000077165 001__ 77165
000077165 005__ 20200716101509.0
000077165 0247_ $$2doi$$a10.1038/s41467-018-07795-6
000077165 0248_ $$2sideral$$a110343
000077165 037__ $$aART-2019-110343
000077165 041__ $$aeng
000077165 100__ $$aAlfaro-Mozaz, F.J.
000077165 245__ $$aDeeply subwavelength phonon-polaritonic crystal made of a van der Waals material
000077165 260__ $$c2019
000077165 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077165 5203_ $$aPhotonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape and slow down the light for processing of optical signals, lasing and spontaneous emission control. Unit cells of conventional PCs are comparable to the wavelength of light and are not suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)—atomic lattice vibrations coupled to electromagnetic fields. Such a hole array represents a polaritonic crystal for mid-infrared frequencies having a unit cell volume of 10-5¿03 (with ¿0 being the free-space wavelength), where PhPs form ultra-confined Bloch modes with a remarkably flat dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg resonances, as verified by far-field spectroscopy and near-field optical microscopy. Our findings could lead to novel miniaturized angle- and polarization-independent infrared narrow-band couplers, absorbers and thermal emitters based on van der Waals materials and other thin polar materials.
000077165 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-65159-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53432-C5$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2014-60195-JIN$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 785219-GrapheneCore2$$9info:eu-repo/grantAgreement/EC/H2020/785219/EU/Graphene Flagship Core Project 2/GrapheneCore2$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 715496-2DNANOPTICA$$9info:eu-repo/grantAgreement/EC/H2020/715496/EU/Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics/2DNANOPTICA$$9info:eu-repo/grantAgreement/EC/FP7/257654/EU/Spin Transport in Organic Semiconductors/SPINTROS
000077165 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000077165 590__ $$a12.121$$b2019
000077165 591__ $$aMULTIDISCIPLINARY SCIENCES$$b6 / 71 = 0.085$$c2019$$dQ1$$eT1
000077165 592__ $$a5.569$$b2019
000077165 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2019$$dQ1
000077165 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000077165 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000077165 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000077165 700__ $$0(orcid)0000-0001-6575-168X$$aGutierrez Rodrigo, S.
000077165 700__ $$aAlonso-González, P.
000077165 700__ $$aVélez, S.
000077165 700__ $$aDolado, I.
000077165 700__ $$aCasanova, F.
000077165 700__ $$aHueso, L.E.
000077165 700__ $$0(orcid)0000-0001-9273-8165$$aMartín-Moreno, L.$$uUniversidad de Zaragoza
000077165 700__ $$aHillenbrand, R.
000077165 700__ $$aNikitin, A.Y.
000077165 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000077165 773__ $$g10, 1 (2019), 42 [7 pp]$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000077165 8564_ $$s289820$$uhttps://zaguan.unizar.es/record/77165/files/texto_completo.pdf$$yVersión publicada
000077165 8564_ $$s66857$$uhttps://zaguan.unizar.es/record/77165/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000077165 909CO $$ooai:zaguan.unizar.es:77165$$particulos$$pdriver
000077165 951__ $$a2020-07-16-09:17:40
000077165 980__ $$aARTICLE