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A new climatology of maximum and minimum temperature 1 

(1951-2010) in the Spanish mainland: a comparison between 2 

three different interpolation methods 3 

 4 

 5 

Abstract 6 

This study presents a new climatology of monthly temperature for 7 

mainland Spain (1951-2010), performed with the highest quality and spatially 8 

dense, up-to-date monthly temperature data set available in the study area 9 

(MOTEDAS).  10 

Three different interpolation techniques were evaluated: the Local 11 

Weighted Linear Regression (LWLR), the Regression-Kriging (RK) and the 12 

Regression-Kriging with stepwise selection (RKS), a modification of RK. The 13 

performances of the different models were evaluated by the leave-one-out 14 

validation procedure, comparing the results from the models with the original 15 

data and calculating different error measurements. 16 

The three techniques performed better for Tmax than for Tmin, and for 17 

the cold, rather than warmer months; also at lower altitude than highland areas. 18 

The best results were achieved with LWLR applied for the first time on 19 

temperatures in the Spanish mainland. This method improved the accuracy of 20 

the temperature reconstruction with respect to RK and RKS. 21 

We present a collection of Tmax and Tmin monthly charts, using the 22 

same temperature legend to prevent any visual bias in the interpretation of the 23 

results. The dataset is available upon request. 24 

 25 

 26 

Key Words. Climatology; Interpolation; Maximum temperature; Minimum 27 

Temperature; Spain. 28 
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1. Introduction 30 

Climatology maps express mean values of climate variables and are 31 

used as a working tool in several fields, such as agriculture, engineering, 32 

hydrology, ecology and natural resource management among others (Daly et 33 

al., 2008). Moreover, climatology maps are a required element in searching for 34 

climate change signals, to evaluate climatic models and to understand how the 35 

climate interacts with other natural elements (Hofstra et al., 2008). According to 36 

the World Meteorological Organization, climatology maps should be developed 37 

using databases with recordings covering over 30 years. On the other hand, 38 

many research projects have pointed out that the reliability of climate analysis 39 

results increases when a high-quality, high spatial density dataset is used 40 

(Madden et al., 1993; Jones et al., 1999; Hofstra et al., 2008; Cowtan and Way, 41 

2014).   42 

Traditionally, climatology maps are produced from the spatial 43 

interpolation from the scant weather station series to obtain regularly distributed 44 

climatic information over a defined area. This is because of the necessity of 45 

organising the climatic information into continuous spatial fields of data to 46 

reduce the lack of information in some areas due to the irregular spatial 47 

distribution of the weather stations (Jones and Hulme, 1996; Dai et al., 1997; 48 

New et al., 2000). Until now, there has been no uniform consensus regarding 49 

what the most adequate interpolation method for climatic variables might be, 50 

and the best ones vary as a function of the area where they are applied and the 51 

interpolated variable (Vicente-Serrano et al., 2003). On the other hand, various 52 

methods for evaluating their performance have been proposed during the last 53 

few decades (Kurtzman and Kadmon, 1999; Goovaerts, 2000; Vicente-Serrano 54 

et al., 2003; Ninyerola et al., 2007; Hofstra et al., 2008; Li and Heap, 2011; 55 

Herrera et al., 2012). 56 

Generally speaking, interpolation methods can be subdivided into four 57 

main groups: global, local, geostatistical and hybrid (Vicente-Serrano et al., 58 

2003). Global methods (e.g. trend surface analysis and the regression models) 59 

use all the available spatial information to estimate the climatic values of the 60 

grid generated. These methods relate climate information with geographic data 61 

(elevation, latitude, slope, etc.) to generate the interpolated maps (Pons, 1996; 62 

Ninyerola et al., 2000). On the contrary, local methods (such as Inverse 63 
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Distance Weighting, Nearest Neighbours, Delauny Thiessen and Minimum-64 

curvature-splines) only make use of the information obtained from subsets from 65 

neighbouring stations; they usually assign weights to individual stations 66 

according to a function that combines distance from the point to be estimated 67 

and other characteristics or properties of neighbouring stations, such as the 68 

Angular Distance Weighted method and Correlation Decay Distance index (New 69 

et al., 2000; Mitchell and Jones, 2005; Caesar et al., 2006; Hofstra et al., 70 

2008).The geostatistical methods, like the Simple Kriging (Hengl et al., 2004), 71 

Ordinary Kriging (Goovaerts, 2000), Co-Kriging (Nalder and Wein, 1998), 72 

Universal Kriging (Hosseini et al., 1993) or Regression Kriging (Hengl, 2007; 73 

Henglet al., 2007), assume that the spatial variability of a continuous variable 74 

(or at least part of it) is too irregular to be modeled by a mathematical function, 75 

and could be better predicted by a probabilistic surface (Vicente-Serrano et al., 76 

2003). Lastly, hybrid methods combine elements from the above techniques to 77 

enhance the interpolation results (Ninyerola et al., 2007).  78 

In this paper, we developed a new high resolution climatology for monthly 79 

mean values of maximum (Tmax) and minimum (Tmin) temperature in the 80 

western Mediterranean basin (mainland Spain) by using a recent high quality, 81 

high density dataset (acronym MOTEDAS, Monthly Temperature Dataset of 82 

Spain; Gonzalez-Hidalgo et al., 2015a). The new climatology emerges after 83 

comparing some of the best performing interpolation techniques, and the global 84 

results are shown in a complete collection of monthly maps of monthly mean 85 

maximum (Tmax), monthly mean minimum (Tmin) and monthly mean amplitude 86 

(Diurnal Temperature Range, DTR). The paper is organized as follows: in 87 

sections 2 and 3 we briefly describe the study area (Iberian Peninsula) and the 88 

dataset used in the new climatology; in section 4 we present the three 89 

interpolation methods and the error measurements used to estimate the 90 

performance of each one. Section 5 contains the accuracy of the models and 91 

their spatial differences by comparing various error measurements in several 92 

elevation bands, and concludes with the presentation of the new climatology 93 

and the collection of charts obtained from the best performing method. In 94 

section 6, we discuss the main findings and present the main conclusion.  95 

 96 

2. Study area  97 
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The Spanish mainland (Iberian Peninsula, western Mediterranean basin) 98 

seems to be an appropriate area for evaluating the differences between 99 

interpolating approaches to temperature for several reasons. Firstly, its 100 

latitudinal position in the subtropical band suggests highly contrasting seasonal 101 

temperature regimes, while the north-south extension (c. 1000 km) introduces a 102 

reasonable gradient in the amounts of incoming solar radiation; on the other 103 

hand, the Iberian Peninsula has sharply contrasting landscapes, well-defined by 104 

altitude combined with orography: the coastland areas (<200 m above sea 105 

level, asl), the inland plateau (200-1000 m asl), and the high mountain areas 106 

(>1000 m asl); finally the Iberian Peninsula is located between two heavily 107 

contrasting water masses (Atlantic Ocean and Mediterranean Sea). As a 108 

consequence, large areas in the inland plateau regions (meseta norte and 109 

meseta sur in Spanish), are only open to Atlantic influences from the west, due 110 

to the alignment of the mountain systems, which are arranged in a west-east 111 

direction, bound on the eastern side by a north-south oriented chain, the 112 

Sistema Iberico (see Figure 1). These reasons, among others, result in a 113 

marked complexity in spatial distribution of temperature across the Iberian 114 

Peninsula, as indicated in classic publications (Font Tullot, 1983; Capel Molina, 115 

1998; Sánchez and Sánchez, 1999). As a consequence, the local multivariate 116 

regression models can be expected to be much more suitable than global 117 

methods to estimate the spatial gradients of temperatures in the Spanish 118 

mainland, and also to provide easier interpretation of factors that contribute to 119 

spatial distribution of temperatures. Such local methods have been applied with 120 

optimal results in territories characterized by complex orography (Daly et al., 121 

2008; Frei, 2013; Brunetti et al., 2014) but not yet, to our knowledge, in the 122 

Spanish mainland.  123 

 124 

3. Data 125 

We have developed the new climatology of temperatures following the 126 

global approach of Mitchell and Jones (2005) and using the most recently 127 

updated database of monthly temperatures, the MOTEDAS dataset (Gonzalez-128 

Hidalgo et al. 2015a). MOTEDAS was developed after exhaustive analyses of 129 

the complete information stored at the National Meteorological Agency of Spain 130 

(AEMet). Quality control included detection of suspicious data and correction of 131 
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inhomogeneities on a monthly scale (details in Gonzalez-Hidalgo et al. 2015a). 132 

The MOTEDAS high resolution grid (10 x 10 km) had previously been used to 133 

analyse the spatial variability of monthly temperatures and their trends at high 134 

resolution (Peña-Angulo et al., 2015, Gonzalez-Hidalgo et al., 2015b). In this 135 

research, we used the complete information included in the MOTEDAS dataset, 136 

in an attempt to maximize the information from the 3066 original series from 137 

AEMet, which contains at least 84 months of original data. These series were 138 

also checked by complementary quality control on their location (checks that 139 

were not included in the original development of MOTEDAS). In short, the 140 

locations of the 3066 stations were compared with a Digital Elevation Model 141 

(DEM) obtained from the ASTER-based Global Digital Elevation Model (GDEM) 142 

at a resolution of 30 m (Hayakawa et al., 2008). These one-by-one-degree files 143 

can be downloaded from NASA’s EOS data archive and/or Japan’s Ground 144 

Data System (http://gdem.ersdac.jspacesystems.or.jp/). The stations were 145 

eventually discarded from the final data set for climatology reconstruction if the 146 

following three criteria were satisfied: (1) difference in altitude >150 m between 147 

official coordinates and DEM, (2) the altitude of the station did not correspond 148 

with any point of the DEM in the surrounding 2 km2, and (3) the difference in the 149 

annual temperature mean value with respect to neighbouring stations was 150 

higher than 3ºC, taking into account the lapse rate by altitudes. In the end, a 151 

small percentage of the original series from MOTEDAS was discarded from the 152 

original 3066 stations (54 for Tmax and 45 for Tmin). 153 

The final series (in terms of data availability) from MOTEDAS used in the 154 

development of temperature climatology were characterized as follows: 155 

• Series with original complete information between 1951 and 2010 (11 156 

stations). 157 

• Series in which complete reconstruction was achieved between 1951-2010 158 

with reference series from neighbouring stations no further away than 100 159 

km (2865 stations in Tmax and 2869 in Tmin). 160 

• Finally, in order to maximize the spatial information, the series in which 161 

MOTEDAS made an incomplete reconstruction but contained more than 7 162 

years of original information between 1951-2010, were reconstructed 163 

following the approach suggested by (Brunetti et al. 2014). A total of 136 164 

stations for Tmax and 141 of Tmin stations were saved using this procedure. 165 
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The final dataset includes 40% of original and 60% of reconstructed data 166 

from stations no further than 25 km apart. Obviously individual station data 167 

varies, depending on the area and decade, with original data showing an 168 

increase in the 1981-2010 period.  169 

Consequently, the version of MOTEDAS used to develop the new 170 

temperature climatology of the Spanish mainland includes a total number of 171 

3012 for Tmax and 3021 for Tmin of complete, homogeneous and free from 172 

suspicious data monthly series (1951-2010; see Figure 2), and offers a 173 

significantly higher station density than those used in several previous 174 

climatologies for the Spanish mainland (1068 stations used by Ninyerola et al., 175 

2005), and for the complete Iberian Peninsula (1440 stations used by Ninyerola 176 

et al., 2007; 237 stations used by Herrera et al., 2012).  This procedure ensures 177 

that there is a reduced error bias in the series since a strong trend is displayed 178 

over the 1951-2010 period (see Gonzalez-Hidalgo et al., 2015a and b), and if 179 

station climate normals are calculated only from available data, the final result 180 

will be biased point by point, depending on the bias for the period covered by 181 

data from the stations surrounding each grid point. 182 

 183 

4. Interpolation methods  184 

Three different interpolation methods were compared: (1) Locally 185 

Weighted Linear Regression (LWLR), (2) Regression-Kriging (RK) and (3) 186 

Regression-Kriging with Stepwise selection (RKS). The resulting monthly Tmax 187 

and Tmin maps have a resolution of 0.0083º (~1 km at Iberian Peninsula 188 

latitude), which matches the spatial resolution of the GTOPO30 (USGS, 1996) 189 

Digital Elevation Model (DEM) on which the climatologies were reconstructed. 190 

The DEM was used to assign geographic information to the stations, in 191 

addition to the elevation already available from station metadata together with 192 

latitude and longitude. For each cell of the DEM, we estimated the slope 193 

orientation, slope steepness and crossed distance from the sea (obtained by 194 

minimizing the sum of the cell-sea horizontal distance plus all vertical gradients 195 

crossed by the cell-sea segment) using the method described by (Brunetti et al., 196 

2014) and we assigned the geographical parameters of the closest grid cell to 197 

each station. 198 

 199 
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4.1. Local Weighted Linear Regression  (LWLR) 200 

The LWLR estimates locally the relationship between temperature and 201 

elevation (Brunetti et al., 2014), which represents an improvement on the 202 

geographically weighted regression (GWR) approach (Brunsdon et al., 1996) A 203 

weighted linear regression (Taylor, 1997), with neighbouring stations to predict 204 

the temperature (T) value of a cell (λ, ∅) as a function of the elevation, was 205 

estimated as follows: 206 

 207 

���, ∅� = ���, ∅� + 
��, ∅� ∗ ℎ��, ∅�	  (Eq. 1) 208 

 209 

where	���, ∅� and 
��, ∅� are the linear regression coefficients, and ℎ��, ∅� the 210 

elevation. 211 

The basic idea of the approach is to evaluate the relationship between 212 

temperature and elevation separately for each grid cell of the DEM, giving more 213 

importance to any nearby stations with topographical characteristics similar to 214 

those of the grid cell itself. Specifically, a number of neighbouring stations (at 215 

least 15 and no more than 35, - 35 being the number that minimizes the error) 216 

with the highest weights were used in the estimation of the regression for each 217 

grid point (�, ∅). The minimum and maximum number of neighbouring stations 218 

considered was determined by an analysis of interpolation accuracy by Root 219 

Mean Squared Error (RMSE). For each station, the weight was calculated as 220 

the product of the following weighting factors: 221 

 222 

����, ∅� = ��
���, ∅� 	∗ 	��

���, ∅� ∗ 	��
������, ∅� ∗ 	��

�������, ∅� ∗ 	��
��������, ∅� (Eq. 223 

2) 224 

 225 

These weighting factors (position, height, distance from the sea, slope 226 

steepness and slope orientation) are based on Gaussian functions of the form: 227 

 228 

w�
����λ, ∅� = 	e

"�
∆$
%&'�(,∅�)

*%&'
�
  (Eq. 3) 229 

 230 

where ∆�
��� is the absolute value of the difference between the value of the 231 

specific variable in cell �λ, ∅) and in the i-th station, and cvar is a coefficient that 232 
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expresses the decrease of the weighting function with increasing ∆�
���. The cvar 233 

coefficients can also be expressed in terms of the value ∆+
)

���which represent the 234 

value of ∆�
���for which the weighting factor is equal to 0.5. 235 

 236 

c��� = 	−
�∆+

)

%&'�)

./0
  (Eq. 4) 237 

 238 

To select the most appropriate	∆+
)

���values to be used in the weighting 239 

factors, we followed an iterative process, and the ∆+
)

���  producing the lowest 240 

possible error at station locations was estimated for each month. 241 

The most relevant weight is the radial, which is the optimization of the ∆+
)

� 242 

factor producing the largest improvement in interpolation performance. Its 243 

optimal values vary from month to month, with lower values in summer (24 km 244 

in July) and higher in winter (58 km in February) for Tmax; on the contrary, for 245 

Tmin, lower values were found in winter (18 km from November to February), 246 

and higher values in spring and summer (24 km from April to July). 247 

The other halving factors (∆1
0	2

3 , ∆1
0	2

456� , ∆1/0
5.896

, ∆1/0
�596:;

) were set as in 248 

Brunetti et al.(2014). 249 

 250 

4.2. Regression-Kriging (RK) 251 

The RK method combines a regression model with a Kriging (Hengl et al. 252 

2007) of the regression residuals (Tveito et al., 2008; Di Piazza et al., 2011; 253 

Brunetti et al., 2014). 254 

In this case, we first estimated the temperature vs. elevation (h) linear 255 

regression model as in Eq. 1, but with a global approach, i.e. with a and b 256 

coefficients identical for each grid cell and dependent only on the month in 257 

question. A Kriging interpolation was then applied to the residuals from this 258 

model. This technique can be used to obtain a variogram providing information 259 

on the spatial correlation of the analysed residuals. In this study, we took into 260 

account all pairs of stations in the range of 250 km, and grouped them 261 

according to distance intervals of 10 Km. The exponential variogram was 262 
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selected to model the dependency between the semivariance and the distance, 263 

as this provided the lowest error. 264 

The theoretical variogram was used to obtain the covariance (C) vs 265 

distance, and the covariance matrix, expressing the covariance of any pair of 266 

stations. The array with the Kriging weights (k) for each cell	��, ∅� was obtained 267 

as follows: 268 

 269 

<�λ, ∅� = 	="1	* >?�λ, ∅�  (Eq. 5) 270 

 271 

where >? is the array representing the covariance of the cell ��, ∅� with all the 272 

station positions. The temperature of each cell was thus estimated as follows: 273 

 274 

� = 	� + b*h�λ, ∅�+ <@	�λ, ∅� * A  (Eq. 6) 275 

 276 

where	�	and	
	are parameters defined by the global regression model, h is the 277 

elevation, <@	 is the vector of the Kriging weights, and A the vector of station 278 

residuals. 279 

 280 

4.3. Regression Kriging with Stepwise selection (RKS) 281 

The third interpolation method used in this study was a variation of the 282 

previously described RK. In this case the Kriging is used to interpolate the 283 

residuals from a multi-linear regression model (slope steepness, slope 284 

orientation, distance from the sea, altitude, longitude, and latitude) with 285 

stepwise selection. The stepwise selection method allows us to choose the 286 

optimum independent variables that will be used in the multi-linear regression 287 

model for each month. This method integrates the variables in an iterative way: 288 

in each step it evaluates which set of variables should be included in the model. 289 

The algorithm stops when the model does not make any further improvements, 290 

either by introducing or removing variables. The relative quality of the model is 291 

evaluated with Akaike’s information criterion (AIC). The AIC is a measure of the 292 

relative quality of a fitting model. The lower the AIC value, the better the model.  293 

As in the previous method, a Kriging interpolation was applied to the 294 

residuals from the multi-linear regression. To this end, all pairs of stations in the 295 

range of 250 km were taken and grouped according to distance intervals of 10 296 
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km. Finally, we selected the exponential variogram to model the dependency 297 

between the semivariance and the distance.  298 

In this way, the temperature in each cell was estimated by the following 299 

equation:  300 

 301 

� = �+ 
* h�λ, ∅�+B ∗ λ+d*∅+e*slope�λ, ∅�+f*aspect�λ, ∅�+g*dsea�λ, ∅�+ 302 

+	<@��, ∅� * A 303 

(Eq. 7) 304 

where coefficients a, b P, g not excluded by the stepwise selection iterative 305 

procedure were determined with the regression model. 306 

 307 

4.4. Validation procedure and error measurements 308 

The performances of the three interpolation models were evaluated by 309 

using a leave-one-out validation procedure; the monthly value from each station 310 

was excluded from the dataset and reconstructed by the three models, using all 311 

the other stations; finally, the estimated value was compared with the observed 312 

value. This procedure ensured a higher level of accuracy with respect to the 313 

classic approach of leaving a fixed percentage of original data for the validation 314 

procedure, because in the leave-one-out, all the original data involved in the 315 

model are checked individually with their specific model. 316 

Four error measures were computed to compare the performances of the 317 

interpolation methods: the Mean Bias Error (MBE), the Mean Absolute Error 318 

(MAE), the Root Mean Squared Error (RMSE), and the Index of Agreement (D) 319 

developed by (Willmott 1982).The MBE provides information on the tendency of 320 

the model to systematically overestimate or underestimate a variable (Pielke, 321 

1984). The Mean Absolute Error (MAE) is the average of the differences (in 322 

terms of absolute value) between that observed and that predicted by the 323 

model. The Root Mean Squared Error (RMSE) estimates the average difference 324 

between estimated and observed values in each station. The RMSE and MAE 325 

summarize the average difference between the estimated and real values with 326 

the same units (Vicente-Serrano et al., 2003); Willmott (1982) suggested that 327 

RMSE was more appropriate than MAE in order to validate spatial interpolation 328 

models, although Vicente-Serrano et al. (2003) indicated that MAE is less 329 

sensitive than RMSE when dealing with extreme values. In this respect, RMSE 330 
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is stricter than MAE. The Index of Agreement (D) is a standardized measure of 331 

the model prediction error and varies between 0 and 1. A value of 1 indicates a 332 

perfect match, and 0 indicates no agreement at all (Willmott, 1982). Index D can 333 

detect proportional differences in the observed and estimated means and 334 

variances; however, it is too sensitive to extreme values, due to the squared 335 

differences (Legates and McCabe, 1999).  336 

 Finally, the global quality of the model was also evaluated by the 337 

coefficient of determination (R2) as a square of the multiple Pearson correlation 338 

coefficient. This coefficient not only gives information on the quality of a model, 339 

but also on its capacity for prediction under the assumption of explained 340 

variance.  341 

 342 

5. Results  343 

5.1. Global accuracy of models 344 

The global results of interpolation methods evaluated by various error 345 

measurements (MBE, MAE, RMSE, R2 and D) are shown in Tables 1 and 2 for 346 

Tmax and Tmin on an annual and monthly scale. The performances are better 347 

for Tmax than for Tmin, both on a monthly and annual scale, with MAE and 348 

RMSE being lower for Tmax than for Tmin, and the reverse being true for D and 349 

R2 (Tables 1 and 2). 350 

Errors are always maximum in summer, for both Tmax and Tmin, and the 351 

lowest errors are in winter for Tmax and in spring for Tmin. In particular, the 352 

highest values of RSME range from 1.16 to 1.27°C in July for Tmax, and from 353 

1.26 to 1.32°C in August for Tmin, while its lowest values range from 0.81 to 354 

0.83°C in February for Tmax and from 0.97 to 1.05°C in April for Tmin. The 355 

lowest RMSE values of these ranges are those from the LWLR method. The 356 

same annual cycle in RMSE, but with higher values, was presented in the 357 

previous climatology of the Spanish mainland by (Ninyerola et al., 2005), in 358 

which the lowest RMSE values were 1.6°C in July for Tmax and 1.5°C in August 359 

for Tmin, and its highest values were 1.1°C in February for Tmax and 1.1 in 360 

April for Tmin. These results can also be deduced from the MAE, R2 and D. 361 

These findings coincide with the spatial variability of temperatures evaluated by 362 

the Correlation Distance Decay by (Peña-Angulo et al., 2015), with the lowest 363 
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RMSE values relating to the months characterized by highest spatial 364 

coherence. 365 

In the Spanish mainland, the best performing model is always the LWLR, 366 

and the worst is the RK. Differences among models are much more evident for 367 

Tmin than for Tmax. Looking at RMSE, there is a maximum range between best 368 

and worst performing method of about 0.1°C in summer for Tmax and about 369 

0.2°C in autumn for Tmin. The MAE (ºC) also shows that the lowest error is 370 

returned by the LWLR method, where values between 0.61 and 0.88 are 371 

achieved according to the month; in second place is the RKS, with values 372 

between 0.60 and 0.89; and finally the RK between 0.61 and 0.94. 373 

 374 

5.2. Performance of the models vs elevation 375 

These global results must be taken with caution, since they refer to a 376 

very complex terrain in which the effects of distance from water bodies, altitude, 377 

and latitude are combined. In particular, we verified whether the accuracy of the 378 

models for Tmax and Tmin changes with altitude. Figure 3 shows the mean 379 

annual values of MBE for different elevation bands, together with January and 380 

July. This estimator allows us to identify systematic over/under estimations. In 381 

general, the three models produce lower MBE at low altitude, but MBE values 382 

increase in the highlands, particularly above 1000 m asl, where there is a 383 

systematic overestimation of Tmax, and a systematic underestimation of Tmin. 384 

This phenomenon is important for RK and RKS, where bias can reach several 385 

tenths of a degree for the highest elevation bands (with Tmax/Tmin biases of 386 

+0.58/-0.93°C and +0.49/-0.63°C above 1200m for RK and RKS respectively), 387 

but much lower for the LWLR method (Figure 3). The same pattern was 388 

observed in the other error measurements (figure not shown). 389 

The analyses of monthly model performance versus altitude show 390 

differences between cold and warm months and the systematic errors in the 391 

various elevation bands are much more evident. In Figure 3, the January and 392 

July (as representative of cold and warm periods) monthly values of MBE for 393 

LWLR, RK and RKS at different altitude intervals are shown, which roughly 394 

correspond to coastland areas (<200 m asl), inland plateaus and inland 395 

catchments (200-1000 m asl), and mountain landscapes (>1000 m asl). 396 
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The negative systematic biases at high elevation bands for Tmin range 397 

between -0.61°C and -1.20°C in the RK model, in summer and winter 398 

respectively. On the contrary, LWLR presents lower biases in winter than in 399 

summer, with values ranging from -0.11°C in winter to -0.19°C in summer. RKS 400 

has minimum biases in spring (-0.43°C) and maximum in autumn (-0.83°C). As 401 

for Tmax , monthly biases above 1200 m asl are negative in winter and positive 402 

from March to November (not shown in the figure) for RK (ranging from -0.33°C 403 

in December to +1.28°C in July), and always positive for RKS (ranging from 404 

+0.08°C in December to +0.73 in July). No relevant biases are observed for 405 

Tmax in the LWLR model. 406 

In low elevation bands, systematic errors are smaller or absent, 407 

depending on the model and the season. LWLR presents no systematic errors 408 

below 1000 m in any month, either for Tmax or Tmin, and biases are always 409 

lower than 0.1°C (negative or positive). RK, on the contrary, has positive 410 

(negative) systematic biases, up to +0.2°C (-0.2°C) in winter (summer) months 411 

for Tmin (Tmax). The same is true for RKS, with errors up to +0.17°C in autumn 412 

Tmin and up to -0.15 in summer Tmin.  413 

 414 

5.3. Climatology maps of maximum and minimum temperature, and DTR. 415 

The classic analyses of spatial distribution of Tmax and Tmin in the 416 

Spanish mainland (Font Tullot, 1983, Capel Molina, 1998), and the most recent 417 

climatologies (Ninyerola et al., 2007, AEMet, 2011), have shown that the spatial 418 

distribution of the isotherms in the Iberian Peninsula varies according to the 419 

latitude, distance from the sea and elevation, with large spatial variations 420 

throughout the year, i.e.: temperatures increase from north to south, in coastal 421 

areas the gradients are smoothed, and the orography is the principal factor 422 

driving the spatial distribution of Tmax and Tmin values. Furthermore, due to 423 

the west-east orientation of the mountain systems and the fact that the inland 424 

plateaus are open to the west (see Figure 1), the influence of the Atlantic Ocean 425 

on temperatures spreads over a large area of inland Spain to the east, while the 426 

influence of the Mediterranean is limited to a small area, due to the vicinity of 427 

the mountain systems in the southern and eastern coastal areas; this leads to a 428 

second main gradient from west to  east being identified in the classic maps.  429 
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The above results suggest that the global method (such as RK and RKS) 430 

are not the most suitable for capturing the complex interrelation of these factors 431 

affecting the temperature spatial gradients in the Spanish mainland and causing 432 

the near-surface temperature to change significantly from region to region. Our 433 

results indicate that the most adequate approach is a local estimate of the 434 

temperature lapse rate, made by using the information from the most 435 

representative stations in that location, as the LWLR method does. In the 436 

following paragraphs, we will take the climatologies produced with the LWLR 437 

approach as the base of reference for the Spanish mainland, and describe their 438 

main features. 439 

 440 

5.3.1. The Tmax climatology 441 

Tmax climatology maps are shown in figure 4 (see also Figure 1 for 442 

spatial identification). 443 

During winter (December to February), most of the Spanish mainland has 444 

Tmax values below 15ºC, except for small areas in the extreme coastland to the 445 

south-west and east. The inland Tmax spatial distribution is characterized by 446 

the contrast between inland catchments and their mountain borders with the 447 

Mediterranean and south-west coastland areas, with the isotherm of 15ºC as a 448 

limit. The Tmax mean value in the northern plateau (Duero basin) is lower 449 

(<10ºC) than in the southern inland catchments of Tagus, Guadiana and 450 

Guadalquivir, and the Ebro inland in the north-east (>10ºC). Finally, in the 451 

southern plateau (but not in the northern inland Duero catchment) a clear west-452 

east gradient is identified, accentuated during the month of February. Month by 453 

month, the areas below 10ºC are restricted to the mountain regions and eastern 454 

part of the northern Duero basin. 455 

Between March and May, the north-south gradient remains between 456 

inland catchments; in southern ones, Tmax values above 20ºC are found in 457 

March in the southernmost areas (Guadalquivir basin) and extend to the rest of 458 

the southern catchment and Ebro basin to the north-east during April and May; 459 

the Duero catchment, in the northern plateau, reaches an isothermal value of 460 

20ºC only in May in its western area, one month later than the other inland 461 

areas. The Tmax value in the north-eastern Ebro basin is quite similar to the 462 

southern catchment, i.e. the latitude (quite similar to the Duero basin) does not 463 
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seem to be a determining factor for Tmax during these months. In April and 464 

May, Tmax values below 15ºC are found only in mountain areas and the 465 

eastern Duero catchment in the northern inland plateau. The coastland areas 466 

behave in a different way, depending on their position (Atlantic versus 467 

Mediterranean water bodies). In the Mediterranean coastland to the east and in 468 

the south, Tmax is above 20ºC, while in the northern coastland it is >15ºC. 469 

Month by month, Tmax values above 25ºC increase along the axis of the main 470 

rivers (Tagus, Guadiana, Guadalquivir and Segura catchment). In May, the 471 

value of Tmax in the Spanish mainland is above 20ºC, except in mountain 472 

areas and the northern coast.  473 

The warm season lasts from June to September, and a clear north-south 474 

gradient is detected in Tmax, with mountain areas isolated from the surrounding 475 

landscapes by the isothermal value of 20ºC. The maximum values of Tmax are 476 

found in the southern plateau and central area of the Ebro basin to the north-477 

east (>30ºC). The coastal areas differ again between Atlantic and 478 

Mediterranean, with the Mediterranean coastland presenting Tmax values 479 

similar to inland southern catchments. 480 

June and September show a similar spatial distribution of Tmax values. 481 

In both cases, the north-south separation is defined by the 25ºC isotherm and, 482 

in extended areas of the southern Spanish mainland, Tmax is above 25ºC. On 483 

the other hand, the spatial distribution of Tmax in July and August is quite 484 

similar, showing the same north-south gradient, with the threshold between 485 

north and south being the 30ºC isotherm. In the southern inland areas, Tmax 486 

values are >35ºC. 487 

October and November seem to be transitional months. During October 488 

the Tmax spatial distribution resembles that of the warmest months (north-south 489 

gradient, differences between coastal areas, isolated mountain areas) with 490 

lower mean values. The coastland-inland and north-south gradients are clearly 491 

separated by the 20ºC isotherm in October, and 15ºC in November. In the 492 

highland inland areas, Tmax values are below 15ºC. Globally, the spatial 493 

distribution of Tmax in October is similar to May, and November to March. 494 

Finally, in November the inland northern Duero basin Tmax is similar to the 495 

surrounding mountain areas where, in the highest places, it falls below 5ºC. 496 
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Only in the Mediterranean coastal and south-western areas are Tmax values 497 

above 15ºC.  498 

In brief, Tmax spatial monthly distribution shows a north-south gradient in 499 

the inland catchments, accentuated during the warmest months by a higher 500 

increase in southern Tmax values. Mountain areas in the warmest months are 501 

cold and isolated from the surrounding areas, i.e. altitude affects spatial 502 

variability of Tmax, particularly when solar radiation is at maximum. In addition 503 

to a north to south gradient, there is also a west-east gradient. This combination 504 

of latitudinal gradient and relative position (oriented to sea influences from the 505 

west or east) seems to explain the differences between catchments located at 506 

the same latitude, such as the Duero and Ebro: a combination of the sheltering 507 

effect of mountain systems, prevalent westerly wind circulation and different 508 

effects from the Atlantic and Mediterranean water bodies emerge as a plausible 509 

explanation of Tmax differences between the Duero and Ebro basins located at 510 

the same latitude. 511 

5.3.2. Tmin climatology 512 

Tmin climatology maps are shown in figure 5 (see also Figure 1 for 513 

spatial identification). 514 

In general, the spatial differences of Tmin values are lower than for Tmax 515 

and this is particularly true during the warmest months producing a monthly 516 

amplitude (Tmax-Tmin) spatially variable throughout the year (see below). 517 

From November to April, the spatial distribution of Tmin is similar and 518 

most of the Spanish conterminous land is below 5ºC, except in small areas in 519 

the eastern and southern coastland. The lowest values can be found in 520 

December, January and February in mountain areas and the Duero basin in the 521 

northern plateau (Tmin below 0ºC), with a clear north to south gradient, while 522 

the southern inland catchments and Ebro basin to the north-east are above 0ºC. 523 

In the southern catchments of the Tagus, Guadiana and Guadalquivir, a west-524 

east gradient in Tmin is detected. The differences between coastal and inland 525 

areas are lower than for Tmax. In November, March and April the area between 526 

5ºC and 10ºC in Tmin extends to the south-west. The <0ºC value of Tmin is 527 

restricted to mountain areas in March and April. 528 
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In May, the spatial distribution of Tmin along the north–south gradient 529 

between catchments (10ºC as a limit between north and south) is more 530 

complex; the Ebro basin exhibits similar values to southern basins (>10ºC) and 531 

in the southern part of the Spanish mainland there is a west to east gradient. 532 

During May, the 10ºC isotherm moves inland from the SW of the southern 533 

catchments and Mediterranean coastal areas, while northern coastland Tmin 534 

values are <10ºC. 535 

The warmest period from June to September shows a clear north-south 536 

gradient with the 15ºC isotherm separating the north from the south in July-537 

August, and 10ºC in June and September. Tmin values of <5ºC are restricted to 538 

mountain areas and the 15ºC isotherm also seems to be the boundary between 539 

inland and coastal to the east and south. Except for July and August, Tmin 540 

values in the Ebro basin are similar to the Duero basin at the same latitude. 541 

In brief, the spatial differences of Tmin values seem lower than Tmax. In 542 

addition, north-to-south, west-to-east or east-to-west gradients according to 543 

latitudinal position and proximity of different water bodies, are simplified. 544 

 545 

5.3.3. The DTR climatology 546 

Lastly, Figure 6 shows the DTR monthly collection charts. Generally 547 

speaking, during the warmest months (June to September) there is a clear 548 

inland-coastland gradient in the DTR values, which are higher inland. Along the 549 

Mediterranean fringe and northern coastland the DTR values vary between 6ºC-550 

8ºC, while inland they vary between 10ºC -12ºC, (see Figure 6), with maximum 551 

values over 18ºC.  552 

The coastland-inland pattern during October-February disappears, when  553 

the lowest DTR values of 6ºC to 8ºC are found in the northern coastal areas, 554 

and increase toward the central inland and southern areas, where the monthly 555 

DTR is 10ºC to 12ºC. From March to May, the Atlantic coastland to the north 556 

and west differs from the Mediterranean southern coastland, with DTR values 557 

lower in the Atlantic coastal area (6ºC - 8ºC) than the Mediterranean eastern 558 

coast (10ºC - 12ºC). The inland areas show DTR between 6ºC and 12ºC. In 559 

May, the DTR values inland are over 14ºC. 560 

In brief, the DTR monthly spatial distribution indicates that the maximum 561 

values are reached inland during the summer months when there is a clear 562 
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difference between coastal and inland areas. During the coldest months this 563 

pattern disappears, and a north-south gradient predominates in the DTR 564 

monthly values, increasing toward the south. The maximum spatial differences 565 

in DTR values have been found in July and August (coastland 6ºC-8ºC, inland 566 

>18ºC); meanwhile during the coldest months, the maximum spatial differences 567 

vary between 4ºC-6ºC in coastal areas and 8ºC-10ºC inland. A plausible 568 

explanation is that Tmax in the coldest months is strongly affected by factors 569 

such as air humidity or cloud to a higher degree than those factors that can 570 

promote spatial variability in Tmin. 571 

 572 

6. Discussion and conclusions 573 

6.1. Global comments 574 

We applied different interpolation approaches to the recent high quality 575 

and up-to-date monthly temperatures dataset of Spain (MOTEDAS), with the 576 

aim of producing a new high resolution climatology for Tmax and Tmin in the 577 

Spanish mainland. The poorest results were observed in summer for both Tmax 578 

and Tmin data, while better results were found in winter for Tmax and in spring 579 

for Tmin. The comparison between models indicates that the estimation errors 580 

vary as a function of the altitude and a generalized 581 

underestimation/overestimation of Tmin/Tmax was detected particularly at 582 

>1000 m where the LWLR method performed best. 583 

The quality of dataset used and the high spatial density of stations in this 584 

research is probably the most relevant reason for the general improvement of 585 

the RMSE with respect to previous climatologies (Ninyerola et al., 2005), or 586 

when comparing the R2 coefficients of annual mean values obtained from 1350 587 

stations (Ninyerola et al. 2007), with those obtained in this research (see Tables 588 

1 and 2). Therefore, all the three methods applied are an improvement on 589 

previous results.  590 

The global difference between the performance of the models for Tmax 591 

and Tmin can be attributed to the various factors affecting these, because Tmax 592 

depends more on global factors, such as radiation defined by latitudinal 593 

position, while Tmin could be more heavily affected by local factors, such as 594 

land use associated with the albedo, latent heat fluxes etc. (Christy et al., 2009; 595 

Klotzbach et al., 2009; McNider et al., 2010), which are more difficult to 596 
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implement in the models and not always captured by the available station data. 597 

Within this context it would be interesting to verify whether the three methods 598 

produce systematic errors at a local level, when selected station clusters are 599 

included. 600 

All three models produced the worst results in highland areas, particularly 601 

for Tmin in summer. Again, the LWLR returned the best results, in particular 602 

above 1000 m asl for both Tmax and Tmin (Figure 3). The worst model is RK 603 

and it is interesting to note the improvements provided by the introduction of the 604 

stepwise selection method in the RKS model, which means that the introduction 605 

of additional variables to estimate temperature fields in the different months 606 

gives better results, in Tmax during summer and in Tmin, in particular, during 607 

winter. The relevance of the variables differs from month to month, also 608 

between Tmax and Tmin. The slope orientation was considered only for Tmax 609 

in the cold months (January, December, and in October) and September. In 610 

February, the distance from the sea was not included in the model, while in 611 

November the longitude was excluded. With Tmin, all the geographic variables 612 

were relevant in the model except for the longitude in April.   613 

The analyses of the coefficients of the multilinear regression allowed us 614 

to compare the role of the different independent variables (predictors) on Tmax 615 

and Tmin. The elevation effect (representing the global lapse rate) is stronger in 616 

spring and autumn for Tmax and in summer for Tmin. The latitude coefficients 617 

show a higher effect on temperature in summer (both for Tmax and Tmin) and 618 

more for Tmax than Tmin, according to a strict relationship with incoming solar 619 

radiation. The effect of slope steepness is positive in Tmin in all months, and 620 

negative in Tmax between March-October. In Tmax, the maximum effect of 621 

slope was found during summer, while in Tmin the strongest effect was found in 622 

cold months. Slope orientation is positive in all months and more important in 623 

winter in Tmin, while it seems to be less relevant for Tmax; also distance from 624 

the sea is more significant during summer than winter.  625 

The overall spatial variability of temperatures and the relevance of 626 

different geographical variables, in addition to the elevation, in driving this 627 

variability has been well identified by several models for the Spanish mainland. 628 

Ninyerola et al. (2005, 2007) applied a combination of a multiple regression with 629 

residuals correction by means of local and geostatistical techniques, while the 630 

Page 19 of 36

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

20 

 

Spanish Meteorological Agency (AEMet, 2011) applied a multivariate regression 631 

interpolation method with a residuals correction, performed with either a local 632 

(Inverse Distance Weighted) or a geostatistical method (Simple Kriging). 633 

However, as well as the different role of these variables throughout the 634 

year, there is an important spatial variability in their effect on temperature. This 635 

is demonstrated by the fact that the local approach of the LWLR model (which 636 

includes all the variables in the station weighting procedure) allows for the 637 

spatial variability of the temperature lapse rate (linked to the geographical 638 

aspects) to be better captured in the different months of the year, providing 639 

lower errors at each elevation band, even without any further interpolation of the 640 

residuals. 641 

 642 

6.2. Final remarks 643 

The new approach proposed in the present paper by using LWLR seems 644 

to be an improvement on the previous ones, at the present level of development 645 

of interpolation techniques, due to the decrease in the global error values (at 646 

high altitude in particular) and, even more important, because of the elimination 647 

of systematic biases at different elevation bands.  648 

In conclusion, the analyses of error measurements and their spatial and 649 

temporal distribution indicated that the approach proposed in this paper, the 650 

LWLR method, as compared to the generalized RK and the RKS, improves the 651 

previous climatologies in the Spanish mainland, and should be suggested for 652 

future research. 653 

Nevertheless, even though in our case LWLR turned out to be the most 654 

appropriate approach, this result cannot be generalized. In particular, the LWLR 655 

method is more dependent on the availability of station data than RK and RKS 656 

and any global approach in general. For other datasets, RK and RKS may be 657 

more suitable, either because they are simpler to use or because station density 658 

is not sufficient to apply LWLR. 659 

As well as better performance in terms of station errors, LWLR has the 660 

additional advantage of estimating a prediction interval for any grid point in the 661 

terrain studied. Since LWLR uses weighted linear regression to estimate 662 

temperature as a function of elevation, standard methods for calculating 663 

prediction intervals for the dependent variable can be used as in Daly et 664 
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al.(2008). The procedure consists in estimating the variance of the temperature 665 

(T) of a grid-point at elevation h as: 666 

 667 

    { } { } MSETsTs hh += ˆ22
   (8) 668 

 669 

where MSE is the mean square error of the observed station temperatures 670 

compared to those obtained with the regression model. 671 

This estimation takes into account both the variation in the possible 672 

location of the expected temperature for a given elevation ( { }hTs ˆ2 ) linked to the 673 

regression coefficient errors and the variation of the individual station 674 

temperatures around the regression line (MSE). 675 

Expressing { }hTs ˆ2
 in terms of MSE, station weights (wi, as defined in eq. 676 

2) and station elevations (hi), the following is obtained: 677 
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 680 

where i ranges over the stations involved in the grid point reconstruction. 681 

The prediction interval at significance level α can be estimated as: 682 

 683 

    { }h
df

h TstT ⋅± −
,

2

1 α      (10) 684 

where t is the value of a Student distribution with df degrees of freedom 685 

corresponding to cumulative probability (1-α)/2. 686 

In Figure 7, the 68% confidence interval (we chose 68% in order to find 687 

prediction intervals easily comparable with the station leave-one-out RMSE) for 688 

January and July is presented as an example. The confidence interval is higher 689 

in summer than in winter and for Tmin than for Tmax, i.e. when the spatial 690 

coherence is lower. These maps allow us to understand where station density 691 

should be enhanced to improve confidence in the reconstruction. 692 

The most critical areas are mountains in summer for Tmax, while Tmin 693 

seems to be more sensitive to station density, showing higher confidence 694 

intervals where station density is lower. 695 
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These are the areas where the new climatology should be taken with 696 

more caution, not only because of the scarcity of stations to validate any model, 697 

but also as a consequence of the larger confidence interval of the model 698 

algorithms in these areas. 699 

We offer a collection of monthly charts for the Spanish mainland for the 700 

period between 1951 and 2010. The climatology is available upon request. 701 
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 FIGURE CAPTIONS 865 

 866 

Figure 1. Study area. The map shows the topography of Iberian Peninsula, and 867 

the names of the most important spatial units quoted in the text 868 

Figure 2. Spatial distribution of the meteorological stations by altitudinal 869 

intervals 870 

Figure 3. Tmax and Tmin Mean Bias Error (MBE) for different elevation bands 871 

annual values are shown together January and July 872 

Figure 4. Monthly mean climatology for Tmax 873 

Figure 5. Monthly mean climatology for Tmin 874 

Figure 6. Monthly mean climatology for DTR 875 

Figure 7. Confidence interval (68%) estimated for the LWLR Tmax and Tmin 876 

reconstructions for January and July 877 
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Tmax 
LWLR RK RKS 

MBE RMSE MAE R
2
 D MBE RMSE MAE R

2
 D MBE RMSE MAE R

2
 D 

January -0,006 0,823 0,608 0.927 0.981 0,001 0,823 0,605 0.927 0.981 0,002 0,832 0,612 0.925 0.980 

Febrary -0,012 0,814 0,606 0.922 0.979 0,002 0,815 0,608 0.922 0.979 0,002 0,832 0,621 0.919 0.978 

March -0,020 0,860 0,644 0.907 0.975 0,001 0,890 0,667 0.901 0.972 0,002 0,890 0,668 0.901 0.972 

April -0,024 0,913 0,680 0.907 0.975 0,001 0,947 0,706 0.901 0.972 0,001 0,937 0,698 0.903 0.973 

May -0,031 0,978 0,736 0.898 0.972 0,002 1,036 0,775 0.887 0.968 0,000 1,002 0,752 0.894 0.970 

June -0,038 1,100 0,829 0.897 0.972 0,004 1,179 0,876 0.883 0.967 0,000 1,115 0,839 0.895 0.971 

July -0,037 1,163 0,880 0.911 0.976 0,002 1,272 0,946 0.893 0.970 -0,002 1,188 0,895 0.907 0.975 

August -0,040 1,133 0,856 0.906 0.975 0,002 1,223 0,912 0.891 0.970 -0,001 1,157 0,869 0.903 0.973 

September -0,033 0,993 0,747 0.899 0.972 0,000 1,047 0,782 0.888 0.968 -0,001 1,014 0,763 0.895 0.971 

October -0,020 0,863 0,642 0.910 0.976 0,001 0,884 0,657 0.906 0.974 0,003 0,888 0,659 0.905 0.974 

November -0,009 0,823 0,608 0.925 0.980 0,001 0,820 0,604 0.926 0.981 0,000 0,832 0,615 0.924 0.980 

December -0,006 0,839 0,620 0.924 0.980 0,001 0,844 0,620 0.924 0.980 0,002 0,845 0,621 0.924 0.980 

Annual -0,023 0,813 0,612 0.919 0.978 0,001 0,848 0,633 0.904 0.976 0,001 0,844 0,633 0.908 0.977 

 

Table 1.  Monthly and anual error model measurements for Tmax. 
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Tmin 
LWLR RK RKS 

MBE RMSE MAE R
2
 D MBE RMSE MAE R

2
 D MBE RMSE MAE R

2
 D 

January -0,007 1,020 0,796 0.882 0.968 0,000 1,193 0,936 0.841 0.957 -0,001 1,089 0,864 0.865 0.963 

Febrary -0,009 1,020 0,801 0.883 0.969 -0,001 1,172 0,928 0.848 0.959 -0,001 1,085 0,864 0.868 0.964 

March -0,005 1,024 0,808 0.873 0.965 -0,001 1,148 0,915 0.842 0.957 -0,001 1,085 0,867 0.857 0.961 

April 0,003 0,968 0,765 0.880 0.968 -0,002 1,048 0,831 0.861 0.963 -0,004 1,013 0,802 0.869 0.964 

May 0,004 1,000 0,785 0.865 0.963 0,001 1,054 0,831 0.850 0.959 -0,002 1,040 0,819 0.854 0.960 

June 0,005 1,104 0,856 0.852 0.959 0,003 1,137 0,887 0.844 0.957 0,000 1,141 0,892 0.843 0.957 

July 0,005 1,248 0,959 0.844 0.956 0,003 1,291 0,998 0.833 0.954 0,001 1,296 1,004 0.832 0.953 

August 0,001 1,256 0,966 0.854 0.960 0,001 1,320 1,025 0.839 0.956 0,000 1,311 1,018 0.841 0.956 

September -0,002 1,178 0,917 0.864 0.963 0,000 1,285 1,011 0.840 0.956 -0,001 1,249 0,984 0.847 0.958 

October -0,004 1,064 0,838 0.879 0.967 -0,001 1,216 0,966 0.845 0.958 -0,001 1,143 0,911 0.861 0.962 

November -0,009 1,031 0,808 0.887 0.970 0,000 1,215 0,956 0.846 0.958 0,001 1,109 0,881 0.869 0.964 

December -0,005 1,018 0,791 0.885 0.969 -0,001 1,199 0,937 0.844 0.958 0,000 1,089 0,859 0.869 0.964 

Annual -0,002 1,011 0,797 0.877 0.967 -0,001 1,130 0,899 0.844 0.960 -0,002 1,078 0,860 0.856 0.962 

 

Table 2.  Monthly and anual error model measurements for Tmin. 
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Study area. The map shows the topography of Iberian Peninsula, and the names of the most important 
spatial units quoted in the text  
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Spatial distribution of the meteorological stations by altitudinal intervals  
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Tmax and Tmin Mean Biass Error (MBE) for different elevation bands annual values are shown together 
January and July  
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Monthly mean climatology for Tmax  
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Monthly mean climatology for Tmin  
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Monthly mean climatology for DTR  
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Confidence interval (68%) estimated for the LWLR Tmax and Tmin reconstructions for January and July  
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