000077237 001__ 77237
000077237 005__ 20190709135427.0
000077237 0247_ $$2doi$$a10.1021/acsami.7b01916
000077237 0248_ $$2sideral$$a99019
000077237 037__ $$aART-2017-99019
000077237 041__ $$aeng
000077237 100__ $$aKallem, P.
000077237 245__ $$aHierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids
000077237 260__ $$c2017
000077237 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077237 5203_ $$aLiquid-induced phase-separation micromolding (LIPSµM) has been successfully used for manufacturing hierarchical porous polybenzimidazole (HPBI) microsieves (42-46% porosity, 30-40 µm thick) with a specific pore architecture (pattern of macropores: ~9 µm in size, perforated, dispersed in a porous matrix with a 50-100 nm pore size). Using these microsieves, proton-exchange membranes were fabricated by the infiltration of a 1H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide liquid and divinylbenzene (as a cross-linker), followed by in situ UV polymerization. Our approach relies on the separation of the ion conducting function from the structural support function. Thus, the polymeric ionic liquid (PIL) moiety plays the role of a proton conductor, whereas the HPBI microsieve ensures the mechanical resistance of the system. The influence of the porous support architecture on both proton transport performance and mechanical strength has been specifically investigated by means of comparison with straight macroporous (36% porosity) and randomly nanoporous (68% porosity) PBI counterparts. The most attractive results were obtained with the poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide PIL cross-linked with 1% divinylbenzene supported on HPBI membranes with a 21-µm-thick skin layer, achieving conductivity values up to 85 mS cm-1 at 200 °C under anhydrous conditions and in the absence of mineral acids.
000077237 536__ $$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/SGA2012-1719
000077237 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077237 590__ $$a8.097$$b2017
000077237 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b15 / 92 = 0.163$$c2017$$dQ1$$eT1
000077237 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b26 / 285 = 0.091$$c2017$$dQ1$$eT1
000077237 592__ $$a2.784$$b2017
000077237 593__ $$aMaterials Science (miscellaneous)$$c2017$$dQ1
000077237 593__ $$aNanoscience and Nanotechnology$$c2017$$dQ1
000077237 593__ $$aMedicine (miscellaneous)$$c2017$$dQ1
000077237 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077237 700__ $$aDrobek, M.
000077237 700__ $$aJulbe, A.
000077237 700__ $$aVriezekolk, E.J.
000077237 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000077237 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000077237 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000077237 773__ $$g9, 17 (2017), 14844-14857$$pACS appl. mater. interfaces$$tACS Applied Materials & Interfaces$$x1944-8244
000077237 8564_ $$s3825490$$uhttps://zaguan.unizar.es/record/77237/files/texto_completo.pdf$$yPostprint
000077237 8564_ $$s50681$$uhttps://zaguan.unizar.es/record/77237/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077237 909CO $$ooai:zaguan.unizar.es:77237$$particulos$$pdriver
000077237 951__ $$a2019-07-09-11:30:28
000077237 980__ $$aARTICLE