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Tri-mannose grafting of chitosan 
nanocarriers remodels the macrophage 
response to bacterial infection
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Abstract 

Background: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose 

a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and 

limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering 

hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune 

cells to bacterial infection is mostly unknown.

Results: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of man-

nose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and 

grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although 

tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remod-

eled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differ-

entially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways 

involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism.

Conclusions: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be 

a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.
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Background
Bacterial infection is a major cause of chronic infec-

tions and mortality. Tuberculosis (TB), which is caused 

by Mycobacterium tuberculosis, is the deadliest disease 

caused by a single infectious agent, ahead of HIV/AIDS 

and malaria. According to the most recent WHO report 

[1], there were 10.4 million TB cases in 2016 and the dis-

ease killed 1.7 million individuals. Even more serious is 

the worldwide emergence of drug-resistant bacteria, 

endangering the efficacy of antibiotics. Each year in the 

United States and Europe, 23,000 and 25,000 people, 

respectively, die as a direct result of antimicrobial resist-

ance [2, 3]. The ability to cure multidrug resistant bacte-

rial infections is more difficult, requiring treatment with 

more toxic and costly drugs, often with limited success. 

Hepatotoxicity, liver injury, skin reactions, and gastro-

intestinal and neurological disorders have frequently 

been observed as adverse effects. New strategies are thus 

urgently needed against resistant strains to shorten the 

duration of treatment and limit drug side-effects.

Nanoparticles are an attractive approach to increase the 

efficacy of antibiotics and decrease drug side-effects [4, 

5]. Nanocarriers (NCs) are a broad family of submicron 

structures with unique size-dependent features, including 

high stability, efficient drug loading, controlled-release, 
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and cell-targeting [6]. Previous studies have shown effec-

tive internalization of NCs by phagocytes, in particular 

macrophages ( Mφs ), thus allowing delivering of antibi-

otics [7], antigens for vaccination [8], or contrast agents 

for biomedical imaging [9]. For example, liposomes and 

solid lipid nanoparticles have been shown to improve the 

activity of antibiotics, such as amikacin and vancomy-

cin, against Pseudomonas aeruginosa and Staphylococcus 
aureus [10, 11]. Lipid NCs loaded with rifampicin, one of 

the first-line TB drugs, exhibit higher lung and Mφ-spe-

cific targeting than the free drug in  vivo [12, 13]. Poly-

meric nanoparticles composed of natural or synthetic 

polymers, such as chitosan and poly(lactide-co-glycolide) 

acid (PLGA), have shown good drug encapsulation and 

delivery [14–16]. Moreover, it was shown that nanopar-

ticles are able to effectively target granuloma-like struc-

tures using transparent zebrafish embryos infected with 

Mycobacterium marinum as a model of TB infection, 

thus improving embryo survival and lowering bacterial 

load [7]. NCs have also been recently used to improve 

BCG-vaccine immunogenicity by enhancing the innate 

immune response to BCG vaccination [17].

Numerous NCs have been developed in the past dec-

ades using several experimental approaches. One of the 

best strategies to produce and stabilize NCs consists of 

using aqueous- or oil-core nanocapsules surrounded by 

a polymeric coating that can be synthetic, such as PLGA, 

or natural, such as chitosan. Chitosan coating provides 

several advantages, such as biocompatibility, biodegra-

dability, and functional groups for biofunctionalization 

for cell targeting, making chitosan NCs (CS-NCs) an 

excellent delivery system. We previously reported the 

production of CS-NCs with improved stability, by nano-

emulsion with a chitosan hydrogel coating, and their 

use as an efficient drug delivery system for the antimi-

crobial agent bedaquiline [18, 19]. Here, we performed 

an in-depth study of the interactions of CS-NCs with 

human monocyte-derived Mφs , resting or infected with 

M. tuberculosis, as a model of bacterial infection. mRNA 

sequencing allowed us to identify genes and pathways 

affected by CS-NC treatment. CS-NCs regulated the 

expression of relatively few genes but, surprisingly, the 

addition of tri-mannose carbohydrates to CS-NCs (CS-

NCs-tri) profoundly remodeled the response of M. tuber-
culosis-infected cells.

Results and discussion
Chitosan NCs are efficiently internalized by Mφs in an actin 

cytoskeleton-dependent manner

We first evaluated the capacity of human Mφs to inter-

nalize CS-NCs. Monocyte-derived Mφs were incu-

bated for 4  h with Nile Red-labelled CS-NCs. After 

extensive washing, we quantitatively assessed particle 

internalization by FACS. Mφs efficiently internalized CS-

NCs in a dose- and time-dependent manner (Fig. 1a, b). 

The uptake of NCs was very fast. We observed Nile Red 

positive-Mφs in as little as 15 min (data not shown). We 

analyzed CS-NC-treated Mφs by confocal microscopy 

after 1, 4, and 18 h of incubation to discriminate between 

binding of the NCs to the cell surface and their inter-

nalization. The NCs were localized intracellularly and 

accumulated with time (Fig.  1c). We next evaluated the 

capacity of other cell types, namely lung epithelial cells 

(A549) and hepatocytes (HepG2), to internalize CS-NCs. 

Hepatocytes internalized a smaller number of CS-NCs 

than Mφs (0.6-fold less), whereas the uptake by epithelial 

cells was similar (Fig. 1d). These results confirm previous 

studies showing efficient internalization of CS-NCs by 

several cell types, including epithelial cells, hepatocytes, 

fibroblasts, and Mφs [20].

We next treated Mφs with inhibitors of phagocytosis, 

macropinocytosis, clathrin-mediated endocytosis, and 

caveolae-mediated endocytosis to decipher the molecu-

lar mechanisms involved in NC internalization [21]. 

Cytochalasin D inhibits phagocytosis by preventing actin 

polymerization [22]. Chlorpromazine reduces invagina-

tion via clathrin-mediated endocytosis by depleting the 

plasma membrane of clathrin and adaptor proteins and 

sequestering them on intracellular vesicles [23]. Nys-

tatin interferes with caveolae-mediated endocytosis by 

increasing membrane fluidity via the depletion of cho-

lesterol and reducing the formation of lipid caveolar 

rafts [24]. Colchicine decreases microtubule polymeri-

zation, thus inhibiting micropinocytosis [25]. Cells were 

incubated with fluorescent NCs for 2 h, with or without 

the inhibitors, and the internalization of NCs quanti-

fied by flow cytometry. Only cytochalasin D significantly 

decreased the uptake of CS-NCs (Fig. 1e). These results 

show that CS-NCs enter Mφs via an actin cytoskeleton-

dependent process, most likely phagocytosis.

Chitosan NCs escape degradation in lysosomes

Mφs are professional phagocytes that are highly special-

ized to engulf and eliminate dead cells, cellular debris, 

and foreign particles, including bacteria and viruses [26]. 

We used transmission electron microscopy (TEM) and 

confocal microscopy to follow the fate of intracellular 

NCs inside this cell type. CS-NCs were easily detectable 

inside Mφs after 1 h of incubation (data not shown). Sur-

prisingly, the CS-NCs were still present after 18 h of incu-

bation and were not degraded. Some even fused together, 

resulting in large NCs (Fig.  2a). This suggests that CS-

NCs can resist lysosomal degradation and/or escape 

from the endosomal pathway. We could not detect mem-

branes surrounding the CS-NCs, favoring the second 

hypothesis. We strengthened these results by incubating 
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Mφs with fluorescent CS-NCs and LysoTracker Red 

DND-99, a red fluorescent dye that stains acidic com-

partments, mainly lysosomes, in live cells, and analyzed 

their intracellular localization by confocal microscopy. 

Most CS-NCs did not colocalize with acidic compart-

ments after 18 h of incubation (Fig. 2b, Pearson correla-

tion coefficient < 0.6, Fig.  2c). Thus, we did not observe 

the formation of new lysosomal compartments upon 
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Fig. 1 Cellular uptake of chitosan NCs. a Mφs were incubated for 4 h with 10, 50, and 100 μg/ml Nile-Red-labelled CS-NCs. Particle internalization 

was assessed by FACS and the results expressed as the mean fluorescence intensity (MFI). b Mφs were cultured for 1, 4, or 18 h in the presence of 

100 μg/ml fluorescent CS-NCs and particle internalization was quantitatively assessed by FACS. c Mφs were treated with 100 μg/ml fluorescent 

CS-NCs (red) for 1, 4, or 18 h and NC internalization visualized by confocal microscopy. DAPI (blue) was used to visualize nuclei. d 100 μg/ml 

Nile-Red-labelled CS-NC were incubated for 4 h with Mφs , A549 epithelial cells, or HepG2 hepatocytes. NP uptake was quantitatively analyzed 

by FACS. e Mφs were incubated with 100 μg/ml fluorescent CS-NCs for 2 h with or without the pharmacological inhibitors nystatin, colchicine, 

cytochalasin D, or chlorpromazine. NC uptake was analyzed as previously described. Error bars represent the mean ± SD and significant differences 

between treatments are indicated by an asterisk, in which **p < 0.01 and ***p < 0.001
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treatment with CS-NCs. We quantified the intensity of 

the LysoTracker staining by flow cytometry. There was 

no difference between untreated cells and cells incubated 

with CS-NCs, whereas incubation with latex beads (used 

as a positive control) induced an increase of LysoTracker 

staining (Fig. 2d). Our results are consistent with those of 

previous studies. Indeed, it has been shown that polyeth-

ylenimine and chitosan can directly overcome lysosomal 

sequestration by membrane destabilization [27–29] 

or through a proton sponge effect [30–33]. NCs may 

enhance endosomal Cl-accumulation and osmotic swell-

ing, leading to vesicle rupture.

Effects of NCs on the Mφ response

The phagocytosis of particles by Mφs modulates the 

expression of many genes, the number and extent 
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Fig. 2 Intracellular localization of chitosan NCs. a Mφs were cultured for 18 h in the presence of 100 μg/ml CS-NCs and intracellular visualization 

assessed by TEM. Yellow arrows: CS-NCs, Red arrows: NCs fusion. b Mφs were incubated with 100 μg/ml DiD-labelled CS-NCs (green) for 18 h, 

co-stained with LysoTracker (red) and DAPI (blue), and visualized by confocal microscopy. c Pearson correlation coefficient between CS-NCs and 

acidic compartments (Lysotracker positive). Each dot represents one single cell (n = 98). Error bars represent the mean ± SD. d Mφs were exposed to 

100 μg/ml CS-NCs or latex beads for 18 h and incubated with Lysotracker Red. The intensity of the lysotracker staining was then quantified by FACS. 

Results are expressed as the mean fluorescence intensity (MFI). Significant differences between treatments and untreated controls are indicated by 

an asterisk, in which *p < 0.05. Error bars represent the mean ± SD
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depending on the receptors involved. In the context of 

NCs, it is important to decipher the impact of CS-NC 

internalization on the cell transcriptome to identify 

potential side effects. Indeed, it has been shown that 

NCs can regulate the expression of cell-cycle-related 

genes, modulate inflammation, and up-regulate the 

stress response [34–36]. We evaluated the host response 

to CS-NCs by comparing the transcriptional profiles of 

untreated Mφs (control) with those incubated with CS-

NCs. After 18  h of incubation, the cells were lysed and 

the mRNA sequenced. CS-NCs did not alter cell viability 

over an incubation period of 5 days (Additional file 1: Fig. 

S1). Detailed descriptions of our data processing, qual-

ity control analysis, and statistical modeling are available 

in the Methods section. We used a low-dose of NCs to 

mimic realistic doses of Mφ exposure in vivo and to avoid 

any response due to a high number of particles [37]. We 

identified 242 genes for which the expression was mod-

ulated by CS-NCs (FDR < 0.05, Fig.  3a and Additional 

file 2: Table S1). The expression of 156 genes was upregu-

lated and that of 86 downregulated upon treatment. In 

particular, the expression of inflammation-related genes 

(IL-12B, IL-32, TNF-α and IL-6) and that of chemokines 

(CCL20, CCL4L2, CXCL8/IL-8, and CCL4) was strongly 
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upregulated in the presence of chitosan. We examined 

a selected panel of genes to validate our transcriptomic 

data. We used ELISA to confirm the upregulation of 

TNF-α, interleukin 8 (CXCL8/IL-8), and CCL4 secretion 

in the supernatant of Μφs treated with various concen-

trations of NPs for 18 h (Fig. 3b).

We then classified the modulated genes on the basis of 

the annotation resources provided by KEGG [38] by per-

forming gene-set enrichment analysis of the list of differ-

entially expressed genes using the EnrichR tool [39]. The 

gene set differentially expressed by CS-NCs was signifi-

cantly enriched for genes involved in cytokine–cytokine 

receptor interactions (p = 4.49E−20), TNF and NF-kB 

signaling (p = 1.59E−13 and 5.33E−11, respectively), 

chemokine signaling (p = 6.28E−11), and the TLR/NLR 

pathways (p = 2.86E−10 and 9.34E−10, respectively) 

(Fig. 3c and Additional file 3: Table S2). Chitosan is a nat-

urally occurring polysaccharide derived from chitin, the 

second most common polysaccharide in nature. It is less 

common than chitin and can be found in certain species 

of fungi, but neither are expressed in mammals [40]. It 

is thus not surprising that this polysaccharide induces a 

pro-inflammatory response. Indeed, highly purified chi-

tosan was shown to potently activate the NLRP3 inflam-

masome, increasing expression of the pro-inflammatory 

cytokine IL-1β [41]. CS-NCs induced expression of pro-

inflammatory cytokines by human peripheral blood mon-

onuclear cells, including IL-6, TNF-α and IFN-γ, among 

others [35]. In vivo, chitosan has been reported to induce 

an acute inflammatory response [42] and Mφ nitric 

oxide production and chemotaxis [43]. The ability of 

CS-NCs to promote inflammation could be useful when 

drug delivery is combined with immunotherapy to elicit 

innate and adaptive immune responses against pathogens 

[44] or tumor cells [45]. However, long-term inflamma-

tory responses could be detrimental to the host. We thus 

decided to modify CS-NCs in order to decrease their 

pro-inflammatory properties, and we generated CS-NCs 

containing tri-mannose motifs. Mφs express numerous 

lectins which can bind mannose, including the mannose 

receptor and DC-SIGN [46]. These receptors have immu-

nomodulatory properties and can dampen inflammation 

upon ligand binding [47–49]. Targeting these receptors 

may thus be an attractive strategy to modulate the host 

response to CS-NCs.

Fabrication and characterization of tri-mannose-chitosan 

NCs

The general procedure for ligand grafting on chitosan 

surfaces, using the homobifunctional crosslinker, 

bis(sulfosuccinimidyl) suberate  (BS3), has been 

reported previously for other types of ligands [18]. 

Here, we adapted it for the linking of a tri-mannose 

ligand with an alkyl spacer chain and a primary amino 

group on the NC surface available for the reaction with 

the crosslinker (Fig. 4a and Additional file 4: Fig. S2a). 

We assessed the physicochemical properties of CS-NCs 

before and after grafting with tri-mannose. CS-NCs 

had a slightly higher mean diameter after the grafting 

process (Additional file  5: Table  S3). The tri-mannose 

chain might strongly interact with the water of the 

medium, altering its structure and organizing the sur-

rounding water molecules in a thicker hydration shell. 

In the case of Nile Red-labelled NCs, the non-grafted 

carriers were slightly less stable and their diameter 

appeared to be higher. After grafting, both labelled and 

non-labelled carriers had a hydrodynamic diameter of 

slightly less than 200 nm.

We next analyzed the morphology of the grafted NCs 

by cryo-electron microscopy. The NCs were homogene-

ous and the size of most of the spherical NCs present 

were in accordance with the dynamic light scattering 

analysis (Fig.  4b). The surface of the NCs showed no 

appreciable differences in morphology by electron 

microscopy after grafting. Nonetheless, we evaluated 

the outcome of the grafting process by Fourier transform 

infrared spectroscopy (FTIR) and by measuring the sur-

face potential of NCs before and after grafting with the 

tri-mannose ligand (Additional file 4: Fig. S2b and Addi-

tional file 5: Table S3). Unmodified chitosan surfaces gen-

erally present high positive Z potential values in water 

and slightly acidic pH, due to the presence of proto-

nated amino groups. After grafting with the tri-mannose 

ligand, the masking effect on the amino groups on the 

surface led to negative potential values. The high absolute 

values also indicated good colloidal stability of the sam-

ples under the measuring conditions.

Finally, we tested the surface availability of tri-mannose 

motifs using concanavalin A (ConA). ConA is a lectin 

that presents a tetrameric structure at physiological pH 

(7.4), formed by four identical subunits, each possess-

ing a mannose-binding site. Because of this characteris-

tic, ConA can be used as a bridge to produce a specific 

concentration-dependent, aggregate of grafted NCs that 

can be measured by DLS analysis. There was a slight sta-

bilizing effect at low concentrations of the lectin, whereas 

there was a four-fold increase in diameter at concentra-

tions above 2 nmol/mgNC (Fig. 4c). The same experiment 

was carried out using non-grafted CS-NCs and there was 

no specific aggregation (Additional file  4: Fig. S2c). We 

observed a completely different behavior of non-grafted 

NCs in the presence of buffer only, showing, in this case, 

an important aggregation effect due to the presence of 

salt. Comparison of the results obtained with grafted 

and non-grafted NCs further demonstrate the effi-

cacy of the grafting process on the chitosan surface and 
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demonstrates the availability of the ligand for the affinity 

interaction with lectin receptors.

Tri-mannose grafting dampens the response of Mφs 

to CS-NCs

We first evaluated whether the addition of tri-mannose 

ligands to the surface of the NCs would improve their 

uptake by Mφs , as this cell type expresses several lectins 

at high levels, including the mannose receptor. There 

were no significant differences in internalization between 

NCs, with or without tri-mannose ligands (Fig.  5a). We 

obtained similar results with other cell types, such as 

A549 epithelial cells and HepG2 hepatocytes (Additional 

file  6: Fig. S3a). As for CS-NCs, the entry of CS-NCs 
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grafted with tri-mannose motifs, hereafter designated 

CS-NCs-tri, was cytochalasin D-dependent, suggesting a 

phagocytic process (Additional file 6: Fig. S3b, Additional 

file 7: Fig. S4).

We next compared the Mφ response to CS-NCs and 

CS-NCs-tri. In resting Mφs , both nanocarriers modu-

lated the expression of relatively few genes relative to 

other stimuli, such as LPS, in which more than 2500 
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genes have been described to be differentially expressed 

(Figs. 3a, 5b) [50]. We identified only 242 and 159 genes 

differentially expressed by cells upon treatment with 

respectively CS-NCs and CS-NCs-tri, of which 105 were 

in common (Fig. 5b and Additional file 8: Table S4). The 

expression of 42% of the genes differentially expressed 

upon treatment with CS-NCs-tri was upregulated. 

We first focused our analysis on the genes in common 

between the two nanocarriers. Unfortunately, the graft-

ing of tri-mannose failed to decrease the pro-inflamma-

tory properties of chitosan. The expression of the potent 

inflammatory mediators, TNF-α and IL-6, and several 

chemokines reported to attract immune effector cells 

(monocytes, neutrophils, dendritic cells, and activated 

T cells) was upregulated in the presence of both nano-

particles (Fig. 5c). Modulated genes were then classified 

based on the annotation resources provided by GeneOn-

tology. The set of genes upregulated by NCs was signifi-

cantly enriched for genes involved in immune activation, 

such as inflammatory response (p = 9.65E−15), neutro-

phil chemotaxis (p = 7.79E−1), and the cellular response 

to IL-1 (p = 7.48E−10) (Fig.  5d and Additional file  9: 

Table  S5). The shared response between CS-NCs and 

CS-NCs-tri most likely reflects the recognition of chi-

tosan by Mφs as a pathogen-associated molecular pattern 

(PAMP), as described above.

We then evaluated the impact of tri-mannose graft-

ing on the Mφ response by analyzing the differentially 

expressed genes specific of each nanocarrier. Functional 

classification of the 137 genes differentially regulated by 

only ungrafted CS-NCs showed that the type I-interferon 

(IFN-I) signaling pathway was the most significantly 

upregulated (Fig. 5e and Additional file 10: Table S6). This 

pathway comprised IL1A, SOCS3, CSF3, RSAD2, OAS2, 

MX1, IFI6, IRF, GP1BA, and EREG. Type I-IFNs play a 

key role in the antiviral response and are also involved 

in autoimmunity (lupus and genetically based interfer-

onopathies) [51], cancer [52], and the immune escape 

mechanisms of bacterial pathogens, such as Mycobac-
terium tuberculosis [53]. Indeed, blood transcriptional 

profiling in TB patients, non-human primates, and mice 

infected with M. tuberculosis have shown up-regulation 

of type I-IFN response related genes, and type I-IFN was 

associated with impaired control of bacterial growth and 

elevated pulmonary immunopathology in murine mod-

els of tuberculosis [54]. Similar results were obtained 

with other bacteria, such as Listeria monocytogenes, 

Brucella abortus, and Staphylococcus aureus [55, 56]. 

In the context of bacterial infections, CS-NCs-tri may 

offer the advantage of boosting the immune response 

while avoiding prolonged IFN-I signaling, which leads 

to immune dysfunction and bacterial escape. Note that 

functional classification of the 54 genes regulated by 

only CS-NCs-tri did not permit to identify significant 

pathways, probably because of too few differentially-

expressed genes.

Tri-mannose modulates the response of M. 
tuberculosis-infected Mφs

Bacterial infection induces important remodeling of the 

infected cell transcriptome [57]. Nanoparticles may thus 

affect uninfected and infected cells in a different man-

ner. We evaluated the impact of the two types of NCs 

on the response of bacteria-infected Mφs . We used a 

similar approach as described above. Briefly, Mφs were 

infected with a virulent strain of M. tuberculosis and then 

treated with CS-NCs or CS-NCs-tri. After 18 h of incu-

bation, the cell transcriptome was analyzed by mRNA 

sequencing. There was no difference in the uptake of 

NCs between naïve and infected cells (Fig.  6a). Unex-

pectedly, the treatment of M. tuberculosis-infected Mφs 

with CS-NCs-tri induced significant remodeling of the 

cell transcriptome. Overall, 958 genes were differentially 

expressed in cells incubated with CS-NCs-tri, whereas 

only 120 were differentially expressed in CS-NCs treated 

cells (Fig.  6b and Additional file  11: Table  S7). Among 

the 958 genes, 873 were specific to CS-NCs-tri and the 

expression of most were downregulated (67%, Fig.  6c). 

The set of genes specifically modulated by CS-NCs-tri 

was enriched for genes involved in oxidative phosphoryl-

ation (up-regulation, p = 4.73E−11), metabolic pathways 

(p = 1.23E−06), and sugar metabolism (downregulation, 

p = 2.16E−3) (Fig.  6d and Additional file  12: Table  S8). 

These results suggest that tri-mannose grafting affect the 

mitochondrial machinery and remodel cellular metabo-

lism. Metabolic signaling dictates the fates and functions 

of many cell types, including T lymphocytes, B cells, and 

Mφs . For example, Mφs can be schematically classified 

into two main classes, depending on their activation sta-

tus: inflammatory or M1 Mφs , and alternatively activated 

M2 Mφs , involved in wound healing and angiogenesis. 

It has been shown that M2 polarization is dependent on 

fatty acid oxidation and oxidative phosphorylation [58, 

59]. Tri-mannose ligands may thus favor M2 polarization 

in the context of bacterial infection.

Conclusions
Here we dissected in detail the response of human 

Mφs to two chitosan-based NCs, containing tri-

mannose motifs at their surface or not. We identi-

fied a core response to both NCs, mainly associated 

with innate immune cell activation. We also detected 

unique pathways to CS-NCs and CS-NCs-tri. Some 

pathways, such as that of type I-IFN, have been shown 

to be exploited by certain pathogens to escape the 

immune response. It would thus be very informative to 
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evaluate whether such NCs can hinder such pathogen 

strategies. Our study also showed that grafting NCs 

with tri-mannose can remodel the transcriptome of M. 
tuberculosis-infected cells, in particular affecting the 

regulation of many metabolic pathways. Further exper-

iments will allow gaining insights into the mechanisms 

and consequences of cell metabolism modulation by 

tri-mannose grafting. The possibility to modulate cell 

metabolism by grafting ligands to the surface of the 

nanoparticles offers new perspectives. Indeed, many 

diseases, including infectious diseases, are associated 

with metabolic dysfunction. The grafting of nanopar-

ticles with metabolic modulators in adjunction to con-

ventional drugs may thus be a promising strategy to 

treat such diseases.
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Methods
Materials

All reagents were purchased from Sigma-Aldrich 

unless otherwise specified.  Tween® 20 and absolute 

EtOH were purchased from Panreac Química S.L.U. 

Bis(sulfosuccinimidyl) suberate  (BS3) was purchased 

from Pierce Biotechnology Inc. and 4-aminobutyl 

2-O-(a-d-mannopyranosyl) 2-O-(a-d-mannopyranosyl) 

a-d-mannopyranoside was purchased from Omicron 

Biochemicals Inc.

Macrophages and cell lines

Blood mononuclear cells were isolated by Ficoll-Paque 

centrifugation (GE Healthcare Life Sciences).  CD14+ 

monocytes were isolated by positive selection using 

CD14 microbeads (Miltenyi Biotec) and allowed to dif-

ferentiate into Mφs in the presence of RPMI 1640 supple-

mented with 10% fetal bovine serum, 2  mM Glutamine 

and granulocyte–macrophage colony-stimulating factor 

(GM-CSF) (20 ng/ml; R&D Systems) over a 6-day period 

(hereafter defined as cell culture medium). Cell cultures 

were fed every 2 days. Human lung epithelium A549 cells 

(Sigma) were cultured in MEM. Human Hep G2 hepato-

cytes (Sigma) were cultured in EMEM (EBSS) supple-

mented with 10% fetal bovine serum, 2  mM Glutamine 

and 1% non-essential amino acids. Cultures were incu-

bated at 37 °C in 5%  CO2.

CS-NC synthesis

CS-NCs were prepared as previously described [18]. For 

fluorescently labelled NCs, 100 μg Nile Red fluorophore 

was added to 40  ml organic phase before adding this 

solution to the aqueous phase for nanoemulsion forma-

tion. After 15  min, chitosan was added to stabilize the 

nanoemulsion. Finally, the chitosan-coated nanoemul-

sion was added to 200 ml 50 mM  Na2SO4. Capsules were 

separated from  Na2SO4 by ultracentrifugation (30  min, 

69,673 × G, 10  °C), washed with 100  mL water, centri-

fuged again, and resuspended in water. The endotoxin 

concentration was < 0.05 EU.

Flow cytometry

CS-NCs were labeled by encapsulation of Nile Red. 

Mφs , epithelial cells, and hepatocytes (4 × 105 cells/

ml) were grown on 24-well plates for 24  h in cell cul-

ture medium, followed by 1 to 18  h of treatment with 

various concentrations of fluorescent NCs. After incuba-

tion, cells were extensively washed with PBS to remove 

extracellular NCs, harvested, and resuspended in 4% 

paraformaldehyde for analysis using a CytoFLEX flow 

cytometer (Beckman Coulter). When indicated, cells 

were preincubated for 1 h with inhibitors in serum-free 

RPMI medium. The media was then changed to cell cul-

ture medium containing inhibitors plus fluorescent par-

ticles (100 μg/ml) and further incubated for 2 h. NC-only 

treated cells were used as positive controls and compared 

to inhibitor plus NC-treated cells. Concentrations were 

obtained from the literature for chlorpromazine (10 μg/

ml), colchicine (2 μg/ml), cytochalasin D (10 μg/ml), and 

nystatin (20  μg/ml). All inhibitors were obtained from 

Sigma-Aldrich. More than 10,000 events per sample 

were recorded. The analysis was performed using FlowJo 

software.

Confocal microscopy

Mφs (4 × 105 cells/ml) were grown on 12-mm circu-

lar coverslips in 24-well tissue culture plates for 24 h in 

cell culture medium, followed by 1, 4 and 18 h of treat-

ment with 100  μg/ml fluorescent NCs. Cells were then 

extensively washed with PBS and subsequently stained 

when indicated for 1  h with 1  mM  LysoTracker® Red 

DND-99 (ThermoFisher Scientific), following the manu-

facturer’s protocol. Cells were then washed twice with 

PBS, fixed with 4% paraformaldehyde for 30  min at RT, 

and mounted on a glass slide using Fluoromount mount-

ing medium containing 1  μg/ml 4′,6-diamidino-2-phe-

nylindole (DAPI) (Invitrogen). Cells were analyzed with 

a Leica TCS SP2 Confocal System. Z-stack optical sec-

tions were acquired at 0.3-μm-depth increments. Decon-

volution and alignment of complete image stacks was 

performed with Huygens Pro (version 14.10, Scientific 

Volume Imaging). Each cell was analyzed with “Colocali-

zation Analyzer” module to get quantitative information 

about the amount of spatial overlap between NCs and 

 LysoTracker® in data channels.

Transmission electron microscopy (TEM)

The intracellular localization of CS-NCs in Mφs was 

assessed by TEM. Cells incubated with 100  μg/ml NCs 

were fixed with 4% glutaraldehyde in 0.2 M sodium caco-

dylate pH 7 for 2 h at 4  °C. The cells were then washed 

twice with PBS and resuspended in 1 ml of 0.1% glutaral-

dehyde. Resin blocks were cut into 50-nm slices using an 

ultramicrotome. Samples were observed in a FEI Tecnai 

T20 microscope operating at 200 kV.

Cytotoxicity assay

Mφs (0.1 × 106 cells/well) were grown in 96-well plates 

for 24 h, followed by treatment with various concentra-

tions of NCs for the indicated times. Cell viability was 

determined by MTT assay following the manufacturer’s 

protocol (Trevigen).
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RNA isolation, library preparation, and sequencing

Total RNA from macrophages was extracted using QIA-

zol reagent (Life Technologies) and purified over RNeasy 

columns (Qiagen). The quality of all samples was assessed 

with an Agilent 2100 bioanalyzer (Agilent Technolo-

gies) to verify RNA integrity. Only samples with a good 

RNA yield and no RNA degradation (ratio of 28S to 18S, 

> 1.7; RNA integrity number > 9) were used for further 

experiments. cDNA libraries were prepared with the Illu-

mina TruSeq RNA Sample Preparation Kit v2 and were 

sequenced on an llumina HiSeq 2500 at the CHU Sainte-

Justine Integrated Centre for Pediatric Clinical Genomics 

(Montreal, Canada). STAR v2.5.0b [60] was used to map 

RNA-seq reads to the hg38 reference genome and quan-

tify gene expression (option-quantMode GeneCounts) by 

counting the fragments overlapping the Ensembl genes 

(GRCh38 v. 83). Differential expression analysis was per-

formed using a generalized linear model with the R Bio-

conductor package edgeR v3.16.5 [61] on the genes with 

more than one count per million (CPM) in at least two 

samples. The model formula used in edgeR (~ Donor + I 

nfe cti o n  +  Inf ect ion:Donor + Infection:Treatment + D

onor:Treatment) contained: the main effects for Donor 

and Infection, interactions of Donor with Infection and 

Treatment to adjust for various responses to infection 

and treatment between donors, and a nested interaction 

of Infection with Treatment because we were interested 

in the infection-status-specific treatment effects. The 

latter was used to extract differentially expressed genes 

between NC-treated and untreated samples under the 

infected and uninfected conditions.

Mycobacteria and Mφ infection

Mycobacterium tuberculosis H37Rv was grown from 

a frozen stock to mid-log phase in 7H9 medium (Bec-

ton–Dickinson), supplemented with albumin–dextrose–

catalase (ADC, Difco), and Mφ infection carried out 

as previously described [62]. Before infection, bacteria 

were washed three times and re-suspended in 1 ml PBS. 

Clumps were dissociated by 30 passages through a nee-

dle and then allowed to sediment for 5 min. The density 

of bacteria in the supernatant was verified by measur-

ing the  OD600 and aliquot volumes defined to allow one 

bacterium-per two cell infections. Cells were infected in 

24-well plates with each well containing 0.5 × 106 cells in 

1 ml medium containing GM-CSF (R&D Systems). After 

2  h of incubation at 37  °C, infected cells were washed 

three times in PBS to remove extracellular bacteria and 

incubated in fresh medium. M. tuberculosis strain H37Rv, 

expressing green-fluorescent protein (GFP) (GFP-M. 
tuberculosis), carried the pEGFP plasmid (gift from G. 

Stewart, Imperial College, London, U.K.), which encodes 

resistance to hygromycin and harbors the gfp gene under 

the control of the mycobacterial Phsp60 constitutive 

promoter.

Enzyme-linked immunosorbent assay (ELISA)

At 18  h after NC treatment, supernatants from treated 

and untreated macrophages were filtered (pore size, 

0.22  μm; Millipore). Levels of TNF-α, IL-8, and CCL4 

(R&D) were determined in triplicate by ELISA following 

the protocol of the assay kit manufacturers.

Tri-mannose-CS-NC synthesis and characterization

NCs (20  mg) were diluted in 10  mM borate buffer pH 

8.2 for grafting with tri-mannose ligand. First, 50  nmol 

 BS3 crosslinker was added for each mg of NCs and the 

reaction incubated for 30  min under stirring at room 

temperature. Then, a fourfold excess of 4-aminobutyl 

2-O-(a-d-mannopyranosyl) 2-O-(a-d-mannopyranosyl) 

a-d-mannopyranoside, corresponding to a total amount 

of 4 μmoles of tri-mannose ligand, was added and the 

reaction mixture incubated for 2  h under stirring at 

40 °C. Finally, an excess of 50 mM TRIS–HCl buffer pH 

8.2 was added to quench any unreacted linker. Grafted 

NCs were washed three times, including centrifugation 

for 1  h at 16,000  rpm and 4  °C, to separate them from 

residual reactants. The NC concentration in a water sus-

pension was obtained by measuring the weight of a fixed 

volume of sample after freeze-drying. The hydrodynamic 

diameter and polydispersity index (PDI) of the NCs were 

measured by dynamic light scattering analysis using a 

Brookhaven 90Plus DLS instrument and the Photo-Cor-

relation Spectroscopy (PCS) technique. The endotoxin 

concentration was < 0.05 EU.

Cryogenic transmission electron microscopy

Specimens were vitrified in liquid ethane and analyzed in 

a TEM microscope at low temperature. The vitrification 

process was performed in an FEI Vitrobot: a 3-μl drop of 

an aqueous suspension of the material was placed on a 

TEM Quantifoil carbon grid, excess water blotted away at 

the Vitrobot with filter paper, and the grid freeze-plunged 

into liquid ethane. Samples were then transferred under a 

liquid nitrogen atmosphere to a Gatan TEM cryo-holder 

equipped with a liquid nitrogen reservoir. TEM images 

were obtained in a Tecnai T20 (FEI), operated at 200 kV, 

coupled to a Veleta CCD camera.

Determination of the surface potential

The surface potential was measured using a Plus Particle 

Size Analyzer (Brookhaven Instruments Corporation). 

NCs were analyzed in a 1 mM KCl suspension at a con-

centration of 0.01 mg/ml of material.
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Fourier transform infrared spectroscopy analysis

A JASCO FT/IR—4100 Fourier transform infrared 

spectrometer in a frequency range of 600–4000  cm−1 

was used to carry out the analysis using a resolution of 

2 cm−1 and a scanning number of 32.

Concanavalin A aggregation test

NCs were diluted in 10 mM TRIS–HCl buffer pH 7.4 at 

a concentration of 0.2  mg/ml and various amounts of 

concanavalin A (0.5 to 8 nmol/mgNC) added. The mix-

ture was left for 120  min for the interaction to occur 

and the degree of aggregation was subsequently meas-

ured by determining the hydrodynamic diameter of the 

NCs.

Statistical analysis

Means were analyzed by 1-way ANOVA or the unpaired 

two tailed Student’s t test, for which p values < 0.05 

(*), < 0.01 (**), and < 0.001 (***) were considered to be sta-

tistically significant. Analyses were performed using the 

Prism 5 program for MAC OS X (GradhPad Software). 

p-values for the RNA sequencing data were adjusted for 

multiple comparisons using the Benjamini–Hochberg 

method, producing an adjusted p-value or false-discovery 

rate (FDR). An FDR < 0.05 was considered to be statisti-

cally significant.

Additional files

Additional file 1: Fig. S1. Cytotoxicity of chitosan NCs. M φ s were 

exposed to 100 μg/ml CS-NC for 18 h and 5 days. Cell viability was meas-

ured by the MTT assay.

Additional file 2: Table S1. Differentially-expressed genes by M φ s upon 

chitosan NC treatment. FDR < 0.05.

Additional file 3: Table S2. KEGG enrichment of differentially expressed 

genes upon chitosan NC treatment. p-value < 0.05.

Additional file 4: Fig. S2. Physicochemical and biological properties of 

tri-mannose-grafted chitosan NCs. a Chemical structure of the chitosan, 

BS3 linker, and trimannoside used to perform the grafted NCs. b FTIR 

analysis of CS-NCs before and after grafting with tri-mannose ligands. c 

Hydrodynamic diameter of non-grafted CS-NCs incubated with various 

concentrations of concanavalin A.

Additional file 5: Table S3. Dynamic light scattering and Z-potential 

analysis. NCs were characterized in terms of size (hydrodynamic diameter), 

polydispersity index (PDI), and surface potential (Z-potential).

Additional file 6: Fig. S3. Cellular uptake of tri-mannose-grafted chitosan 

NCs. a 100 μg/ml of Nile-Red-labelled CS-NCs-tri were incubated for 4 h 

with M φ s, A549 epithelial cells, or HepG2 hepatocytes. NP uptake was 

analyzed by FACS as mentioned above. b M φ s were incubated with 

100 μg/ml fluorescent NCs for 2 h with or without nystatin, colchicine, 

cytochalasin D, or chlorpromazine. NC uptake was analyzed by FACS.

Additional file 7: Fig. S4. TEM micrographs of internalized tri-mannose-

grafted chitosan NCs. M φ s were cultured for 1 a or 18 h. b in the presence 

of 100 μg/ml CS-NCs-tri. Intracellular localization was then assessed 

by TEM. Yellow arrows: CS-NCs, Red arrows: NCs fusion. Note that NC 

fusion leads to the formation of big nanoparticles in some cells at 18 h 

post-treatment.

Additional file 8: Table S4. Differentially expressed genes by M φ s upon 

tri-mannose-grafted chitosan NC treatment. First table: all genes differen-

tially expressed. Second table: genes modulated by both NCs. Third table: 

genes modulated only by CS-NCs-tri. FDR < 0.05.

Additional file 9: Table S5. GO enrichment of genes differentially 

expressed by both chitosan NCs and tri-mannose-grafted chitosan NCs. 

p-value < 0.05.

Additional file 10: Table S6. GO enrichment of genes differentially 

expressed only upon treatment with chitosan NCs. p-value < 0.05.

Additional file 11: Table S7. Genes differentially expressed by M. tubercu-
losis infected M φ s upon treatment with NCs. First table: genes modulated 

by CS-NCs. Second table: genes modulated by CS-NCs-tri. FDR < 0.05.

Additional file 12: Table S8. KEGG enrichment of genes differentially 

expressed by M. tuberculosis infected M φ s upon treatment with tri-man-

nose-grafted chitosan NCs. First table: up-regulated processes. Second 

table: down-regulated processes. p-value < 0.05.
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