000077161 001__ 77161
000077161 005__ 20200113145620.0
000077161 0247_ $$2doi$$a10.1016/j.jcis.2018.02.058
000077161 0248_ $$2sideral$$a105288
000077161 037__ $$aART-2018-105288
000077161 041__ $$aeng
000077161 100__ $$0(orcid)0000-0003-3691-3437$$aAndrés, M.A.$$uUniversidad de Zaragoza
000077161 245__ $$aFabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance
000077161 260__ $$c2018
000077161 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077161 5203_ $$aThis contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.
000077161 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2015-CIE-02$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78257-R$$9info:eu-repo/grantAgreement/EC/FP7/608490/EU/Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture/M4CO2$$9info:eu-repo/grantAgreement/ES/DGA/E54
000077161 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077161 590__ $$a6.361$$b2018
000077161 591__ $$aCHEMISTRY, PHYSICAL$$b29 / 148 = 0.196$$c2018$$dQ1$$eT1
000077161 592__ $$a1.29$$b2018
000077161 593__ $$aBiomaterials$$c2018$$dQ1
000077161 593__ $$aSurfaces, Coatings and Films$$c2018$$dQ1
000077161 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000077161 593__ $$aColloid and Surface Chemistry$$c2018$$dQ1
000077161 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077161 700__ $$aBenzaqui, M.
000077161 700__ $$aSerre, C.
000077161 700__ $$aSteunou, N.
000077161 700__ $$0(orcid)0000-0002-3492-6456$$aGascón, I.$$uUniversidad de Zaragoza
000077161 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000077161 773__ $$g519 (2018), 88-96$$pJ. colloid interface sci.$$tJOURNAL OF COLLOID AND INTERFACE SCIENCE$$x0021-9797
000077161 8564_ $$s576568$$uhttps://zaguan.unizar.es/record/77161/files/texto_completo.pdf$$yPostprint
000077161 8564_ $$s44688$$uhttps://zaguan.unizar.es/record/77161/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077161 909CO $$ooai:zaguan.unizar.es:77161$$particulos$$pdriver
000077161 951__ $$a2020-01-13-14:55:23
000077161 980__ $$aARTICLE