000077172 001__ 77172
000077172 005__ 20200716101513.0
000077172 0247_ $$2doi$$a10.1186/s12951-018-0439-x
000077172 0248_ $$2sideral$$a110379
000077172 037__ $$aART-2019-110379
000077172 041__ $$aeng
000077172 100__ $$aCoya, J.M.
000077172 245__ $$aTri-mannose grafting of chitosan nanocarriers remodels the macrophage response to bacterial infection
000077172 260__ $$c2019
000077172 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077172 5203_ $$aBackground: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown. 
Results: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism. 
Conclusions: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.
000077172 536__ $$9info:eu-repo/grantAgreement/EC/FP7/604237/EU/Nanotherapeutics for antibiotic resistant emerging bacterial pathogens/NAREB$$9info:eu-repo/grantAgreement/ES/DGA/FSE
000077172 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000077172 590__ $$a6.518$$b2019
000077172 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b15 / 156 = 0.096$$c2019$$dQ1$$eT1
000077172 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b30 / 103 = 0.291$$c2019$$dQ2$$eT1
000077172 592__ $$a1.335$$b2019
000077172 593__ $$aApplied Microbiology and Biotechnology$$c2019$$dQ1
000077172 593__ $$aBioengineering$$c2019$$dQ1
000077172 593__ $$aBiomedical Engineering$$c2019$$dQ1
000077172 593__ $$aPharmaceutical Science$$c2019$$dQ1
000077172 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000077172 593__ $$aNanoscience and Nanotechnology$$c2019$$dQ2
000077172 593__ $$aMolecular Medicine$$c2019$$dQ2
000077172 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000077172 700__ $$0(orcid)0000-0001-6995-4302$$aDe Matteis, L.
000077172 700__ $$aGiraud-Gatineau, A.
000077172 700__ $$aBiton, A.
000077172 700__ $$0(orcid)0000-0002-1349-616X$$aSerrano-Sevilla, I.
000077172 700__ $$aDanckaert, A.
000077172 700__ $$aDillies, M.A.
000077172 700__ $$aGicquel, B.
000077172 700__ $$0(orcid)0000-0003-1081-8482$$aDe La Fuente, J.M.
000077172 700__ $$aTailleux, L.
000077172 773__ $$g17, 1 (2019), 15 [15 pp]$$pJ. nanobiotechnol.$$tJournal of Nanobiotechnology$$x1477-3155
000077172 8564_ $$s934634$$uhttps://zaguan.unizar.es/record/77172/files/texto_completo.pdf$$yVersión publicada
000077172 8564_ $$s95954$$uhttps://zaguan.unizar.es/record/77172/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000077172 909CO $$ooai:zaguan.unizar.es:77172$$particulos$$pdriver
000077172 951__ $$a2020-07-16-09:20:38
000077172 980__ $$aARTICLE