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Deeply subwavelength phonon-polaritonic crystal
made of a van der Waals material
F.J. Alfaro-Mozaz1, S.G. Rodrigo 2,3, P. Alonso-González 4, S. Vélez 1,8, I. Dolado1, F. Casanova1,5,

L.E. Hueso1,5, L. Martín-Moreno 2, R. Hillenbrand5,6 & A.Y. Nikitin5,7

Photonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape

and slow down the light for processing of optical signals, lasing and spontaneous emission

control. Unit cells of conventional PCs are comparable to the wavelength of light and are not

suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van

der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)—atomic

lattice vibrations coupled to electromagnetic fields. Such a hole array represents a polaritonic

crystal for mid-infrared frequencies having a unit cell volume of 10�5λ30 (with λ0 being the

free-space wavelength), where PhPs form ultra-confined Bloch modes with a remarkably flat

dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg

resonances, as verified by far-field spectroscopy and near-field optical microscopy. Our

findings could lead to novel miniaturized angle- and polarization-independent infrared

narrow-band couplers, absorbers and thermal emitters based on van der Waals materials and

other thin polar materials.
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Photonic crystals (PCs) offer the possibility to manip-
ulate the flow of light, to enhance light–matter interactions
in numerous opto-electronic technologies and quantum

optical devices, and to control the spontaneous emission rate of
local emitters1,2. At mid-infrared (IR) frequencies, PCs find
applications as thermal emitters, optical couplers3, devices for
chemical and biological spectroscopy4, and sensors for environ-
mental monitoring (e.g., gas sensing)5. They are normally fabri-
cated by either patterning Si slabs6 or metal layers7 that are
combined with quantum wells operating at the desired wave-
length. In both cases the value of the refractive index of the
supported electromagnetic modes, n, is rather low (e.g., n ~ 3 for
Si), thus restricting the confinement of light and putting limita-
tions to the dimension of PCs and potential PC-based integrated
circuits (for example, room-temperature IR subwavelength
photodetectors8,9). Low n also implies a steep dispersion of the
PC modes (close to the light cone), leading to a broadening of
the resonances in IR PCs and an angle-dependent absorption/
emission7. The light confinement can be improved by means of
polaritons, which are modes formed by the coupling of dipolar
excitations and electromagnetic fields10. Structured thin films
of doped semiconductors11,12 and graphene13,14 supporting
plasmon polaritons, or polar dielectrics (such as SiO2, Al2O3 or
SiC15–19) supporting phonon polaritons (PhPs), can be seen as
“polaritonic crystals”20—lattices with periods comparable to the
polariton wavelengths. However, the intrinsic losses of these
materials are relatively high (the quality factor Q of the reso-
nances are limited to 30), with the exception of SiC slabs (where
PhPs have long lifetimes)17–19, whose fabrication presents sub-
stantial practical difficulties.

Promising alternative materials for IR polaritonic crystals can
be found among many low-dimensional van der Waals (vdW)
crystals that support a diversity of polaritons with unique prop-
erties (enormous confinement, tunability, low losses, or negative
phase velocity, among others). They are thus of large interest for
the growing field of nanophotonics21,22. Particularly, in the mid-
infrared frequency range, hexagonal boron nitride (h-BN) crystals
exhibit anisotropic phonons and support Type I (εz < 0, εx,y > 0)
and Type II (εz > 0, εx,y < 0) hyperbolic phonon polaritons
(HPhPs) inside the lower and upper Reststrahlen bands,
respectively23,24. In h-BN slabs, HPhPs propagate in the form of
waveguide modes Mn, with n= 0, 1, 2, …,23–26 with both their
wavelength and propagation length decreasing with n. Due to
their remarkably long lifetimes25,27, HPhPs in h-BN can be used
for molecular vibration spectroscopy and strong coupling28.
Moreover, the preparation of thin h-BN slabs is a well-established
process, as well as its structuring into cones24, rods29 and
stripes28, in which HPhPs exhibit sharp Fabry–Perot (“cavity”)
resonances. Despite these promising initial works, periodically
structured h-BN films in which HPhPs can exhibit “collective”
modes have not been considered yet, so that until now the con-
cept of a h-BN PhP crystal has remained unexplored (although
h-BN-based “conventional” PCs have been demonstrated at the
visible frequencies, where HPhPs are not supported30).

Here we propose, design and fabricate a mid-infrared polari-
tonic crystal formed by a rectangular hole array (HA) in a thin h-
BN flake. We tune the polaritonic crystal period to match the
wavelengths of the M0 HPhP mode (with the longest propagation
length) in the upper Reststrahlen band. By mid-infrared spec-
troscopy we reveal narrow, geometrically tunable Bragg reso-
nances. We associate them with an extremely flat polaritonic
band formed by highly confined (deeply subwavelength) Bloch
modes, which we verify by near-field optical microscopy. Due to
the strong confinement of the modes, the resonances are intrin-
sically independent of the angle and polarization (due to the
symmetry of the HA) of the illumination, while the whole size of
the polaritonic crystal becomes comparable to a single free space
wavelength. The idea of a vdW polaritonic crystals thus goes far
beyond the original concept by Yablonovitch31 and enables the

generalization of all the PC-based photonics to a deeply sub-
wavelength scale. The vdW polaritonic crystal can be also seen as
a counterpart of vdW hyperbolic metasurfaces32, in which the
period of the structuring of h-BN film is much smaller than the
HPhP wavelength.

Results
Spectroscopic analysis of the hole arrays. Figure 1a shows a
schematic of the polaritonic crystal considered in this work. It
presents a square array of circular holes (diameter d= 300 nm),
designed to exhibit HPhP resonances at mid-IR frequencies
(1360–1480 cm−1). The holes are etched in a h-BN slab (with
a thickness t= 38 nm) on a transparent (CaF2) substrate
(see Methods). The period of the array, L, ranges from 600
to 1200 nm, being thus about one order of magnitude smaller
than the illuminating wavelength. It consequently exhibits ultra-
small unit cell volumes of about 10�5λ30. An optical microscopy
image of the resulting structure is shown in Fig. 1b, where
the Fourier transform (FT) has prominent sharp peaks at
~k ¼ ð±G; 0Þ and ~k ¼ ð0; ±GÞ with G= 2π/L, as expected for a
square lattice.

To optically characterize the polaritonic crystals, we performed
Fourier transform infrared spectroscopy (FTIR) experiments
using unpolarized thermal radiation at normal incidence. The
resulting transmission spectra, T=TCaF2

, are shown in Fig. 1c
(color curves) together with the spectrum obtained for a bare
h-BN slab (black curve). Apart of a strong dip corresponding to
the h-BN transverse optical (TO) phonon (ωTO= 1366 cm−1),
the spectra of the polaritonic crystals show a sharp dip (with an
estimated Q-factor of 190) at larger frequencies with a spectral
position depending on L. To better analyze this result, the spectral
positions of both the TO phonon dip (squares) and period-
dependent dip (circles) are plotted in Fig. 1d as a function of both
L and ω, together with the numerically simulated transmission
spectra T=TCaF2

. In both experiment and theory, we observe that
the frequency of the second dip strongly decreases with increasing
L, while the minima of the h-BN TO dip is not affected by the
periodic structuring. Remarkably, according to the simulations,
the value of the absorption of the second peak (Fig. 1e) is
comparable to that of the TO peak, revealing the high coupling
efficiency provided by the HA. These results demonstrate that the
transmission dips in the spectra of our deeply subwavelength
polaritonic crystals can be tuned by L, in a similar fashion to the
“geometrical” plasmonic resonances in metallic hole arrays at
visible frequencies20, the latter, however, having significantly
lower Q-factors (by a factor of 10).

To understand the origin of the period-dependent transmission
dips in our polaritonic crystals, we simulated the field distribu-
tion, Re[Ez(x, z)] (Fig. 1a), at the wavelength of the dip minimum
for L= 900 nm. A “zigzag” ray pattern inside the slab (x–z plane)
is observed, evidencing the excitation of many HPhP modes with
different wavelengths at the edges of the holes25,33,34. However,
the field distribution outside of the slab is very different, as we see
field oscillations of a single periodicity (alternating red and blue
lobes). The period of the oscillations matches with the wavelength
of the HPhP M0 mode (found from the mode dispersion23), and
the nodes are located at the center of the holes. The field
distribution thus resembles that of a standing wave, which
permits us to identify the period-dependent dip in the polaritonic
crystal transmission spectra as the first-order Bragg resonance of
a HPhP M0 mode. Importantly, the analysis of the propagation
length, lM0, of the HPhP M0 mode in the continuous h-BN slab
(Supplementary Note 7) reveals that lM0 > L at the frequencies of
the transmission dips in all the HAs, which proves that this
prerequisite for the formation of the Bragg resonances is fulfilled.
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Near-field imaging of the Bloch mode. For the experimental
verification of the first-order Bragg resonance, we image the field
distribution on top of the HA by scattering-type scanning near-
field microscopy (s-SNOM), using a weakly scattering Si tip
illuminated by obliquely incident s-polarized light (see schematics
in Fig. 2a, and details in the Methods) as a probe. Interferometric
recording of the scattered p-polarized radiation allows for map-
ping the vertical electric field of the mode that is excited by the
incident wave35. The near-field image (showing the real part of
the signal, Es) obtained at the frequency of the dip (1428 cm−1,
dark blue curve in Fig. 1c) is shown in Fig. 2b. We see field
oscillations (red and blue colors indicate the field polarity) that
match the period L of the polaritonic crystal, thus revealing
the spatial field structure of the HPhP M0 Bloch mode in the
y-direction. The slight rotation of the observed field pattern is
attributed to the illumination used in our experiment (the plane
of incidence is rotated by the angle ψ with respect to one of the
HA’s translation vectors), which together with the effective
electric dipoles induced by the holes also allows for exciting a
Bloch mode in the x-direction. We corroborate this experimental
result by simulating the field distribution, Re[Ez(x,y)] (Fig. 2c),
assuming a similar illumination scheme (both angle and polar-
ization) as in the experiment. A perfect matching between
experiment and simulation validates our near-field characteriza-
tion using a Si tip, which permits to identify the deeply sub-
wavelength Bloch mode excited in the first-order Bragg resonance
of the polaritonic crystal. Notice that the imaging of the Bloch
modes outside of the light cone is not possible with Si tips, as
the applied imaging scheme requires the far-field excitation of
the Bloch modes. Alternatively, these modes could be accessed via

polaritonic interferometry with s-SNOM36, which uses metallic
tips that allow for the “local” excitation of highly confined modes.
However, polariton-interferometric s-SNOM imaging requires
the back-reflection of the Bloch mode from edges or other dis-
continuities in the polaritonic crystal, and thus strongly compli-
cates the interpretation of the near-field images.

Band structure of the polaritonic crystal. To further characterize
our deeply subwavelength polaritonic crystal, we perform an
analysis of the band structure of the M0 HPhP Bloch modes (see
Methods and Supplementary Note 5). Figure 3a shows the cal-
culated band structure of the polaritonic crystal with L= 900 nm,
along the main directions Γ−X−M−Γ in the first Brillouin zone.
One can recognize features reminiscent of the folded dispersion
curves for the M0 HPhP mode in a continuous h-BN slab23
(Fig. 3a, the blue dashed lines). At momenta where the folded
dispersion curves for the continuous slab intersect (e.g., in the
vicinity of the M-point at ω= 1420 cm−1), partial band gaps
open, prohibiting the propagation of the M0 mode in the
polaritonic crystal. Note that in conventional PCs the band
structure is mainly formed in the region of propagating waves,
k≤ω=c. Conversely, the major part of the band structure in our
polaritonic crystal is formed outside of the light cone, k > ω/c
(Fig. 3a, vertical dashed vertical lines), covering the region of high
in-plane momenta modes in the PC, which decay exponentially
outside the PC. We complement the band structure analysis by
showing in Fig. 3c the FTs of the simulated fields emitted by a
vertical point dipole above the HA—counterparts of the iso-
frequency contours (ICs). The FTs provide information on the
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density of polaritonic modes in the k-space. At low frequencies,
the ICs show a circular shape (Fig. 3c, bottom), similar to the bare
ICs of the continuous slab, k2x þ k2y ¼ k2M0 (Fig. 3d, bottom), so
that at low momenta the density of Bloch polaritonic modes is
zero and the light does not couple to the polaritonic crystal (no
maxima in the difference transmission signal, ΔT, defined as ΔT
= (–T + Tbare h-BN)/TCaF2, Fig. 3b). Oppositely, at the frequency
of the Bragg resonance, the ICs show a high density of Bloch
modes in a large area of the Brillouin zone (Fig. 3c, top), and
particularly in the whole area of the light cone (black circle,
Fig. 3c, d). The high density of modes is consistent with the band
structure of Fig. 3a, where a nearly k-independent band for the
whole range of momenta is formed at around ω= 1430 cm−1.
Such flat polaritonic bands could be used in ultraslow
light applications37,38 and for near-field radiative thermal
transport39,40 at deeply subwavelength scale. Remarkably, the flat
band indicates that the coupling to the polaritonic crystal by an
incident plane wave can happen for any in-plane momentum (see
the maximum in the difference transmission spectra, ΔT, Fig. 3b),
and thus for any incident angle, θ (related to the momentum as
ky= k0sinθ).

Omnidirectional and polarization-independent absorption
peaks. We experimentally prove the omnidirectional response
of our polaritonic crystal by carrying out optical transmis-
sion measurements at oblique incidence for both p- and s-
polarizations (see details in Supplementary Notes 5 and 6),
schematically shown in Fig. 4a, d. The measured normalized
extinction, 1� T=TCaF2

, as a function of θ and ω is represented in
Fig. 4b, e. Strikingly, for both polarizations, the extinction max-
imum is clearly independent upon θ in the whole measured
range, which is in excellent agreement with the calculated
absorption (Fig. 4c, f). A detailed theoretical analysis (based
on the perturbation theory and described in the Supplementary
Note 5) of both symmetric, S, and antisymmetric, A, Bloch
modes allows us to unambiguously attribute such angle-
independent Bragg resonance to the excitation of the Bloch
modes S (Fig. 4a, d). Namely, the excited modes Sy (p-polar-
ization) and Sx (s-polarization) have an antisymmetric distribu-
tion of the vertical electric field with respect to the hole centers,
Ez;Sy � sinGy and Ez;Sx � sinGx, respectively. This result is
also corroborated by the field distribution revealed by our
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near-field measurements (Fig. 2) and is consistent with previous
studies of plasmonic resonances in metallic hole arrays and
gratings2,41,42. Our findings demonstrate that the narrow Bragg
resonances in a h-BN polaritonic crystal are independent of both
the illumination angle and polarization. These properties make
phonon-polaritonic crystals attractive candidates for narrow-
band omnidirectional infrared absorbers, couplers and thermal
emitters, significantly smaller than those based on conventional
bulk materials43–45.

Discussion
In summary, we have introduced and experimentally realized IR
deeply subwavelength polaritonic crystals based on hyperbolic
phonon polaritons in nanostructured van der Waals crystal slabs.
Such crystals support highly confined Bloch modes with flat
bands, giving rise to angle- and polarization-independent geo-
metrically tunable resonances, even in case of the simplest square
symmetry. Apart of their potential application for subwavelength
omnidirectional IR absorbers, couplers and reflectors, h-BN
polaritonic crystals can be utilized for inhibiting spontaneous
emission (the latter, in contrast, being enhanced/accelerated by
h-BN optical antennas24,29,43). The suppression of spontaneous
emission can be achieved by tuning the parameters of the
polaritonic crystal (particularly, its symmetry) to open up the full
polaritonic bandgap. We note that the layered structure of the van
der Waals material (resulting in hyperbolic polaritons) does not
play a crucial role for the functionality of the described polari-
tonic crystal. Similar crystals could be potentially obtained with

thin layers of isotropic polar or plasmonic materials, where
polaritons have low losses. However, the layered structure of van
der Waals materials favors much easier fabrication of high-quality
thin layers via exfoliation. Further, PCs based on van der Waals
layers could be used as polaritonic hypercrystals (possessing
extremely high density of optical states)44–47, where several
HPhP slab modes are simultaneously explored by superimposing
several hole arrays with different periods in the same slab. Fur-
thermore, the combination of h-BN polaritonic crystals/hyper-
crystals with other low-dimensional materials (such as, e.g., BN-
encapsulated graphene8) could open the door to integrable hybrid
metamaterials with unique opto-electronic properties on the
nanoscale.

Methods
Fabrication of h-BN hole arrays. For the fabrication of the polaritonic crystals we
used h-BN flakes. In order to obtain large and homogeneous h-BN flakes, we first
performed mechanical exfoliation of commercially available h-BN crystals (HQ
graphene Co, N2A1) using blue Nitto tape (Nitto Denko Co., SPV 224P). After-
wards, the flakes attached to the tape were exfoliated onto several poly-
dimethylsiloxane stamps. The stamps were inspected using an optical microscope
and large and homogeneous h-BN flakes were identified and transferred onto a
CaF2 substrate using the deterministic dry transfer technique48.

We patterned the arrays of holes using high-resolution electron beam
lithography. The sizes of the arrays were 15 × 15 μm, with a fixed hole diameter
(300 nm) and periodicities between 0.6 and 1.2 μm. To that end, we used a single
layer polymethyl methacrylate (PMMA) 495 A4 resist as an electron-sensitive
resist. The desired holes were written with the electron beam and developed in
MIBK:IPA 1:3, resulting in a patterned PMMA layer that is used as a mask to
protect the h-BN areas underneath during the etching process. The uncovered
h-BN areas were chemically etched in a SF6/Ar 1:1 plasma mixture at 20 sccm flow,
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100 mTorr pressure and 100W power for 60 s (RIE OXFORD PLASMALAB 80
PLUS reactive ion etcher). Finally, the sample was immersed in acetone for several
hours for removing the PMMA mask, rinsed in IPA and dried with a N2 gun.

To ensure the proper fabrication quality of the hole arrays, we have imaged
them by means of both the atomic force microscope (AFM) (performed
simultaneously with the optical near-field imaging) and environmental scanning
electron microscopy (eSEM) (see the eSEM images in the Supplementary Note 1).

Far-field spectroscopy measurements. Microspectroscopy transmission spectra
of the h-BN arrays were recorded with a Bruker Hyperion 2000 IR microscope
coupled to a Bruker Vertex 70 FTIR spectrometer. The IR radiation from a
thermal source (Globar) was approximately normal to the surface of the hole array.
The spectral resolution was 1 cm−1. The area covered by the IR beam was around
10 × 10 μm2.

By using a stage that permits to rotate the sample along the XY and XZ axes, the
response of the hole arrays at different incidence angles was studied. The stage
rotates the sample from −40° to 40° in the XZ axis. It allowed to record
transmission spectra with any linear polarization.

Near-field imaging. Our commercially available s-SNOM (Neaspec, Munich) is
based on an AFM. Conventional silicon tips acted as scattering near-field probes.
The laser beam was generated by a QCL (tunable 1295–1445 cm−1, Daylight
Solutions, USA) and focused to the tip apex using a parabolic mirror. The polar-
ization of the illuminating beam in the presented experiments was parallel to the h-
BN surface (s-polarization). The near fields scattered by the silicon tip were col-
lected with a parabolic mirror and recorded simultaneously with the sample
topography. Background contributions were suppressed by vertical tip oscillation at
frequency Ω ≈ 300 kHz (tapping-mode AFM) and by subsequent higher harmonic
demodulation of the detector signal at 4Ω. The modulation amplitude of the tip
was around 100 nm. The amplitude and phase of the near-field components were
measured with a pseudoheterodyne interferometric detection module. We recorded
the out-of-plane near-field component, Ez (p-polarization). Interference between
the scattered p-polarized light from the tip and the reference beam was achieved by
placing into the reference arm a polarizer that is rotated by 45º with respect to
polarization of the illuminating beam.

Band structure simulations. We used the finite difference time domain (FDTD)
method to simulate the HPhP band structure shown in Fig. 3a. Periodic Bloch
conditions were set up at the boundaries of the unit cell. Uniaxial perfect matched
layers were imposed at surfaces of the cell parallel to the h-BN film. We use mesh
element sizes ranging from 2 to 5 nm. The dielectric constant in cells at the h-BN-
substrate and h-BN-superstrate interfaces is taken as that of the medium with the
largest volume inside that particular cell. We have checked that transmittance
spectra obtained in this manner coincide with those calculated using a finite ele-
ments method in frequency domain (COMSOL) (see Supplementary Note 3). The
band structure is calculated by exciting the system with a superposition of ran-
domly placed and oriented electric dipoles at different positions and imposing
Bloch’s theorem at the boundaries of the unit cell. Then, the value of the amplitude
of the electric fields for different Bloch phase factors (wave vector) and frequencies
is calculated, revealing the band structure of the HA. The red curves in Fig. 3a trace
the maxima in various colorplots (generated for different positions and orienta-
tions of the dipole sources).

Isofrequency plots. For calculating the isofrequency plots (Fig. 3c) a finite element
method in frequency domain was used (COMSOL). In the simulation we consider
a finite-size HA of 27 × 27 holes. A vertical dipole source was placed 30 nm above
the h-BN slab at the center of the HA. For each frequency, the spatial distribution
of the radial electric field, Eρ,h−BN(x, y), in the plane of the dipole was calculated.
The same calculation was done without the h-BN film, obtaining the distribution of
the field above the substrate, Eρ,sub(x, y). Then, Fourier transform of the subtracted
fields, Eρ,h−BN(x, y) − Eρ,sub(x, y), was performed, obtaining Eρ(kx, ky). To mimic
the source with the electric field fulfilling the Bloch’s theorem, the following
summation over different Brillouin Zones has been performed:P

n;m Eρðkx þ n � G; ky þm � GÞ. This procedure is equivalent to the monitoring of
the field (satisfying the Bloch’s theorem) at the position (x= 0, y= 0).

Analytical theory. For the reliable identification and detailed analysis of the
excited Bloch mode we developed a simple analytical theory based on the thinness
of the h-BN slab and resonance perturbation theory (for details see Supplementary
Note 5). The h-BN is treated as a conductivity layer considering only in-plane
dielectric permittivity, ϵ? . We further consider that due to the resonance excitation
of HPhPs in the hole array, the first-order Bloch field harmonics dominate. By
considering only p-polarization and assuming that the plane of incidence is parallel
to one of the translational vectors of the hole array, the latter can be approximated
by a conductivity layer, periodically modulated in one direction (with the modu-
lated conductivity profile having the same Fourier spectrum as the hole array). The
boundary conditions for the electromagnetic field at the h-BN periodically
modulated conductivity layer results in an infinite discrete set of linear equations
for the spatial field harmonics. By truncating this set of equations to a diffraction

order N= 2, the system of equations can be solved analytically, and the reflection
and transmission coefficients take a simple analytical form. The poles of
these coefficients provide the dispersion of the excited Bloch modes and their
lifetimes.

h-BN dielectric function. The perpendicular and parallel components of the
permittivity tensor, ϵzz ¼ ϵk , ϵxx ¼ ϵyy ¼ ϵ? are approximated with a
Drude–Lorentz permittivity24

ϵa ωð Þ ¼ ϵa;1 1þ ωa
LO

� �2� ωa
TO

� �2
ωa
TO

� �2�ω2 � iωγa

 !
:

Where a ¼k or?, ωLO and ωTO refers to the transversal (TO) and longitudinal
(LO) phonon frequencies, γ denotes the damping constant and ϵ1 is the high
frequency permittivity. The values of the constants are:

ϵk;1 ¼ 2:95; ϵ?;1 ¼ 4:90; ωk
LO ¼ 825 cm�1;ω?

LO ¼ 1610 cm�1,

ωk
TO ¼ 760 cm�1;ω?

TO ¼ 1366:2 cm�1; γk ¼ 2 cm�1; γ? ¼ 7 cm�1. The value of

ω?
TO was adjusted using the position of the TO phonon dip in the transmission

spectra of a flake of h-BN (See Supplementary Note 4).

Data availability
The data that support the findings of this study are available from the corre-
sponding author on reasonable request.
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