000077180 001__ 77180
000077180 005__ 20210223082304.0
000077180 0247_ $$2doi$$a10.3390/molecules24010170
000077180 0248_ $$2sideral$$a110399
000077180 037__ $$aART-2019-110399
000077180 041__ $$aeng
000077180 100__ $$0(orcid)0000-0001-5053-8309$$aBerdejo, D.$$uUniversidad de Zaragoza
000077180 245__ $$aSub-Inhibitory doses of individual constituents of essential oils can select for staphylococcus aureus resistant mutants
000077180 260__ $$c2019
000077180 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077180 5203_ $$aIncreased bacterial resistance to food preservation technologies represents a risk for food safety and shelf-life. The use of natural antimicrobials, such as essential oils (EOs) and their individual constituents (ICs), has been proposed to avoid the generation of antimicrobial resistance. However, prolonged application of ICs might conceivably lead to the emergence of resistant strains. Hence, this study was aimed toward applying sub-inhibitory doses of the ICs carvacrol, citral, and (+)-limonene oxide to Staphylococcus aureus USA300, in order to evaluate the emergence of resistant strains and to identify the genetic modifications responsible for their increased resistance. Three stable-resistant strains, CAR (from cultures with carvacrol), CIT (from cultures with citral), and OXLIM (from cultures with (+)-limonene oxide) were isolated, showing an increased resistance against the ICs and a higher tolerance to lethal treatments by ICs or heat. Whole-genome sequencing revealed in CAR a large deletion in a region that contained genes encoding transcriptional regulators and metabolic enzymes. CIT showed a single missense mutation in aroC (N187K), which encodes for chorismate synthase; and in OXLIM a missense mutation was detected in rpoB (A862V), which encodes for RNA polymerase subunit beta. This study provides a first detailed insight into the mechanisms of action and S. aureus resistance arising from exposure to carvacrol, citral, and (+)-limonene oxide.
000077180 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU12-00170$$9info:eu-repo/grantAgreement/ES/MEC/FPU15-02703$$9info:eu-repo/grantAgreement/ES/MEC/FPU17-02441$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2015-69565-P
000077180 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000077180 590__ $$a3.267$$b2019
000077180 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b70 / 177 = 0.395$$c2019$$dQ2$$eT2
000077180 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b141 / 297 = 0.475$$c2019$$dQ2$$eT2
000077180 592__ $$a0.698$$b2019
000077180 593__ $$aPharmaceutical Science$$c2019$$dQ1
000077180 593__ $$aChemistry (miscellaneous)$$c2019$$dQ2
000077180 593__ $$aDrug Discovery$$c2019$$dQ2
000077180 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ2
000077180 593__ $$aOrganic Chemistry$$c2019$$dQ2
000077180 593__ $$aAnalytical Chemistry$$c2019$$dQ2
000077180 593__ $$aMedicine (miscellaneous)$$c2019$$dQ2
000077180 593__ $$aMolecular Medicine$$c2019$$dQ3
000077180 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000077180 700__ $$aChueca, B.
000077180 700__ $$0(orcid)0000-0003-3752-4660$$aPagán, E.$$uUniversidad de Zaragoza
000077180 700__ $$aRenzoni, A.
000077180 700__ $$aKelley, W.L.
000077180 700__ $$0(orcid)0000-0002-0238-6328$$aPagán, R.$$uUniversidad de Zaragoza
000077180 700__ $$0(orcid)0000-0002-7629-8101$$aGarcia-Gonzalo, D.$$uUniversidad de Zaragoza
000077180 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000077180 773__ $$g24, 1 (2019), 170 [16 pp]$$pMolecules$$tMolecules$$x1420-3049
000077180 8564_ $$s914326$$uhttps://zaguan.unizar.es/record/77180/files/texto_completo.pdf$$yVersión publicada
000077180 8564_ $$s108190$$uhttps://zaguan.unizar.es/record/77180/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000077180 909CO $$ooai:zaguan.unizar.es:77180$$particulos$$pdriver
000077180 951__ $$a2021-02-23-08:20:52
000077180 980__ $$aARTICLE