrable with high order first integrals [PW], by studying
limits of some potentials related to Holt potential [H]. Even if the system is Hamiltonian,
that is, the dynamical vector field Γ = XH is obtained from a Hamiltonian function
H by making use of a symplectic structure ω0 defined in a cotangent bundle T ∗Q, we
deliberately forget this fact and analyse the situation by simply considering this system
just as a dynamical system (without mentioning the existence of a symplectic structure)
and focusing our attention on the Lie algebra structure of the symmetries.
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Suppose that the dynamics is given by the vector field Γ = X1 defined inM = R2×R2

with coordinates (x, y, px, py) given by

Γ = X1 = px
∂

∂x
+ py

∂

∂y
− k2

y2/3
∂

∂px
+ 2

3
k2 x+ k3

y5/3
∂

∂py
,

where k2 and k3 are arbitrary constants.
Consider in this case the following three vector fields:

X2 =
(

6p2
x + 3p2

y + k2
6x
y2/3 + k3

6
y2/3

) ∂
∂x

+ (6pxpy + 9k2y
1/3) ∂

∂y

− k2
6
y2/3 px

∂

∂px
+
(

4k2
x

y5/3 − 3 1
y2/3 py

) ∂

∂py
,

X3 =
(

4p3
x + 4pxp2

y + 8(k2x+ k3)
y2/3 px + 12k2 y

1/3py

) ∂

∂x

+
(
4p2
xpy + 12k2 y

1/3px
) ∂
∂y
− 4k2

1
y2/3 p

2
x

∂

∂px

+
(8

3
k2x+ k3

y5/3 p2
x − 4k2

1
y2/3 pxpy − 12k2

2
1
y1/3

) ∂

∂py
,

and

X4 =
(

6p5
x + 12p3

xp
2
y + 24 k3 + k2x

y2/3 p3
x + 108k2y

1/3p2
xpy + 324k2

2y
2/3px

) ∂

∂x

+
(
6p4
xpy + 36k2y

1/3p3
x

) ∂
∂y
− 6
( k2

y2/3 p
4
x − 972k3

2

) ∂

∂px

+
(

4 k3 + k2x

y5/3 p4
x − 12 k2

y2/3 − 108k2
2

1
y1/3 p

2
x

) ∂

∂py
.

In order to apply the theory developed above, it suffices to compute the commutation
relations among the fields:

[X2, X3] = 0, [X2, X4] = 1944k3
2 Γ, [X3, X4] = 432k3

2X2 (2)

together with
[X1, Xi] = 0, i = 2, 3, 4. (3)

Therefore, Γ and the three vector fields X2, X3, X4 generate a four-dimensional real
Lie algebra L, whose center is generated by Γ = X1. The derived algebra L(1) ⊂ L

is two-dimensional and it is generated by X1 and X2, i.e. L(1) is Abelian. Finally, the
second derived algebra L(2) reduces to the trivial algebra, because L(1) is Abelian. That
is, L(2) = [L(1), L(1)] = {0}.

In summary, the Lie algebra L is solvable with solvability index rs = 2. However,
L(2) = [L,L(1)] is not trivial but L(1) is the one-dimensional ideal in L generated by X1,
and this implies that the Lie algebra is nilpotent with rn = 3.

According to the previous results, we can conclude that (M,L,Γ) is Lie integrable
for any Γ ∈ L, but the order of integrability of the system depends on the choice of the
dynamical field, because:

a) (M,L,Γ) is Lie integrable of order 2 (the minimum possible value) for Γ = Xi,
i = 1, 2, 3, or any combination of them;
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b) (M,L,Γ) is Lie integrable of order 3 (the maximum possible value according to the
result of the corollary) for Γ = X4 (or any combination in which the coefficient
of X4 does not vanish).

8. Distributional integrability. It is clear that the preceding construction is too rigid
or restrictive, because there are simple examples which cannot be analysed in the frame-
work considered here. For instance, the system in Rn with dynamical vector field

Γ = f(x)∂1 ⇐⇒ ẋ1 = f(x), ẋ2 = 0, . . . , ẋn = 0, (4)
can be easily solved by quadratures but the vector fields of the natural choice

L = 〈Γ, ∂2, . . . , ∂n〉, (5)
do not close on a real Lie algebra. Note however that if f is a never vanishing function the
dynamical vector field Γ is conformally equivalent to ∂/∂x1. Moreover, we pointed out
before that we can also consider non-strict symmetries of the dynamics which means that
the set of solutions is preserved but with a reparametrisation of the integral curves. This
suggests to extend the framework by considering C∞(M)-modules of vector fields instead
of R-linear spaces. The price to be paid is that we do not have Lie algebras of vector
fields anymore. However the idea of the construction developed in our approach can be
maintained as it was proved in [CFGR]. We quickly sketch the generalisation developed
in [CFGR] and refer the interested reader to such paper.

First, for any subset S ⊂ X(M), let DS denote the C∞(M)-module generated by S:

DS =
{∑

i

f iXi ∈ X(M) | f i ∈ C∞(M), Xi ∈ S
}
.

As DS is the module of vector fields in the corresponding generalised distribution, we will
also refer to DS as a distribution.

We say that a real vector space, V ⊂ X(M), is regular if V is isomorphic to its
restriction, Vp ⊂ TpM , at any point p ∈ M , and completely regular if it is regular and
Vp = TpM .

One basic definition is the following:
Definition 8.1. Given a completely regular vector space, V ⊂ X(M), and a subset,
S ⊂ X(M), we define the core of S in V , denoted by S∗, to be the smallest subspace of
V such that S ⊂ DS∗ .

One can prove that such a smallest subspace does exist: any subset of X(M) has a
core. This concept of core of a generalised distribution is essential to extend the strategy
for integration by quadratures from the Lie algebra setting to that of the C∞(M)-module
case.

First, in full analogy to the Lie integrability property, we introduce the concept of
distributional integrability.

Let V ∈ X(M) be a completely regular vector space and Γ ∈ V a dynamical vector
field. We introduce the following sequence: VΓ,0 = V and

VΓ,m = 〈Γ〉+ [VΓ,m−1, VΓ,m−1]∗.
We always have VΓ,m ⊂ VΓ,m−1.
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The sequence VΓ,k coincides with previously introduced LΓ,k when V = L closes a real
Lie algebra. In fact, one easily sees that in this case [VΓ,m−1, VΓ,m−1]∗ = [VΓ,m−1, VΓ,m−1].
It will play a similar role in the more general case we are considering.

Definition 8.2. We say that (M,V,Γ) is distributionally integrable of order k+1 if VΓ,k
is the first Abelian (with respect to the commutator of vector fields) linear subspace in
the decreasing sequence

VΓ,0 ⊃ VΓ,1 ⊃ VΓ,2 ⊃ . . . .

We can now state the main result of this section [CFGR].

Theorem 8.3. If (M,V,Γ) is distributionally integrable of order r, then the vector field Γ
can be integrated by r quadratures.

Two examples were used in [CFGR] to illustrate the theory. The first example is
mentioned at the beginning of this section and explicitly given by (4), and then V is
given by the right hand side of (5), i.e. V = 〈Γ, ∂2, . . . , ∂n〉. Then, we immediately see
that [Γ, ∂i] ∈ D〈Γ〉 for any i, and therefore V1 = 〈Γ〉, so the system of equations is solved
with two quadratures.

As a second example (it requires n quadratures), we can consider
Γ = f(x)

(
∂1 + g2(x1)∂2 + · · ·+ gn−1(x1, . . . , xn−2)∂n−1 + gn(x1, . . . , xn−1)∂n

)
,

with f(x) 6= 0 everywhere and V = 〈Γ, ∂2, . . . , ∂n〉. In this case, VΓ,1 = 〈Γ, ∂3, . . . , ∂n〉,
VΓ,2 = 〈Γ, ∂4, . . . , ∂n〉, and finally VΓ,n−1 = 〈Γ〉. This shows that the system is distribu-
tionally integrable and requires n quadratures for its solution.

Remark the appearance of a function f multiplying the dynamical vector field in the
previous examples. This is, actually, the general situation as it was proved in [CFGR].

Proposition 8.4. Suppose that (M,V,Γ), with V = 〈Γ, X2, . . . , Xn〉, is distribution-
ally integrable of order r. Then, for any nowhere-vanishing f ∈ C∞(M), the system
(M,V ′, fΓ) with V ′ = 〈fΓ, X2, . . . , Xn〉 is distributionally integrable of order |r′−r| ≤ 1.

The conformally related vector fields Γ and f Γ have the same constants of motion,
and therefore the unparametrised orbits of both vector fields coincide [CIL, M]. In other
words, as the integral curves of both are related by a time-reparametrisation, we can
interpret the change of dynamical vector field from Γ to f Γ as a local, position dependent,
redefinition of time. Consequently, our formalism allows for such arbitrary changes of
time, a property that it is true neither in the Arnold–Liouville nor in the the standard
Lie theory of integration by quadratures.
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