000077214 001__ 77214
000077214 005__ 20200221144244.0
000077214 0247_ $$2doi$$a10.1080/00102202.2016.1138826
000077214 0248_ $$2sideral$$a93364
000077214 037__ $$aART-2016-93364
000077214 041__ $$aeng
000077214 100__ $$0(orcid)0000-0002-7767-3057$$aMarrodan, L.$$uUniversidad de Zaragoza
000077214 245__ $$aDimethoxymethane oxidation in a flow reactor
000077214 260__ $$c2016
000077214 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077214 5203_ $$aThe simultaneous reduction of NOx and soot emissions from diesel engines is a major research subject and a challenge in today’s world. One prospective solution involves diesel fuel reformulation by addition of oxygenated compounds, such as dimethoxymethane (DMM). In this context, different DMM oxidation experiments have been carried out in an atmospheric pressure gas-phase installation, in the 573–1373 K temperature range, from pyrolysis to fuel-lean conditions. The results obtained have been interpreted by means of a detailed gas-phase chemical kinetic mechanism. Results indicate that the initial oxygen concentration slightly influences the consumption of DMM. However, certain effects can be observed in the profiles of the main products (CH4, CH3OH, CH3OCHO, CO, CO2, C2H2, C2H4, and C2H6). Acetylene, an important soot precursor, is only formed under pyrolysis and reducing conditions. In general, a good agreement between experimental and modeling data was observed.
000077214 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2012-34423$$9info:eu-repo/grantAgreement/ES/DGA/GPT
000077214 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077214 590__ $$a1.241$$b2016
000077214 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b36 / 85 = 0.424$$c2016$$dQ2$$eT2
000077214 591__ $$aTHERMODYNAMICS$$b35 / 58 = 0.603$$c2016$$dQ3$$eT2
000077214 591__ $$aENERGY & FUELS$$b63 / 92 = 0.685$$c2016$$dQ3$$eT3
000077214 591__ $$aENGINEERING, CHEMICAL$$b82 / 135 = 0.607$$c2016$$dQ3$$eT2
000077214 592__ $$a0.416$$b2016
000077214 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ2
000077214 593__ $$aChemistry (miscellaneous)$$c2016$$dQ2
000077214 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ2
000077214 593__ $$aFuel Technology$$c2016$$dQ2
000077214 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ2
000077214 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077214 700__ $$aMonge, F.
000077214 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, A.$$uUniversidad de Zaragoza
000077214 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, R.$$uUniversidad de Zaragoza
000077214 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000077214 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000077214 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000077214 773__ $$g188, 4-5 (2016), 719-729$$pCombust. sci. technol.$$tCOMBUSTION SCIENCE AND TECHNOLOGY$$x0010-2202
000077214 8564_ $$s379476$$uhttps://zaguan.unizar.es/record/77214/files/texto_completo.pdf$$yPostprint
000077214 8564_ $$s84517$$uhttps://zaguan.unizar.es/record/77214/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077214 909CO $$ooai:zaguan.unizar.es:77214$$ooai:zaguan.unizar.es:77214$$particulos$$particulos$$pdriver$$pdriver
000077214 951__ $$a2020-02-21-13:24:06
000077214 980__ $$aARTICLE