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Abstract

Background: Nearly 10 years ago, the World Health Organization reported the increasing prevalence of overweight
and obesity worldwide as a challenge for public health due to the associated adverse consequences.
Epidemiological studies established a firm relationship between an elevated body mass index and chronic
conditions such as diabetes, dyslipidemia, hypertension, heart disease, non-alcoholic fatty liver disease, and some
types of cancer. Omic studies demonstrated that microRNA (miRNA) profile changes in tissues correlate with a
number of diseases, including obesity. Recent studies showed a remarkable stability of miRNAs also in blood,
emphasizing their potential as theranostic agents for a variety of disorders and conditions. A number of miRNAs
enriched in homeostasis of obesity and metabolic disorders have been characterized in previous researches.

Aim: This work was finalized to investigate the differential circulating miRNAs signature in early childhood obesity. Our
cross-sectional study analyzed the signature of circulating miRNAs in plasma samples of normal weight (n = 159) and
overweight/obese (n = 149) children and adolescents participating to the I.Family study, an EC-funded study finalized
to investigate the etiology of overweight, obesity and related disorders and the determinants of food choice, lifestyle,
and related health outcomes in children and adolescents of eight European countries (www.ifamilystudy.eu).

Results: Differences in miRNA signature with respect to anthropometric and biochemical variables were analyzed. A
high degree of variability in levels of circulating miRNAs was identified among children from different countries, in line
with recent reports supporting the hypothesis that these molecules are likewise affected by environmental and lifestyle
factors. A panel of miRNAs differentially expressed in overweight/low-grade obesity children was characterized (miR-
551a and miR-501-5p resulted upregulated; miR-10b-5p, miR-191-3p, miR-215-5p, and miR-874-3p resulted
downregulated). ROC curves were also constructed for experimentally confirmed miRNAs. Single miRNAs generally
exhibited low AUC values with the highest values for miR-874-3p and miR-501-5p which in combination provided an
interesting value (AUC = 0.782). Pearson’s analysis confirmed that miR-10b-5p, miR-215-5p, miR-501-5p, miR-551a, and
miR-874-3p significantly correlated with BMI z-score. Molecular interactions of obesity-associated miRNAs were also
predicted by bioinformatics tools.

Conclusions: Our work showed that several circulating miRNAs are differentially represented in overweight/low-grade
obesity children and adolescents. Although causal pathways cannot be firmly inferred, it is conceivable that circulating
miRNAs may be new biomarkers of early childhood obesity.
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Background
In recent times, the discovery of microRNAs (miRNAs)
has contributed to the wide range of epigenetic mecha-
nisms related to obesity. In 2016, a pilot study was con-
ducted by our group on a sample of overweight/obese
(OW/Ob) children belonging to the Italian cohort of the
I.Family project [1], an EC-funded study finalized to in-
vestigate the etiology of overweight, obesity and related
disorders and the determinants of food choice, lifestyle,
and related health outcomes in children and adolescents
of eight European countries [2].
miRNAs are short non-coding RNAs with a length of

20–24 nucleotides, which are involved in the fine control
of the gene expression [3]. At present, more than 2500
different miRNAs have been described in humans. Re-
lease 22 (March 2018) of miRBase database contains
38,589 entries representing hairpin precursor miRNAs,
expressing 48,885 mature miRNA products, in 271 spe-
cies (http://www.mirbase.org/). Post-transcriptional gene
regulation is achieved by miRNAs through mechanisms
of translational inhibition and mRNA destabilization.
Remarkably, each miRNA can target many transcripts,
and individual mRNA may include multiple binding sites
for different miRNAs. The concurrent targeting of mul-
tiple genes can lead to a specific fine-tuning through the
regulation of distinct sub-networks [4].
A number of miRNAs have been confirmed to be

present in surprisingly high concentrations in serum/
plasma and other body fluids [5]. The evidence that
miRNAs could be stable in blood, in spite of the ubi-
quity of nucleases, was originally met with skepticism by
scientists; however, this finding generated high interest
for the possibility that changes in cell-free miRNAs
could be used as stable and accessible indicators for a
variety of physio-pathological conditions [6]. Although a
recognized mechanism for the release of miRNAs from
cells is mainly indefinite, growing evidence supports the
indication that extracellular miRNAs, arranged either
into exosomes or protein complexes, may be delivered
to the receiver cells, where they can be involved in the
control of target gene translation. Nevertheless, the
physiological role of circulating miRNAs remains still
uncertain.
Considerable progress has been achieved in the re-

search of contributory crosstalk between miRNAs and
metabolic disorders, and recently, a number of miRNAs

have been recognized to be involved in adipogenesis,
adipose tissue metabolism, and obesity [1, 7–9]. Inclu-
sively, a number of miRNAs enriched in homeostasis of
obesity and metabolic disorders have been earlier
reviewed [10]. Moreover, various studies have revealed a
differential circulating miRNAs signature in overweight/
obese as compared to normal weight children and
adolescents.
The aim of this investigation was to identify, in a lar-

ger sample of children belonging to the I.Family Project,
circulating miRNAs potentially associated with primary
stages of obesity via an integrated study comprising
miRNA signatures and bioinformatic analyses in order
to shed light on miRNA regulatory networks in early
childhood obesity. This is a validation study seeking for
confirmation of previous results and need to be envis-
aged as such.

Results
Anthropometric and metabolic characteristics of the
study population
Individual plasma samples (n = 308, NW= 159, OW/Ob
= 149) were first screened for hemolysis, and hemolyzed
samples were excluded from analysis. The anthropomet-
ric and metabolic characteristics of the 189 resulting
participants are summarized in Tables 1 and 2 respect-
ively. The average BMI z-score in the OW/Ob group
was 1.75 ± 0.61, compared to − 0.04 ± 0.50 in the NW
group. OW/Ob children also had significantly higher tri-
glyceride levels, insulin levels, HOMA index, and lower
HDL levels as compared to NW; total cholesterol and
LDL levels were not significantly different between the
two groups.

qPCR-arrays screening and RT-qPCR validation of
candidate miRNAs
As a time and cost-reducing strategy, samples from NW
and OW/Ob subjects were preliminarily extracted and
evaluated as pools grouped by country of origin (Fig. 1).
These groups were investigated for diverse countries by
PCR arrays performed in triplicate. Subsequent data pro-
cessing included the scatter plot analysis, useful to iden-
tify changes in magnitude and relative abundance of
single circulating miRNAs in OW/Ob vs NW group.
The statistical significance of miRNA levels between
NW and OW/Ob groups was evaluated by the volcano
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plot analysis combining the transformed p value as a
measure of statistical significance with the magnitude of
the fold change (Additional file 1: Figure S1). The signifi-
cance level for selected miRNAs was in general low.
Based on the statistical significance (p < 0.05), 9 miRNAs
were preliminarily selected as candidates for the
RT-qPCR validation step. Moreover, 5 extra miRNAs se-
lected among the best of those discarded (p > 0.05, and
> 1.7-fold change difference between groups) were also
included in the confirmatory study (Table 3). miRNAs
co-regulated patterns were also investigated by hierarch-
ical clustering to characterize miRNA signature by coun-
tries (Fig. 2).

RT-qPCR validation in individual plasma samples
Designated miRNAs were further evaluated in individual
samples by RT-qPCR using the whole cohort of 189 sub-
jects. Following an extraction of single samples, miRNA
relative levels were normalized using the spike-in
Cel-miR-39. Data were next clustered into control (NW)
and OW/Ob groups, and miRNA expression was nor-
malized to the average of the NW group. In general,
only slight differences in expression between compared

groups were found. Nevertheless, when statistical ana-
lysis of miRNAs expression was performed by volcano
plot analysis, using a p value cutoff of < 0.05 and
Benjamini-Hochberg false discovery rate method for the
multiple testing corrections, several miRNAs were iden-
tified (miR-10b-5p, p = 0.000009; miR-191-3p, p = 0.004;
miR-215-5p, p = 0.0002; miR-551a, p = 0.005; miR-
874-3p, p = 0.0001). Moreover, as reported in Table 4,
the differential expression of a subset of candidate miR-
NAs was statistically confirmed by analysis of covariance
(ANCOVA) adjusting for covariates (age, sex, and coun-
try of origin).

Correlation of circulating miRNAs to BMI z-score and
biochemical parameters
ROC curves were constructed for each validated miRNA
and areas under the receiver–operator curve (AUC) were
determined to evaluate the performance in discriminating
between groups. The highest values were for miR-874-3p
(AUC= 0.67) and miR-501-5p (AUC= 0.63) for which the
respective ROCs are presented in Fig. 3 in association to
box-whisker charts reporting the miRNA relative levels.
When miR-874-3p and miR-501-5p were used in combin-
ation, this provided an interesting AUC = 0.782.
Conceivable correlations among confirmed miRNAs

levels and anthropometric/biochemical parameters were
additionally evaluated by Pearson’s analysis. Correlation
coefficients with BMI z-score were generally low. Never-
theless, for miR-10b-5p, miR-215-5p, miR-501-5p, miR-
551a, and miR-874-3p associations with BMI, z-scores
were confirmed as reported in Fig. 4 (in bold).
MiR-874-3p, in addition to miR-501-5p, also corre-
lated with the weight z-score (R = − 0.197, p = 0.007
and R = 0.172, p = 0.018, respectively). Associations
with the biochemical parameters were also tested.
None of the selected miRNAs correlated with levels
of glucose, glycated hemoglobin, total cholesterol,
HDL-C, and TRG (data not shown). Moreover,

Table 1 Characteristics of subjects included in the study

NW OW/Ob

N (M/F) Age (years) BMI z-score N (M/F) Age (years) BMI z-score

Belgium 15 (6/9) 11.6 ± 1.5 − 0.26 ± 0.04 7 (3/4) 11.8 ± 2.1 1.44 ± 0.42

Cyprus 6 (2/4) 11.3 ± 1.6 − 0.15 ± 0.63 6 (2/4) 11.9 ± 1.3 1.96 ± 0.68

Estonia 17 (9/8) 13.0 ± 1.5 − 0.03 ± 0.48 14 (8/6) 13.2 ± 1.5 1.67 ± 0.48

Germany 10 (2/8) 12.1 ± 1.5 − 0.12 ± 0.56 16 (6/10) 13 ± 1.5 1.74 ± .60

Hungary 13 (8/5) 11.9 ± 2.0 0.06 ± 0.54 12 (4/8) 12.0 ± 2.3 1.96 ± 0.62

Italy 10 (2/8) 12.1 ± 1.3 0.18 ± 0.40 12 (9/3) 12.2 ± 1.4 1.97 ± 0.77

Spain 13 (9/4) 12.0 ± 2.3 0.08 ± 0.49 14 (4/10) 11.8 ± 1.9 1.66 ± 0.71

Sweden 11 (7/4) 11.4 ± 1.4 − 0.09 ± 0.54 13 (5/8) 11.2 ± 2.1 1.65 ± 0.47

All 95 (45/50) 12.0 ± 1.6 − 0.04 ± 0.50 94 (41/53) 12.3 ± 1.8 1.75 ± 0.61

Nw normal weight, OW/Ob overweight/obese. BMI z-score: age and sex-corrected body mass index. Values are expressed as mean ± SD. Subjects from the distinct
countries correspond to separate pools of NW and OW/Ob

Table 2 Metabolic characteristics of subjects included in the study

NW OW/Ob p

Glucose (mg/dl) 92.8 ± 6.7 94.0 ± 7.4 0.257

Insulin (pg/ml) 238.1 ± 182.1 385.6 ± 323.8 < 0.001

Homa index 1.4 ± 1.0 2.2 ± 1.9 0.001

HBA1 (%) 5.0 ± 0.3 4.9 ± 0.3 0.494

Triglycerides (mg/dl) 63.2 ± 28.8 78.5 ± 45.0 0.006

Total cholesterol (mg/dl) 157.6 ± 24.9 153.2 ± 22.7 0.212

HDL cholesterol (mg/dl) 62.0 ± 14.1 52.8 ± 11.2 < 0.001

LDL cholesterol (mg/dl) 86.9 ± 22.0 88.9 ± 20.7 0.522

Nw normal weight, OW/Ob overweight/obese, LDL low-density lipoprotein,
HDL high-density lipoprotein, HOMA index homeostasis model assessment of
insulin resistance, HBA1 hemoglobin A1c. Data are expressed as mean ± SD
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Fig. 1 Schematic flow diagram of the proposed approach for the identification of miRNA patterns in early obesity

Table 3 Selected candidate miRNAs

miRNA miRBase accession number

hsa-miR-10b-5p MIMAT0000254

hsa-miR-26b-3p MIMAT0004500

hsa-miR-31-5p MIMAT0000089

hsa-miR-191-3p MIMAT0001618

hsa-miR-206 MIMAT0000462

hsa-miR-215-5p MIMAT0000272

hsa-miR-375 MIMAT0000728

hsa-miR-483-5p MIMAT0004761

hsa-miR-485-5p MIMAT0002175

hsa-miR-501-5p MIMAT0002872

hsa-miR-551a MIMAT0003214

hsa-miR-576-5p MIMAT0003241

hsa-miR-874-3p MIMAT0004911

hsa-miR-2355-5p MIMAT0016895

Based on the fold change and/or statistical significance, 14 miRNAs were
preliminarily selected as candidates miRNAs for RT-qPCR validation

Fig. 2 Hierarchical clustering analysis. Differences were appreciable
between the compared groups but a high degree of variability was
also recognized for the different countries
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miR-191-3p, among miRNAs recognized in ANCOVA
analysis, was associated with plasma insulin levels
(R = 0.297, p < 0.01), and HOMA index (R = 0.313,
p < 0.01) in Pearson’s analysis.

miRNAs target prediction
Target prediction and pathway enrichment was achieved
using the software DIANA-miRPath v3.0. In detail, data

analysis for multiple miRNAs was performed by the
genes union selection. A p value threshold of 0.05 and
FDR correction were applied to the analysis. miRNA tar-
get genes were processed by miRPath to find enriched
biological pathways provided by KEGG. Moreover, target
genes were classified according to KEGG functional an-
notations to identify top pathways that were actively reg-
ulated by miRNAs. All identified pathways were

Table 4 Statistically significant deregulated miRNAs

NW OW/Ob p Adj R2

hsa-miR-10b-5p 3.885 (3.421–4.349) 3.096 (2.632–3.560) 0.019 0.037

hsa-miR-191-3p 4.255 (3.684–4.827) 3.381 (2.809–3.952) 0.035 0.033

hsa-miR-215-5p 2.925 (2.407–3.443) 2.134 (1.613–2.654) 0.035 0.028

hsa-miR-501-5p 0.589 (0.503–0.676) 0.799 (0.712–0.886) 0.001 0.126

hsa-miR-551a 0.102 (0.065–0.140) 0.173 (0.135–0.211) 0.010 0.033

hsa-miR-874-3p 5.633 (5.064–6.202) 3.935 (3.363–4.508) < 0.001 0.067

NW normal weight, OW/Ob overweight/obese. Values are mean [95% confidence interval (CI)], adjusted for age, sex, and country of origin. Covariates effect:
miR-10b-5p: country (p = 0.019); miR-191-3p: none; miR-215-5p: none; miR-501-5p: country (p < 0.001); miR-551a: none; miR-874-3p: none

Fig. 3 ROC curves to compare the ability of each miRNA to distinguish between groups. The AUC is a measure of how well a quantitative test
can distinguish between OW/Ob and NW subjects. The area under the receiver–operator curve (AUC) for miR-874-3p and miR-501-5p are
reported. Box-whisker charts are also reported in association with a scatter diagram for selected miRNAs
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arranged according to enrichment statistical scores (p
values) in addition to the number and names of miRNA
target genes implicated in each KEGG pathway. Since
both donor and target organs of circulating miRNAs are
unknown, the top predicted pathways were explored ei-
ther for single miRNAs or in their association (Fig. 5).
Computational predictions of target genes followed by
Gene Ontology (GO) enrichment analysis designated a
pleiotropic role of these miRNAs in controlling relevant
biological processes also including gene expression and
cellular biosynthetic process (Additional file 2: Figure S2).

Discussion
Numerous studies reveal a connection between epigen-
etic marks and human obesity. There is growing evi-
dence that the epigenetic regulation of the gene
expression represents a main contributor to the variation
of predisposition to obesity and obesity-related disease
[11]. As an example, epigenome-wide association studies
have shown that BMI is connected with extensive
changes in DNA methylation status and alteration in
DNA methylation was confirmed to predict future devel-
opment of T2D [12]. Other studies suggest that some of
the methylation marks are a result of an obese pheno-
type and not necessarily the cause [13]. Nevertheless,
evidence of the role of epigenetics in obesity comes
mainly from animal models and studies with humans are
still limited, but the results so far have shown promise
to help explain the variation in predisposition to obesity.

Although numerous aspects remain to be clarified, miR-
NAs research has contributed to shed lights on epigen-
etic mechanisms related to obesity. Circulating miRNAs
are increasingly explored as innovative and non-invasive
diagnostic markers. Of the 78,730 manuscripts regarding
miRNAs to date annotated in PubMed, the majority has
a straight association to human diseases and most to
cancer. Several studies have clearly established that miR-
NAs correlate in a causative manner with obesity by dir-
ectly affecting the status and functions of adipose tissue,
pancreas, liver, muscle, and additional tissues and organs
[14]. Remarkably, the screening of the tissue expression
pattern of the five dysregulated miRNAs established that
these miRNAs are amply co-expressed in plasma sam-
ples and other tissues (Additional file 3: Figure S3).
Additionally, a number of reports have assessed differ-

ences in circulating miRNAs content in overweight/obese
and T2D individuals [1, 10, 15–18], and levels of definite
miRNAs vary under different conditions [16, 19–25].
Interestingly, adipose tissue macrophages in Ob mice have
been shown to secrete miRNA-containing exosomes
which cause glucose intolerance and insulin resistance
when administered to lean mice [26]. Moreover, connec-
tions between circulating miRNAs and obesity have been
investigated in adult as well as in children by several stud-
ies [1, 7–9, 18, 27–29]. Within these investigations, char-
acterized miRNAs have not been constantly confirmed
and a number of inconsistencies have been reported
among different studies, with discrepancies partially

Fig. 4 Correlation between miRNAs and the BMI z-scores. The correlation coefficient between the miRNA expression levels and BMI z-scores.
R and P values are presented from Pearson’s analysis
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explained by dissimilarities in miRNAs detection pro-
cedures, experimental workflows, and cohorts selec-
tion criteria.
In the present study, as efficiency-optimized strategy,

we performed a pre-screening in which compared
groups were investigated for diverse countries as distinct
pools. Of note, when miRNA signatures were analyzed
by hierarchical clustering, a high degree of variability
was detected among the different countries. As an ex-
ample, the miRNAs identified as differentially expressed

in OW/Ob children in a small sub-sample of the I.Fam-
ily Italian cohort [19] were not confirmed in the whole
European cohort. This result is not inconsistent with our
overall hypotheses, since recent reports supporting the
assumptions that levels of circulating miRNAs are like-
wise affected by lifestyle factors [30] and that many
miRNA families are connected to diet and nutritional in-
terventions [31]. Furthermore, it has been suggested that
dietary miRNAs may also resist digestion and can be
recognized in biofluids [32], even if the significance of

Fig. 5 KEGG pathways of differentially expressed miRNAs between NW and OW/Ob. Pathways enrichment analysis of single mRNAs deregulated
in compared groups. Pathways were classified according to KEGG functional annotations to identify top pathways that were actively regulated by
miRNAs. Pathways union of six active miRNAs is also reported. The merged p value is extracted by combining calculated significance levels using
Fisher’s exact test (hypergeometric distribution) with a p value threshold = 0.05 and microT threshold = 0.8
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food-derived miRNAs and their ability to affect
cross-species miRNAs remains still questioned [33, 34].
Taken all together, these possibilities may speculatively
contribute to explain the variability in circulating
miRNA patterns from different countries.
During the last years, numerous efforts have been

made to identify reliable and predictive non-invasive
biomarkers to identify primary signs of metabolic dis-
orders. Accordingly, to evaluate miRNAs performance
in discriminating OW/Ob children, ROC curves were
constructed for miRNAs. Single miRNAs, among ex-
perimentally confirmed, generally exhibited low AUC
values with the highest values for miR-874-3p and
miR-501-5p which used in combination provided an
interesting value (AUC = 0.782).
Pearson’s analysis confirmed that, among the miR-

NAs identified in ANCOVA analysis, miR-10b-5p,
miR-215-5p, miR-501-5p, miR-551a, and miR-874-3p
significantly correlated with BMI z-score. No signifi-
cant association between investigated biochemical pa-
rameters and differential expressed miRNAs was
identified, with the exception of miR-191-3p which in
Pearson’s analysis correlates with insulin levels and
HOMA index. This result is in line with a previous
research demonstrating its abnormal levels in both
serum and plasma in T2D patients compared to
healthy controls [16]. However, glucose homeostasis is
a complex trait affected by multiple miRNAs which
can change depending on which metabolically active
tissue is affected.
In the current research, molecular interactions and

functions of confirmed miRNAs were predicted using
the miRPath analysis. Among the top predicted path-
ways, interaction with the target transcripts were further
screened through the use of KEGG. This hypothesis-
generating exercise suggests the involvement of char-
acterized miRNAs in metabolic relevant pathways.
Interestingly, the enzyme fatty acid synthase was the
top predicted target of hsa-miR-10b-5p in the “fatty
acid biosynthesis” (KEGG: hsa00061) and “fatty acid
metabolism” (KEGG: hsa01212) pathways. Of note,
this miRNA has also been shown to be differentially
expressed during 3T3-L1 pre-adipocyte differentiation
and may play active roles during adipogenesis [35].
Remarkably, a study in an animal model showed that
miR-10b-5p represents the most abundant miRNA
found in the subcutaneous adipose tissue [36].
Earlier studies confirmed the abnormal levels of

miR-191-3p in T2D as reported above [16]. Moreover, it has
been shown that miR-191 is considerably downregulated in
adult peripheral Treg cells of diabetic patients compared
with healthy individuals. Comprehensively, miR-191 repre-
sents an emerging player in disease biology since it regulates
important cellular processes such as cell proliferation,

differentiation, apoptosis by targeting relevant transcription
factors, chromatin remodelers, and cell cycle-associated
genes [37].
Among the top differentially expressed miRNAs,

mir-874 has been recently connected to weight loss [38].
Interestingly, the thyroid hormone receptor alpha, the
estrogen receptor 1, and the retinoid X receptor alpha
(implicated in the adipocyte relevant PPAR signaling)
were remarkable molecular target of hsa-miR-874-3p in
the predicted “thyroid hormone signalling” (KEGG:
hsa04919) pathway. Of note, the RXRA/PPARA hetero-
dimer is required for PPARA transcriptional activity on
fatty acid oxidation genes such as ACOX1 and the cyto-
chrome P450 system genes. Additionally, it has been
shown that miR-874 is transcriptionally controlled by
Foxo3a. Members of the FoxO family have been origin-
ally implicated in insulin/insulin-like growth factor sig-
naling with effects of FoxOs on gene expression usually
in the opposite direction as insulin and IGF-1. Of note,
the catechol-O-methyltransferase and the dopa decarb-
oxylase were among the top predicted target of
hsa-miR-874-3p in the “tyrosine metabolism” (KEGG:
hsa00350) pathway. Interestingly, changes of tyrosine
over time were recently associated with metabolomic
changes in childhood obesity; fascinatingly, tyrosine was
identified as the most relevant metabolite in a random
forest analysis in Ob children [39]. It is noteworthy that
Src homology 2 B adaptor protein 1 (SH2B1) was a top
predicted target of hsa-miR-874-3p. SH2B1 is a member
of adaptor proteins influencing a variety of signaling
pathways mediated by JAK and receptor tyrosine ki-
nases. SH2B1 acts by performing classical adaptor func-
tions recruiting specific proteins to activated receptors.
Deletion of the SH2B1 gene in mice has been shown to
result in a severe leptin resistance, obesity, insulin resist-
ance, and T2D, demonstrating its critical role for the
maintenance of normal body weight, insulin sensitivity,
and glucose metabolism.
In this study, a deregulation of miR-215-5p was also

established. Recent studies in 3T3-L1 cell-line demon-
strated that miR-215-5p acts as a negative regulator of
adipocyte differentiation through a post-transcriptional
regulation of FNDC3B and CTNNBIP1 during early adi-
pogenesis [40].
A further attractive speculation concerns hsa-miR-

501-5p. The enzyme branched-chain amino acid trans-
aminase (BCAA) 1A is among top predicted target of this
miRNA in the “valine, leucine and isoleucine biosynthesis”
(KEGG: hsa00290) pathway. Blood levels of the BCAAs
are typically elevated in Ob, insulin-resistant humans, and
models of diet-induced diabetes. Diet specifically reduced
in BCAAs is sufficient to improve glucose tolerance and
body composition, supporting the concept that BCAAs
contribute to obesity and diabetes [41].
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Mammalian glycans have been confirmed to be involved
in molecular and cellular mechanisms governing health
and disease, and changes in glycosylation have been ob-
served in both genetic and acquired disease state [42]. In
recent times, it has been proposed that flux through the
hexosamine biosynthetic pathway may affect the develop-
ment of insulin resistance and complications associated
with diabetes, primarily through O-GlcNAcylation [43].
Noteworthy, the enzyme hexosaminidase was the top pre-
dicted target of hsa-miR-551a in the “glycan degradation”
(KEGG: hsa00511) and “glycosaminoglycan biosynthesis”
(KEGG: hsa00534) pathways.
Gene Ontology enrichment analysis designated se-

lected miRNAs as key regulators of relevant biological
processes. But, plasma levels do not necessarily reflect
the effects exerted inside cells and tissues. Nevertheless,
the concept that exosomal miRNAs can be transferred
to other cell types and act through mechanisms of para-
crine or endocrine regulation is supported by experi-
mental evidence. Current experimental design cannot
answer this question.

Conclusions
The exciting emergence of circulating miRNAs as stable
and accessible molecules opened a promising research
avenue for the detection of non-invasive biomarkers. In
line with this, our cross-sectional analysis showed that a
panel of miRNAs is differentially expressed in over-
weight/low-grade obesity children and adolescents. The
addition of covariates (age, sex, and country of origin) to
linear regression models did not meaningfully attenuate
the association for BMI z-score. Bioinformatics con-
firmed the possible role of recognized miRNAs to act as
key regulators of metabolism, playing pivotal roles in
early stages of obesity by directly affecting the status and
functions of multiple candidate genes. However, evi-
dence concerning how these molecules may act remains
questioned, due to their ability to simultaneously regu-
late various pathways/gene networks, technical limita-
tions of in vivo profiling, and the detected high degree
of variability in miRNA levels, almost certainly due to
individual lifestyle factors.
The planned follow-up of the I.Family cohort in pro-

spectively designed studies will contribute to establish if
selected miRNAs, measured at baseline, are valuable bio-
markers for the early detection of subjects at risk of ex-
cess body fat accumulation with potential applications
for a prompt diagnosis and grading of childhood obesity
and related metabolic abnormalities.

Methods
Study population
The I.Family project (www.ifamilystudy.eu), aimed to as-
sess the determinants of eating behavior in children and

adolescents of eight European countries (Belgium, Cyprus,
Estonia, Germany, Hungary, Italy, Spain, and Sweden) and
related health outcomes, was built on the IDEFICS cohort
(www.ideficsstudy.eu) established in 2007 and followed-up
in 2013–2014. A full description of the project has been
recently published [2]. This study was conducted
according to the standards of the Declaration of Helsinki.
Approval by the appropriate ethics committees was ob-
tained by each of the eight participating centers carrying
out the fieldwork. Participants were not subjected to any
study procedure before both the children and their
parents gave their oral (children) and written (parents)
informed consent for examinations, collection of samples,
subsequent analysis, and storage of personal data and
collected samples. The study registration number is
ISRCTN62310987.
Clinical data were collected from local participating

centers using standardized procedures. A detailed de-
scription of the anthropometric measurements, includ-
ing intra- and inter-observer reliability, has been
previously published [44]. Weight was determined to the
nearest 0.1 kg using an electronic scale (Tanita BC 420
SMA, Tanita Europe GmbH, Sindelfingen, Germany)
with children wearing only light clothes without shoes.
Height was measured using a calibrated stadiometer in-
strument (Seca 225, Seca GmbH&Co.KG., Hamburg,
Germany) with an approximation of 0.1 cm. BMI was
calculated as weight (in kg) divided by height squared
(in m2). Sex and age-specific z-score BMI was calculated
for each child and used for the statistical analysis. Chil-
dren were classified as normal weight, overweight, or
obese according to the cutoffs released by IOTF [45].
For the present study, in each country, we selected 20
children who retained normal weight, i.e., who showed a
BMI z-score between − 1 and + 1 at baseline and
follow-up and did not change more than ±0.1 in BMI
z-score per year (defined as normal weight, NW), and 20
children who retained overweight or obesity, i.e., who
had a BMI z-score of more than + 1 at baseline and
follow-up, respectively, and did not change more than ±
0.1 in BMI z-score per year (defined as overweight/
obese, OW/Ob).

Sample processing and metabolic parameters
The fasting venous blood was collected in BD Vacutai-
ner® blood collection tubes according to standard operat-
ing procedures. A detailed description of sample
collection and analytical procedures has been published
by Peplies et al. [46].
Total cholesterol, high-density lipoprotein choles-

terol (HDL-C), triglyceride (TRG), glucose, glycated
hemoglobin (HbA1c), and serum insulin levels were
measured as part of routine laboratory testing, in a
central laboratory (Laboratoriumsmedizin Dortmund
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Dr. Eberhard und Partner GbR). LDL cholesterol was
calculated according to the formula of Friedwald. In-
sulin resistance was estimated by the homeostatic
model assessment (HOMA) index calculated accord-
ing to the following formula: HOMA = serum insulin
(mU/l) × blood glucose (mg/dl)/405.

Study design, miRNAs extraction, and profiling
Prior to miRNA extraction, spectrophotometry was car-
ried out on plasma samples to test for hemolysis by
measuring the absorbance of free hemoglobin at 414 nm;
samples with OD414 greater than 0.2 were excluded
from the study [29].
For miRNAs extraction, plasma samples were centri-

fuged at 1900×g for 10 min at 4 °C in a benchtop centri-
fuge (Eppendorf, Germany), aliquoted into 1.5 mL
Eppendorf tubes and quickly stored at − 80 °C in the ab-
sence of freeze-thaw cycles until processing. Circulating
miRNAs were evaluated in a three-step procedure: (A) a
pooled miRNome determination, in which samples from
NW and OW/Ob, grouped by countries, was analyzed
as pools in triplicate by PCR arrays for miRNA profiling
experiments; (B) an individual sample validation, in
which the most relevant miRNAs in terms of fold
changes and significance, was subsequently confirmed in
RT-qPCR as distinct assays performed in triplicate; (C) a
functional prediction, in which the molecular functions
of differentially expressed miRNAs, was predicted by
bioinformatics tools.
Circulating miRNAs were first isolated from plasma

pooled samples, where the single country corresponds to
a distinct pool, belonging to NW and OW/Ob groups,
respectively. The miRNeasy Serum/Plasma Kit (Qiagen,
Germany) was used according to the manufacturer’s in-
structions. To assess recoveries after RNA isolation,
Caenorhabditis elegans miR-39 (Cel-miR-39) was added
to each sample (5.6 × 108 molecules) before the extrac-
tion process as spike-in control. cDNAs were generated
by the dedicated miScript RTII kit (Qiagen, Germany) in
the presence of the HiSpec Buffer (Qiagen, Germany)
with miRNA specific stem-looped RT primers according
to the manufacturer’s guidelines. All samples were ex-
tracted and processed in triplicate. cDNAs were investi-
gated by the Human Serum & Plasma 384HC miRNA
PCR Arrays (Qiagen, Germany) to assess 372 miRNAs
typically detectable in serum and plasma following the
manufacturer’s recommendations (Qiagen, Germany) by
using a ViiA7 Real-Time PCR System (Applied Biosys-
tems, Thermo Fisher Scientific, Waltham, MA, USA).
Reaction conditions were as follows: 15min at 95 °C and
40 cycles of 15 s at 94 °C, 30 s at 60 °C, and 30 s at 72 °C.
All assays were inspected for distinct melting curves, and
the Tm was checked. The reverse transcription and ampli-
fication efficiencies were also calculated to verify the

absence of interfering compounds. Ct values > 35 were
considered as negative amplification. In addition, level of
miR-451a, highly abundant in RBCs, was preliminarily
assessed by qPCR. Both miR-451a and miR-23a-3p were
measured in all plasma samples. Samples with a ΔCq ratio
of ≥ 7 were excluded from our analysis [47].
Arrays were analyzed by the Web-based miScript Arrays

data analysis software package (SABiosciences, Qiagen,
https://www.qiagen.com/ch/shop/genes-and-pathways/
data-analysis-center-overview-page/). References for data
normalization included the spike-in Cel-miR-39 in
addition to SNORD95 that has been verified to hold a
relatively stable expression. Normalization of expression
was done using the geometric mean of the controls.
A set of candidate deregulated miRNAs was selected

and further validated by individual assays using the miS-
cript Primer Assays in combination with the miScript
PCR kit according to the manufacturer’s recommenda-
tions (Qiagen, Germany). Confirmatory real-time quanti-
tative RT-PCR (RT-qPCR) was carried out using the SYBR
green technology; samples were analyzed in triplicate
using the following conditions: 95 °C for 15min, followed
by 40 cycles of 94 °C for 15 s, 55 °C for 30 s, and 70 °C for
30 s. All Ct values above 38 were set to 38 as the max-
imum value and regarded as non-amplification. miRNA
levels were determined using the Cel-miR-39 as the en-
dogenous normalizer. Relative levels were calculated using
Data Assist v3.1 software package (Life Technologies,
Thermo Fisher Scientific, Italy).

Bioinformatics
Obesity-associated miRNAs were explored using the target
prediction tool miRPath v3.0. MiRPath pipeline achieves
advanced analysis such as hierarchical clustering of miR-
NAs and pathways based on the levels of their interactions.
miRNA targets (in CDS or 3′-UTR regions) included pre-
dictions from DIANA algorithm (microT-CDS) and also
experimentally validated miRNA interactions derived from
DIANA-TarBase v7.0. Predicted or validated interactions
were subsequently combined by merging and by using
meta-analysis algorithms [48]. All predicted targets were
further analyzed through the use of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) which embraces a large
database of biological and chemical relationships extracted
from scientific literature. Interaction networks were further
validated by miRTargetLink Human.
The distribution of the miRNAs in human tissues was

assessed using the MiRmine Human miRNA Expression
Database (http://guanlab.ccmb.med.umich.edu/mirmine/
index.html).

Statistical analysis
The first step of the analysis was performed on the pooled
samples belonging to NW and OW/Ob groups,
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respectively. The Benjamini-Hochberg false discovery rate
method was adopted in Web-based miScript Arrays data
analysis software package for multiple comparisons to
check whether any differences in the levels of miRNAs be-
tween compared groups were statistically significant.
The second step was the validation on the individual

samples of miRNAs identified on the pooled samples.
Statistical analyses on the selected candidates miRNAs
were performed by using IBM SPSS Statistics (v23.0.;
IBM Corp). Data were calculated as means and standard
deviation (SD) or means and 95% confidence intervals
(CI), as indicated. A two-tailed p value less than 0.05
was considered statistically significant. Biochemical dif-
ferences between compared groups were determined
using analysis of variance (one-way ANOVA). Analysis
of miRNAs expression was performed using analysis of
covariance (ANCOVA) adjusting for covariates (age, sex,
and country of origin).
Pearson’s analysis was used to study associations be-

tween the variables. For selected miRNAs, a receiver–
operator curve (ROC) was constructed and area under
the curve (AUC) was calculated to evaluate the sensitiv-
ity and specificity for predicting cases (Multibase v2015,
Numerical Dynamics).

Additional files

Additional file 1: Figure S1. Candidate miRNAs selection. A) Scatter
plot analysis. The scatter plot analysis compares the normalized
expression of each miRNA present on the array between the selected
groups (OW/Ob vs NW) by plotting them against one another to
visualize changes in miRNA levels. The central line indicates unchanged
expression. The boundary (fold-change cut-off) was set to 1.7. The red
circles are over-expressed miRNAs and the green circles are under-
expressed miRNAs. Several miRNAs were annotated. B) Volcano plot
analysis. For each circulating miRNAs, significance is indicated by negative
log10 p-value on the y-axis, and the standardized difference in log2 Ct scores
on x-axis. The fold-change cut-off was set to 1.7 and p-value to 0.05. Several
miRNAs were annotated. The red circles are over-expressed miRNAs in Ow/
Ob and the green circles are under-expressed miRNAs. (TIF 504 kb)

Additional file 2: Figure S2. Gene Ontology categories. Target genes
were mapped to the Gene Ontology categories to gain a high-level view
of gene functions possibly affected by the altered miRNAs expression.
The color-key at the top represents the log p-values. (TIF 1457 kb)

Additional file 3: Figure S3. Expression of miRNAs in different Human
Tissues. (JPEG 430 kb)

Abbreviations
AUC: Area under the curve; BMI: Body mass index; Cel-miR-39: Caenorhabditis
elegans miR-39; FDR: False discovery rate; GO: Gene Ontology;
HbA1c: Glycated hemoglobin; HDL: High-density lipoprotein;
HOMA: Homeostatic model assessment; KEGG: Kyoto Encyclopedia of Genes
and Genomes; LDL: Low-density lipoprotein; miRNA: microRNA; NW: Normal
weight; OW/Ob: Overweight/obese; ROC: Receiver–operator curve; RT-
qPCR: Real-time quantitative RT-PCR; T2D: Type 2 diabetes; TG: Triglycerides

Acknowledgements
We recognise that this report would have not been possible without the
contributions and efforts of all groups involved in the I.Family Study. We
thank Dr. Nunzia Iannaccone, Institute of Food Sciences, National Research
Council, ISA-CNR, Italy, for her valuable collaboration to this study.

Funding
This work was done as part of the I.Family Study (http://www.ifamilystudy.eu/).
We gratefully acknowledge the financial support of the European Community
within the Seventh RTD Framework Programme Contract No. 266044.

Availability of data and materials
The data that support the findings of this study are available from the
corresponding author but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly
available. Data are however available on reasonable request and with
permission of the I.Family Steering Committee.

Authors’ contributions
GI, PR, and AS conceived, designed, and oversaw the analyses and drafted
the manuscript. PM, FL, AV, and PDL conducted the analyses. WA provided
critical input during drafting and revision of the manuscript. SDH, RF, KG, LL,
DM, LAM, MT, and TV contributed to the interpretation of data and critical
revision of the manuscript. All authors were involved in the writing of the
manuscript and approving the final version of this article.

Ethics approval and consent to participate
This study was conducted according to the standards of the Declaration of
Helsinki. Approval by the appropriate ethics committees was obtained by
each of the eight participating centers carrying out the fieldwork.
Participants were not subjected to any study procedure before both the
children and their parents gave their oral (children) and written (parents)
informed consent for examinations, collection of samples, subsequent
analysis, and storage of personal data and collected samples.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Institute of Food Sciences, National Research Council, ISA-CNR, Via Roma, 64
83100 Avellino, Italy. 2Leibniz-Institute for Prevention Research and
Epidemiology, BIPS, Bremen, Germany. 3University of Ghent, Ghent, Belgium.
4Stazione Zoologica Anton Dohrn, Naples, Italy. 5Sahlgrenska Academy at the
University of Gothenburg, Gothenburg, Sweden. 6Medical School, University
of Pécs, Pécs, Hungary. 7University of Zaragoza, Zaragoza, Spain. 8Research
and Education Institute of Child Health, Strovolos, Cyprus. 9National Institute
for Health Development, Tallinn, Estonia.

Received: 10 September 2018 Accepted: 29 November 2018

References
1. Iacomino G, Russo P, Stillitano I, Lauria F, Marena P, Ahrens W, De Luca P,

Siani A. Circulating microRNAs are deregulated in overweight/obese
children: preliminary results of the I.Family study. Genes Nutr. 2016;11:7.
https://doi.org/10.1186/s12263-016-0525-3.

2. Ahrens W, Siani A, Adan R, De Henauw S, Eiben G, Gwozdz W, Hebestreit A,
Hunsberger M, Kaprio J, Krogh V, et al. Cohort profile: The transition from
childhood to adolescence in European children-how I.Family extends the
IDEFICS cohort. Int J Epidemiol. 2017;46(5):1394–1395j. https://doi.org/10.
1093/ije/dyw317.

3. Hausser J, Zavolan M. Identification and consequences of miRNA-target
interactions--beyond repression of gene expression. Nat Rev Genet. 2014;
15(9):599–612. https://doi.org/10.1038/nrg3765.

4. Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression
networks. J Mol Biol. 2013;425(19):3582–600. https://doi.org/10.1016/j.jmb.
2013.03.007.

5. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of
extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.

Iacomino et al. Genes & Nutrition            (2019) 14:2 Page 11 of 13



6. Kim YK. Extracellular microRNAs as biomarkers in human disease. Chonnam
Med J. 2015;51(2):51–7. https://doi.org/10.4068/cmj.2015.51.2.51.

7. Can U, Buyukinan M, Yerlikaya FH. The investigation of circulating
microRNAs associated with lipid metabolism in childhood obesity. Pediatr
Obes. 2016;11(3):228–34. https://doi.org/10.1111/ijpo.12050.

8. Prats-Puig A, Ortega FJ, Mercader JM, Moreno-Navarrete JM, Moreno M, Bonet
N, Ricart W, Lopez-Bermejo A, Fernandez-Real JM. Changes in circulating
microRNAs are associated with childhood obesity. J Clin Endocrinol Metab.
2013;98(10):E1655–60. https://doi.org/10.1210/jc.2013-1496.

9. Thompson MD, Cismowski MJ, Serpico M, Pusateri A, Brigstock DR. Elevation
of circulating microRNA levels in obese children compared to healthy
controls. Clin Obes. 2017. https://doi.org/10.1111/cob.12192.

10. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related
diseases. Genes Nutr. 2017;12:23. https://doi.org/10.1186/s12263-017-0577-z.

11. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics and
human obesity. Int J Obes. 2015;39(1):85–97. https://doi.org/10.1038/ijo.2014.34.

12. van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent
developments on the role of epigenetics in obesity and metabolic disease.
Clin Epigenetics. 2015;7:66. https://doi.org/10.1186/s13148-015-0101-5.

13. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS,
Zhang W, Yang Y, et al. Epigenome-wide association study of body mass
index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6.
https://doi.org/10.1038/nature20784.

14. Kunej T, Jevsinek Skok D, Zorc M, Ogrinc A, Michal JJ, Kovac M, Jiang Z.
Obesity gene atlas in mammals. J Genomics. 2013;1:45–55.

15. Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater
M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W, et al.
Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;
59(5):781–92. https://doi.org/10.1373/clinchem.2012.195776.

16. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A,
Weger S, Oberhollenzer F, Bonora E, et al. Plasma microRNA profiling reveals
loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ
Res. 2010;107(6):810–7. https://doi.org/10.1161/CIRCRESAHA.110.226357.

17. Pescador N, Perez-Barba M, Ibarra JM, Corbaton A, Martinez-Larrad MT,
Serrano-Rios M. Serum circulating microRNA profiling for identification of
potential type 2 diabetes and obesity biomarkers. PLoS One. 2013;8(10):
e77251. https://doi.org/10.1371/journal.pone.0077251.

18. Cui X, You L, Zhu L, Wang X, Zhou Y, Li Y, Wen J, Xia Y, Wang X, Ji C, et al.
Change in circulating microRNA profile of obese children indicates future
risk of adult diabetes. Metabolism. 2017. https://doi.org/10.1016/j.metabol.
2017.09.006.

19. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes
mellitus. Nat Rev Endocrinol. 2013;9(9):513–21. https://doi.org/10.1038/
nrendo.2013.86.

20. Wang YT, Tsai PC, Liao YC, Hsu CY, Juo SH. Circulating microRNAs have a
sex-specific association with metabolic syndrome. J Biomed Sci. 2013;20:72.
https://doi.org/10.1186/1423-0127-20-72.

21. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG.
Relationship between the temporal profile of plasma microRNA and left
ventricular remodeling in patients after myocardial infarction. Circ
Cardiovasc Genet. 2011;4(6):614–9. https://doi.org/10.1161/CIRCGENETICS.
111.959841.

22. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs
in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS
One. 2011;6(8):e23937. https://doi.org/10.1371/journal.pone.0023937.

23. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R,
Yu X, et al. Signature microRNA expression profile of essential hypertension
and its novel link to human cytomegalovirus infection. Circulation. 2011;
124(2):175–84. https://doi.org/10.1161/CIRCULATIONAHA.110.012237.

24. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT,
Lim SC, Sum CF, Jeyaseelan K. Circulating miRNA profiles in patients with
metabolic syndrome. J Clin Endocrinol Metab. 2012;97(12):E2271–6. https://
doi.org/10.1210/jc.2012-1996.

25. Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic
significance and emerging role as biomarkers and therapeutics. Int J Obes.
2016;40(1):88–101. https://doi.org/10.1038/ijo.2015.170.

26. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB,
Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al. Adipose tissue
macrophage-derived exosomal miRNAs can modulate in vivo and in vitro
insulin sensitivity. Cell. 2017;171(2):372–84 e312. https://doi.org/10.1016/j.cell.
2017.08.035.

27. Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ. Differential
miRNA expression in omental adipose tissue and in the circulation of
obese patients identifies novel metabolic biomarkers. J Clin Endocrinol
Metab. 2011;96(5):E846–50. https://doi.org/10.1210/jc.2010-2701.

28. Carreras-Badosa G, Bonmati A, Ortega FJ, Mercader JM, Guindo-Martinez M,
Torrents D, Prats-Puig A, Martinez-Calcerrada JM, Platero-Gutierrez E, De
Zegher F, et al. Altered circulating miRNA expression profile in
pregestational and gestational obesity. J Clin Endocrinol Metab. 2015;
100(11):E1446–56. https://doi.org/10.1210/jc.2015-2872.

29. Ouyang S, Tang R, Liu Z, Ma F, Li Y, Wu J. Characterization and predicted
role of microRNA expression profiles associated with early childhood
obesity. Mol Med Rep. 2017;16(4):3799–806. https://doi.org/10.3892/mmr.
2017.7118.

30. Slattery ML, Herrick JS, Mullany LE, Stevens JR, Wolff RK. Diet and
lifestyle factors associated with miRNA expression in colorectal tissue.
Pharmgenomics Pers Med. 2017;10:1–16. https://doi.org/10.2147/PGPM.
S117796.

31. Palmer JD, Soule BP, Simone BA, Zaorsky NG, Jin L, Simone NL. MicroRNA
expression altered by diet: can food be medicinal? Ageing Res Rev. 2014;17:
16–24. https://doi.org/10.1016/j.arr.2014.04.005.

32. Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, Xiao Z. Assessing the survival
of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8.
https://doi.org/10.1002/fsn3.113.

33. Pastrello C, Tsay M, McQuaid R, Abovsky M, Pasini E, Shirdel E, Angeli M,
Tokar T, Jamnik J, Kotlyar M, et al. Circulating plant miRNAs can regulate
human gene expression in vitro. Sci Rep. 2016;6:32773. https://doi.org/10.
1038/srep32773.

34. Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet?
Genes Nutr. 2017;12:15. https://doi.org/10.1186/s12263-017-0564-4.

35. Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte
differentiation. RNA. 2006;12(9):1626–32. https://doi.org/10.1261/rna.
7228806.

36. Mentzel CM, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS,
Jorgensen CB, Gorodkin J, Cirera S, Fredholm M. Gender and obesity specific
microRNA expression in adipose tissue from lean and obese pigs. PLoS One.
2015;10(7):e0131650. https://doi.org/10.1371/journal.pone.0131650.

37. Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology.
Front Genet. 2014;5:99. https://doi.org/10.3389/fgene.2014.00099.

38. Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campion J,
Martinez JA. High-throughput sequencing of microRNAs in peripheral blood
mononuclear cells: identification of potential weight loss biomarkers. PLoS
One. 2013;8(1):e54319. https://doi.org/10.1371/journal.pone.0054319.

39. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, Goring H, Cole
SA, Comuzzie AG. Global metabolomic profiling targeting childhood obesity
in the Hispanic population. Am J Clin Nutr. 2015;102(2):256–67. https://doi.
org/10.3945/ajcn.115.111872.

40. Peng Y, Li H, Li X, Yu S, Xiang H, Peng J, Jiang S. MicroRNA-215 impairs
adipocyte differentiation and co-represses FNDC3B and CTNNBIP1. Int J
Biochem Cell Biol. 2016;79:104–12. https://doi.org/10.1016/j.biocel.2016.08.014.

41. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA,
Cava E, Spelta F, Tosti V, Syed FA, et al. Decreased consumption of
branched-chain amino acids improves metabolic health. Cell Rep. 2016;
16(2):520–30. https://doi.org/10.1016/j.celrep.2016.05.092.

42. Dennis JW, Brewer CF. Density-dependent lectin-glycan interactions as a
paradigm for conditional regulation by posttranslational modifications.
Mol Cell Proteomics. 2013;12(4):913–20. https://doi.org/10.1074/mcp.
R112.026989.

43. Ryczko MC, Pawling J, Chen R, Abdel Rahman AM, Yau K, Copeland JK,
Zhang C, Surendra A, Guttman DS, Figeys D, et al. Metabolic
reprogramming by hexosamine biosynthetic and Golgi N-glycan branching
pathways. Sci Rep. 2016;6:23043. https://doi.org/10.1038/srep23043.

44. Stomfai S, Ahrens W, Bammann K, Kovacs E, Marild S, Michels N, Moreno LA,
Pohlabeln H, Siani A, Tornaritis M, et al. Intra- and inter-observer reliability in
anthropometric measurements in children. Int J Obes. 2011;35(Suppl 1):S45–
51. https://doi.org/10.1038/ijo.2011.34.

45. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs
for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284–94. https://
doi.org/10.1111/j.2047-6310.2012.00064.x.

46. Peplies J, Fraterman A, Scott R, Russo P, Bammann K. Quality management
for the collection of biological samples in multicentre studies. Eur J
Epidemiol. 2010;25(9):607–17. https://doi.org/10.1007/s10654-010-9481-1.

Iacomino et al. Genes & Nutrition            (2019) 14:2 Page 12 of 13



47. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang
Teilum M, Dahlsveen IK. Assessing sample and miRNA profile quality in
serum and plasma or other biofluids. Methods. 2013;59(1):S1–6. https://doi.
org/10.1016/j.ymeth.2012.09.015.

48. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D,
Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0:
deciphering microRNA function with experimental support. Nucleic Acids
Res. 2015;43(W1):W460–6. https://doi.org/10.1093/nar/gkv403.

Iacomino et al. Genes & Nutrition            (2019) 14:2 Page 13 of 13


