000077238 001__ 77238
000077238 005__ 20191122145056.0
000077238 0247_ $$2doi$$a10.1016/j.memsci.2017.09.065
000077238 0248_ $$2sideral$$a101858
000077238 037__ $$aART-2018-101858
000077238 041__ $$aeng
000077238 100__ $$aMalankowska, M.
000077238 245__ $$aMicrofluidic devices as gas – Ionic liquid membrane contactors for CO2 removal from anaesthesia gases
000077238 260__ $$c2018
000077238 5060_ $$aAccess copy available to the general public$$fUnrestricted
000077238 5203_ $$aThis work proposes a microfluidic gas – ionic liquid contactor for CO2 removal from anaesthesia gas, containing Xe. The working principle involves the transport of CO2 through a polymer flat membrane followed by its capture and enzymatic bioconversion in the ionic liquid solvent. Microfluidic devices enable a rapid and inexpensive screening of potential CO2 absorbers. The alveolar – type design of the ionic liquid chamber was adopted to reduce mass transfer limitations of CO2 through the liquid phase. Polydimethylsiloxane (PDMS) was the chosen polymer for dense membrane, as well as for the microfluidic device fabrication, mainly due to the high permeability of gases, O2 and CO2, and low cost. The selected ionic liquid was cholinium propionate (CP) with a water activity of 0.753, due to its high affinity towards CO2 and biocompatibility with the enzyme used for CO2 conversion to bicarbonate, carbonic anhydrase (CA). The CO2 and Xe permeability and CO2/Xe selectivity were determined in the microfluidic devices developed and compared to those exhibited by free standing PDMS membranes mounted on a standard permeation cell. The performance of the microfluidic devices as gas – ionic liquid contactors was evaluated for a given solvent flow rate with pure gas streams of CO2 and Xe. The obtained results show that cholinium propionate with or without the enzyme has no effect on the Xe transport, but remarkably enhances the affinity towards carbon dioxide leading to enhancement factor up to 1.9 in the presence of 0.1 mg CA/gIL.
000077238 536__ $$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/SGA2012-1719$$9info:eu-repo/grantAgreement/ES/FEDER/POCI-01-0145-007265
000077238 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000077238 590__ $$a7.015$$b2018
000077238 591__ $$aPOLYMER SCIENCE$$b2 / 86 = 0.023$$c2018$$dQ1$$eT1
000077238 591__ $$aENGINEERING, CHEMICAL$$b8 / 138 = 0.058$$c2018$$dQ1$$eT1
000077238 592__ $$a2.119$$b2018
000077238 593__ $$aBiochemistry$$c2018$$dQ1
000077238 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1
000077238 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000077238 593__ $$aFiltration and Separation$$c2018$$dQ1
000077238 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000077238 700__ $$aMartins, C. F.
000077238 700__ $$aRho, H. S.
000077238 700__ $$aNeves, L. A.
000077238 700__ $$aTiggelaar, R. M.
000077238 700__ $$aCrespo, J. G.
000077238 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M. P.$$uUniversidad de Zaragoza
000077238 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000077238 700__ $$aGardeniers, H.
000077238 700__ $$aCoelhoso, I. M.
000077238 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000077238 773__ $$g545 (2018), 107-115$$pJ. membr. sci.$$tJOURNAL OF MEMBRANE SCIENCE$$x0376-7388
000077238 8564_ $$s1357707$$uhttps://zaguan.unizar.es/record/77238/files/texto_completo.pdf$$yPostprint
000077238 8564_ $$s94332$$uhttps://zaguan.unizar.es/record/77238/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000077238 909CO $$ooai:zaguan.unizar.es:77238$$particulos$$pdriver
000077238 951__ $$a2019-11-22-14:46:34
000077238 980__ $$aARTICLE